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Green’s relationship, ASI=P(C)2I, which equates the area, ASI, under the
receiver operating characteristic (ROC) curve in the single-interval forced-
choice (SIFC) task with the proportion correct, P(C)2I, in the two-interval
forced-choice (2IFC) task, is rederived using the cross-correlation functions of
the SIFC evidence distributions. The relationship is generalized to include
discrete random variables, unidimensional decision axes that do not need to be
monotonic with likelihood ratio, and arbitrary prior and guessing probabilities.
A 2IFC difference decision rule is assumed. Further nonparametric relation-
ships, including an equality between an entropy transform of ASI and the 2IFC
channel capacity, nonparametric bounds on the area under the 2IFC ROC
curve in terms of ASI, and methods for estimating 2IFC ROC curves based on
information from the SIFC task, are developed. These relationships are inves-
tigated experimentally. Experiment I is a frequency-discrimination task where
the evidence is known to be distributed as a discrete random variable. Experi-
ment II is an amplitude-discrimination task where the theoretical evidence
distributions are continuously distributed. The problem of observer inconsistency
is addressed by repeating the experiments multiple times, using the same
stimuli, then using group operating characteristic (GOC) analysis to remove
unique noise. Results from Experiment I show excellent support for all the
theoretical relationships, and results from Experiment II show partial support
for the theoretical relationships. © 2002 Elsevier Science



1. INTRODUCTION

In modern psychophysics, the experimental tasks most widely used are the single-
interval forced-choice (SIFC) task and the two-interval forced-choice (2IFC) task.
The analysis of these tasks is based on the theory of signal detectability (TSD)
(Marill, 1956; Peterson, Birdsall, & Fox, 1954). With particular assumptions, the
two tasks are connected theoretically by Green’s relationship, which shows that the
area, ASI, under the receiver operating characteristic (ROC) curve in the SIFC task
is equal to the proportion of correct decisions, P(C)2I, in the 2IFC task (Green,
1964b; Green & Moses, 1966; Green & Swets, 1966). This relationship is important
because it allows prediction of psychophysical performance independently of any
one psychophysical task (Green, 1964b; Green & Swets, 1966; Swets, 1959), which
was previously impossible with classical psychophysical methods (Swets & Green,
1961). The purpose here is to clarify and extend the underlying theory for ASI=
P(C)2I, to derive new nonparametric relationships between the SIFC and 2IFC
tasks based on this theory, and to evaluate these new results experimentally.

SIFC and 2IFC experimental tasks defined. The SIFC experiment embodies the
simplest nontrivial detection task (Egan, 1975). The experiment consists of a set of
independent trials, each containing an observation interval, a decision interval, and
an optional payoff interval. During the observation interval either the S event
(signal plus noise) occurs or the N event (noise alone) occurs. The observer never
has direct access to knowledge of these events, only to uncertain evidence associated
with the events. During the decision interval, the observer’s task is to decide if the
S event occurred, based on this evidence.

The evidence for the two events is modeled as conditional probability functions,
XS and XN, on a univariate random variable, X, where X is the decision axis. To
make a decision, the observer partitions X by using a criterion c. If the evidence x is
greater than c the observer decides a signal occurred and responds ‘‘Yes’’; if the
evidence is less than c the observer decides no signal occurred and responds ‘‘No.’’
If X is discrete and x is equal to c then the observer guesses ‘‘Yes’’ with probability
c and ‘‘No’’ with probability 1− c. The observer may vary the criterion and guessing
probability depending on the prior probabilities of the events and the payoffs
associated with each of the four possible outcomes (hit, miss, false alarm, and
correct-rejection).

A trial in a 2IFC experiment consists of two observation intervals, a decision
interval, and an optional payoff interval. In one observation interval the S event
occurs, and in the other the N event occurs. During the decision interval, the
observer’s task is to decide in which interval the S event occurred or, equivalently,
in which order the two events occurred. The evidence, d, the observer uses to make
a 2IFC decision is the result of a comparison between the evidence from the first
interval, xI, and the evidence from the second interval, xII. There are many ways of
making this comparison, the most common being to take the difference d=xI−xII
(Egan, 1975) or the ratio d=xI/xII (Green & McGill, 1970). The 2IFC observer
makes a decision by comparing d to a criterion, k. If d > k then the observer decides
the signal was in the first interval and responds ‘‘One’’; if d < k then the observer
decides the signal was in the second interval and responds ‘‘Two’’; and if d=k then
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the observer guesses ‘‘One’’ with probability t and ‘‘Two’’ with probability 1−t.
Assuming a difference decision rule, the 2IFC decision axis is defined as the
random variable D=XI−XII, with DOS,NP and DON,SP denoting the conditional
forms of D associated with the event orderings OS,NP and ON,SP, respectively.
The 2IFC experiment can be analyzed in a similar way to an SIFC experiment,
because the event orderings of the 2IFC task can, themselves, be regarded as events.

SIFC and 2IFC ROC curves. One of the more important concepts to come out
of TSD is the ROC curve, which summarizes the observer’s ability to discriminate
between two events. The ROC curve is a graph of the observer’s hit rate against
its false-alarm rate, for all possible criteria (Egan, 1975; Green & Swets, 1966;
Peterson et al., 1954). Both SIFC and 2IFC ROC curves can be generated either by
repeating a binary-decision experiment with the observer using a different criterion
each time or by using a rating scale where the observer employs multiple criteria
within an experiment. Some authors make a distinction between the binary-decision
task and the rating-scale task (e.g., Bamber, 1975; Green, 1964b), but this is un-
necessary because the binary-decision task is actually a two-point rating-scale task.
Green and Swets (1966) showed that the theoretical SIFC ROC curve is the same
for either method, and there is evidence that this is also true for empirical SIFC
ROC curves (e.g., Emmerich, 1968a, 1968b; Hanley & McNeil, 1982; Watson,
Rilling, & Bourbon, 1964). In principle, there should also be no difference between
2IFC ROC curves obtained by binary decisions or by ratings, but this has not been
investigated.

There are, in fact, only a few examples of theoretical or empirical 2IFC ROC
curves in the literature (Egan & Clarke, 1966; Falmagne, 1985; Friedman &
Carterette, 1964; Leshowitz, 1969; Schulman & Mitchell, 1966). The use of 2IFC
ROC curves has not been pursued because, as Luce explained, ‘‘... no one seems
ever to collect 2-alternative, forced-choice ROC curves, there being a myth to the
effect that this procedure, unlike the yes-no one, is unbiased’’ (Luce, 1997, p. 85). It
is assumed that both the prior probabilities of the 2IFC event orderings and the
payoffs for the 2IFC outcomes are symmetric. Therefore an ideal 2IFC observer
should display no preference for one decision over the other. A 2IFC observer is
considered biased if there is a tendency to decide that an event ordering occurred
more often than determined by the prior probability of the event ordering. Rather
than obtaining a 2IFC ROC curve, P(C)2I is used as a measure of detectability,
along with methods for ‘‘correcting’’ any bias (Green & Swets, 1966). Green and
Swets (1966) argued that any biases are usually small and that the economies of
deriving just P(C)2I outweigh the need for deriving the entire 2IFC ROC curve. By
obtaining the complete 2IFC ROC curve, however, performance can be evaluated
for any given bias, and measures of detectability calculated from the ROC curve
may also be estimated. By using a rating scale it is just as fast to obtain an entire
2IFC ROC curve as it is to obtain one point using a binary decision.

Measures of detectability. The relationships between the SIFC and 2IFC tasks
are illustrated by relationships between their respective measures of detectability.
A measure of detectability is used to summarize an observer’s performance in
a psychophysical task. Ideally, a measure of detectability should be free from

SIFC AND 2IFC TASKS IN TSD 3



confounding by processes not associated with stimulus properties, such as the prior
probabilities of the events, the payoffs, and the decision criterion. A measure of
detectability is also more useful if it is nonparametric, for comparisons may then be
made among different observers and different detection tasks, regardless of the
nature of the evidence distributions. Scurfield (1995, 1996) suggested that a measure
of detectability should also be a metric; that is, the measure should have a true zero,
be nonnegative, be invariant to labeling of the events and decisions, and obey the
triangle inequality. The more common measures of detectability in use are dŒ, which
is parametric because it is based on normal distributions; P(C)SI and P(C)2I, which
are both dependent on the prior probabilities of the events and the decision
criterion; and ASI, which although nonparametric, and independent of priors,
payoffs, and criterion, is not a metric. These limitations restrict the extent to which
the SIFC and 2IFC tasks may be related. The goal is to reduce these limitations,
including developing relationships between the SIFC and 2IFC tasks using new
measures of detectability, which have the properties Scurfield described as desirable.

Theoretical relationships between SIFC and 2IFC tasks in the literature. At-
tempts to relate SIFC and 2IFC tasks to each other have been restricted in their
generality by the assumptions made. For example, parametric relationships based
on normal distributions have only limited usefulness, because many detection tasks
do not involve normal distributions. There is, unfortunately, a belief that TSD is
applicable only to detection tasks where the evidence is normally distributed (e.g.,
Hodos, 1970; Simpson & Fitter, 1973). Hanley and McNeil (1982) suggest that
many researchers have been turned off TSD because of this mistaken belief. TSD
does not need the assumption that the evidence is distributed as a normal density.
Green’s demonstration that ASI=P(C)2I is more general, because both ASI and
P(C)2I are nonparametric measures of detectability (Green, 1964b; Green & Moses,
1966; Green & Swets, 1966).4 Green’s relationship has been extended by Bamber

4 Green and Swets (1966) also presented one other nonparametric relationship, which related points on
the 2IFC ROC curve to the SIFC ROC curve.

(1975), Egan (1975), Falmagne (1985), Green and Moses (1966), Iverson and Sheu
(1992), and McNicol (1972), but none have explicitly considered the combined
effects of the decision axis, decision and guessing rules, prior probabilities, and
payoffs.

The derivations of ASI=P(C)2I by Green and Swets (1966) and Egan (1975) both
assume that the decision axis is the likelihood ratio,5 a(X), or is monotonic with it,

5 In the SIFC task, the likelihood ratio is a(x)=P(x |S)/P(x |N), which is the ratio of the event-
conditional probability mass functions for discrete random variables, or a(x)=f(x |S)/f(x |N),
which is the ratio of the event-conditional probability density functions for continuous random variables
(Egan, 1975). In the 2IFC task an observer could either use X or a(X) to form the 2IFC decision axis
(d=xI−xII or d=a(xI)− a(xII), respectively), either of which could then also be converted to the 2IFC
likelihood ratio, a(D).

and that it is continuous and well behaved. There are, however, a number of
interesting detection tasks best modeled by discrete random variables. The discrete
version of ASI=P(C)2I was mentioned by Green and Moses (1966), and a worked
example appeared in McNicol (1972). Bamber (1975) did show that ASI=P(C)2I for
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finitely discrete random variables, but did not consider the effect of varying the
prior probabilities or guessing probabilities. The guessing probabilities provide a
justification for using linear interpolation between the points in a discrete ROC
curve (Egan, 1975; Green, 1960b). Only Green and Moses (1966) mention guessing
probabilities in their derivation.

Even though it can be shown that observers can achieve most decision goals by
using the likelihood ratio, X is, nonetheless, the appropriate decision axis for some
tasks. Moreover, a proof for X as the decision axis is more general, because it
automatically includes the case for the likelihood ratio.6 Falmagne (1985), Green

6 Consider Y=a(X) as a new decision axis, then apply the proofs to Y instead of X (see Section 2.2).

and Moses (1966), and Iverson and Sheu (1992) have generalized ASI=P(C)2I for X
as the decision axis as well as a(X), but only for continuous random variables.

In spite of the fact that ASI is independent of criterion, prior probabilities, and
payoffs, P(C)2I does depend on all three to achieve a variety of specific decision
goals. Therefore, most derivations of ASI=P(C)2I assume the prior probabilities of
the events to be equal and that an observer sets the criterion at zero for the 2IFC
task (assuming a difference decision rule). Usually, the payoffs are not considered,
because they are implicitly assumed to be symmetric. If they were not symmetric,
then an observer would need to consider changing the criterion and the guessing
probabilities in order to achieve a particular decision goal.

These examples demonstrate the need for a general theory relating ASI to P(C)2I
that covers both discrete and continuous random variables and takes into account
suboptimal decision strategies and goals for both tasks as well as the effects of the
prior and guessing probabilities.

Experimental comparisons of the SIFC and 2IFC tasks. It is important to
evaluate the relationships between the SIFC and 2IFC tasks experimentally. There
have been a number of experimental studies that have evaluated the relationships
between the two tasks. Early studies focused on evaluating parametric relationships,
especially those based on normal evidence distributions, but the results did not
consistently support the theories. Wickelgren (1968) found it amazing that any of
the experiments showed a relationship, given the number of assumptions required.
Many reasons have been put forward to explain the variability of the results,
the most popular being noise processes that degrade observer performance (e.g.,
Green, 1964a; Wickelgren, 1968). Although observer inconsistency is a major
problem, and a likely explanation of variable results, it is still surprising that many
researchers did not consider the possibility that the underlying distributions were not
normal.

There have been three attempts to verify ASI=P(C)2I experimentally. Green and
Moses (1966) reported a weak empirical relationship between ASI and P(C)2I in a
short-term memory test using a 6-point rating-scale SIFC task and a binary-decision
2IFC task. The lack of agreement between the two measures of detectability was
attributed to variability caused by the method used for measuring ASI and to the
small number of stimuli used. The experiment was repeated with more stimuli, and
the relationship was stronger, but still too variable to support an equality between
ASI and P(C)2I.
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Emmerich (1968a) found in a binaural tone-in-noise experiment that the ‘‘agree-
ment is quite good’’ between ASI and P(C)2I. He presented psychometric functions
of ASI and P(C)2I, but not the numerical difference between the two measures.
D. Emmerich (personal communication, March 1996) has kindly given us these
values. On average, across all observers and conditions, ASI approximately equaled
P(C)2I, but the difference between the two measures for individual observers ranged
from −0.111 to 0.062, where the difference could range between −0.5 and 0.5
(assuming ASI and P(C)2I are both \ 0.5).

Whitmore, Williams, and Ermey (1968), in a study on envelope detection, con-
sidered both tone-in-noise and noise-in-noise detection using a rating-scale SIFC
task and a binary-decision 2IFC task. Because different signal-to-noise ratios were
used in the two conditions, ASI and P(C)2I could not be directly compared. Instead,
seven-point psychometric functions were obtained, then an attenuated theoretical
psychometric function was fitted to the points. If ASI=P(C)2I, the psychometric
functions should have fallen on top of one another. Although the shape of
the theoretical psychometric functions fitted the data well, the attenuations were
not constant across the SIFC and 2IFC conditions (differing by approximately
0–2.5 dB), therefore an equality between ASI and P(C)2I was not strongly
supported.

The fact that these experiments did not strongly support an equality between ASI
and P(C)2I may be due to observer inconsistency, which can produce different
results from the same observer even when it is presented with exactly the same
stimulus set (Drga, 1999; Taylor, Boven, & Whitmore, 1991). If this error is not
reduced, differences (or similarities) may be found for ASI and P(C)2I that are due
merely to differences in observer inconsistency between the SIFC and 2IFC tasks.

Overview of paper. This paper evaluates nonparametric relationships between
the SIFC and 2IFC tasks both theoretically and experimentally. ASI=P(C)2I is
derived for both discrete and continuous random variables, based on the cross-
correlation functions of XS and XN. Three relationships implied by ASI=P(C)2I
are then developed: (a) a relationship between Scurfield’s (1995, 1996) detectability
measure DSI and the channel capacity of the 2IFC observer, (b) bounds on the area
under the 2IFC ROC curve, A2I, derived from ASI, and (c) methods for deriving
a 2IFC ROC curve from information in the associated SIFC task. To evaluate
these relationships, two experiments were conducted: one where the evidence was
discretely distributed, the other where the evidence was continuously distributed.
Previous experimental results have been inconclusive because of the variability in
the results, therefore group operating characteristic (GOC) analysis was used to
reduce the effects of observer inconsistency (Drga, 1999; Taylor et al., 1991).

2. THEORY

The key to deriving relationships between the SIFC and 2IFC tasks is to define
the 2IFC evidence distributions in terms of the SIFC evidence distributions. First,
the SIFC and 2IFC evidence distributions are defined, along with their ROC
curves, for both discrete and continuous random variables. Green’s relationship is
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then derived for both discrete and continuous random variables. Similar relation-
ships are also derived for Scurfield’s measures of detectability. Finally, 2IFC ROC
analysis is considered in more detail, and some relationships relating SIFC and
2IFC ROC curves are developed.

In the SIFC task, it is assumed that XS and XN are distributed as independent,
stationary, univariate random variables. When X is discrete, probability is assumed
to be massed on the integers, for convenience. In general, for either discrete or con-
tinuous X, P(C)2I may be derived from a simple comparison between the evidence
values in each observation interval without having to derive any 2IFC decision axis.
2IFC decision axes are needed for 2IFC ROC analysis, however, and a difference
decision rule is assumed here, partly for ease of exposition and partly because of its
popularity as a decision rule (Drga, 1999, reviewed other rules such as the ratio
decision rule). P(C)2I may then be found for any 2IFC criterion.

For continuous X, the SIFC ROC curve is determined by the hit rate

HR(c)=P(XS > c)=F
.

c
fX(x |S) dx (1)

and the false-alarm rate

FAR(c)=P(XN > c)=F
.

c
fX(x |N) dx. (2)

For discrete X, the definitions of the hit rate and the false-alarm rate must take
account of the probability of guessing when the evidence is tied with the criterion,

HR(c, c)=P(XS > c)+cP(XS=c)

= C
.

x=c+1
P(XS=x)+cP(XS=c), (3)

FAR(c, c)=P(XN > c)+cP(XN=c)

= C
.

x=c+1
P(XN=x)+cP(XN=c). (4)

The discrete ROC curve consists of a set of distinct points (defined when either
c=0 or c=1), joined by line segments, because Eqs. (3) and (4) are linear functions
of c.

In the 2IFC task, the evidence from each interval constitutes a vector
x=(xI, xII)T that is an instance of a random vector X=(XI, XII)T. It is assumed
that in any 2IFC trial XI and XII are independent and the same as either XS and
XN, respectively, or XN and XS, respectively, from the associated SIFC task. The
independence assumption implies that for continuous X

fX(x | OS,NP)=fX(xI |S) fX(xII |N), (5)

fX(x | ON,SP)=fX(xI |N) fX(xII |S), (6)
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and for discrete X

P(XOS,NP=x)=P(XS=xI) P(XN=xII), (7)

P(XON,SP=x)=P(XN=xI) P(XS=xII). (8)

Assuming a difference decision rule, the probability density functions of DOS,NP

and DON,SP, for continuous D, are obtained by substituting xI=xII+d into Eqs. (5)
and (6) and then integrating over all x,

fD(d | OS,NP)=F
.

−.
fX(x+d |S) fX(x |N) dx, (9)

fD(d | ON,SP)=F
.

−.
fX(x+d |N) fX(x |S) dx, (10)

where the dummy variable xII has been replaced with x. Similarly, for discrete D,

P(DOS,NP=d)= C
.

x=−.
P(XS=x+d) P(XN=x), (11)

P(DON,SP=d)= C
.

x=−.
P(XN=x+d) P(XS=x). (12)

Equations (9)–(12) are the statistical cross-correlation functions of the proba-
bility functions of XS and XN. Note that fD(d | OS,NP) is a reflection of
fD(d | ON,SP) in the line d=0; that is, fD(d | OS,NP)=fD(−d | ON,SP).
Similarly, P(DOS,NP=d)=P(DON,SP=−d).

If D is continuous and a hit is defined to be the correct selection of the event-
ordering OS,NP, then the 2IFC ROC curve is defined by the 2IFC hit rate

HR(k)2I=P(DOS,NP > k)=F
.

k
fD(d | OS,NP) dd (13)

and the 2IFC false-alarm rate

FAR(k)2I=P(DON,SP > k)=F
.

k
fD(d | ON,SP) dd. (14)

If D is discrete and t is the 2IFC guessing probability,

HR(k, t)2I=P(DOS,NP > k)+tP(DOS,NP=k)

= C
.

d=k+1
P(DOS,NP=d)+tP(DOS,NP=k), (15)

FAR(k, t)2I=P(DON,SP > k)+tP(DON,SP=k)

= C
.

d=k+1
P(DON,SP=d)+tP(DON,SP=k). (16)
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With a difference decision rule, the 2IFC ROC curve is necessarily symmetrical in
the negative diagonal of the ROC space (Egan, 1975); that is,

HR(k, t)2I=1−FAR(−k, 1−t)2I. (17)

Theorem 2.1 (The Area under the SIFC ROC Curve). The area under the SIFC
ROC curve is related to the random variables XS and XN by the equation

ASI=P(XN < XS)+
1
2 P(XN=XS). (18)

Corollary 2.1 (The Area over the SIFC ROC Curve). Because the area of the
ROC space is unity, the area over the ROC curve is

1−ASI=P(XN > XS)+
1
2 P(XN=XS). (19)

If X is continuous, then P(XN=XS)=0 and the right-hand sides of Eqs. (18)
and (19) reduce to P(XN < XS) and P(XN > XS), respectively.

Theorem 2.1 was described by Wilcox (1968) for continuous X, and Bamber
(1975) provided a proof for continuous and finitely discrete X. Here, an alternative
proof, based on the cross-correlation function of XS and XN , is presented.

Proof (of Theorem 2.1 for the continuous case). For continuous X, ASI is
obtained by integrating the hit rate with respect to the false-alarm rate; that is,

ASI=F
1

0
HR(c) d(FAR(c)). (20)

The differential d(FAR(c)) is obtained by using the second fundamental theorem of
calculus to differentiate Eq. (2): that is

d(FAR(c))=−fX(c |N) dc. (21)

The lower limit of zero in Eq. (20) occurs when c=. and the upper limit of one
occurs when c=−.. Therefore, after substitution for HR(c) and d(FAR(c)),

ASI=F
.

−.

5F.
c
fX(x |S) dx6 fX(c |N) dc. (22)

By setting x=d+c, Eq. (22) can be recast as

ASI=F
.

0
h(d) dd, (23)

where

h(d)=F
.

−.
fX(c+d |S) fX(c |N) dc. (24)

Here, the order of integration has been reversed. This is permissible because the
integrand is a probability density function and therefore uniformly convergent.

SIFC AND 2IFC TASKS IN TSD 9



By Eq. (9), h(d) represents the same cross-correlation function as fD(d | OS,NP).
Thus, h(d) is the density of DOS,NP=XS−XN. It then follows from Eq. (23) that
ASI=P(DOS,NP > 0)=P(XS−XN > 0)=P(XN < XS), which completes the proof
of Theorem 2.1 for continuous X. L

Proof (of Theorem 2.1 for the discrete case). Assume, now, that X is discrete. In
Fig. 1, the shaded area, a(c), below the ROC curve between FAR(c, 0) and
FAR(c−1, 0) is

a(c)=1
2 [HR(c, 0)+HR(c−1, 0)][FAR(c−1, 0)−FAR(c, 0)]

=1
2
5 C

.

x=c+1
P(XS=x)+C

.

x=c
P(XS=x)6

×5 C
.

x=c
P(XN=x)− C

.

x=c+1
P(XN=x)6

=1
2
5P(XS=c)+2 C

.

x=c+1
P(XS=x)6 P(XN=c)

=1
2 P(XS=c) P(XN=c)+ C

.

x=c+1
P(XS=x) P(XN=c).

Summing over all a(c) gives the area under the discrete SIFC ROC curve,

ASI= C
.

c=−.
C
.

x=c+1
P(XS=x) P(XN=c)

+12 C
.

c=−.
P(XS=c) P(XN=c). (25)

By setting x=d+c and then reversing the order of summation, Eq. (25) can be
recast as

ASI=C
.

d=1
h(d)+12 h(0), (26)

where

h(d)= C
.

c=−.
P(XS=c+d) P(XN=c). (27)

By Eq. (11), h(d) represents the same cross-correlation function as P(DOS,NP=d).
Thus, h(d) is the mass function of DOS,NP=XS−XN. It then follows from Eq. (26)
that

ASI=P(DOS,NP > 0)+
1
2 P(DOS,NP=0)

=P(XS−XN > 0)+
1
2 P(XS−XN=0)

=P(XN < XS)+
1
2 P(XN=XS),

which completes the proof of Theorem 2.1 for discrete X. L
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FIG. 1. An illustrative SIFC ROC curve generated from two discrete probability functions.

Theorem 2.2 (The Area under the 2IFC ROC Curve). Using the same method
of derivation as in the SIFC case, it can be shown that in terms of the 2IFC random
variables DOS,NP and DON,SP,

A2I=P(DON,SP < DOS,NP)+
1
2 P(DON,SP=DOS,NP). (28)

Corollary 2.2 (The Area over the 2IFC ROC Curve). Like in the SIFC case,

1−A2I=P(DON,SP > DOS,NP)+
1
2 P(DON,SP=DOS,NP). (29)

A2I is independent of strictly monotonically increasing transformations of
the 2IFC decision axis D. A2I is, however, dependent on strictly monotonically
increasing transformations of the SIFC decision axis X, which is used to form D,
because the 2IFC ROC curve is dependent on such transformations. This point is
returned to in Section 2.2.

Theorem 2.3 (Green’s Relationship: ASI=P(C)2I). The area under the SIFC
ROC curve, ASI, is equal to the proportion correct in the 2IFC task, P(C)2I, for both
continuous and discrete random variables. For discrete random variables, this equality
holds if and only if P(OS,NP)=P(ON,SP)=1/2, or t=1/2, or both.

Proof. First, P(C)2I needs to be defined, and its dependence on the 2IFC prior
probabilities and guessing probabilities noted. From there, the relationship
ASI=P(C)2I follows from Theorem 2.1.

For any criterion, k, and any guessing probability, t, the general formula for
P(C)2I is

P(C, k, t)2I=P(OS,NP) P(DOS,NP > k)+tP(OS,NP) P(DOS,NP=k)

+P(ON,SP) P(DON,SP < k)+(1−t) P(ON,SP) P(DON,SP=k).
(30)
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Like in the SIFC case, observers may choose to set the 2IFC criterion based on the
prior probabilities of the event orderings and the payoffs associated with the 2IFC
outcomes. It is assumed that an unbiased observer sets a criterion at k=0, because
the priors and payoffs are usually designed to be symmetrical in 2IFC experiments
and because the difference distributions associated with the two event orderings in
the 2IFC task are mirror-symmetrical around k=0. In this case, P(C)2I can be
expressed as

P(C, 0, t)2I=P(OS,NP) P(XN < XS)+tP(OS,NP) P(XN=XS)

+P(ON,SP) P(XN < XS)+(1−t) P(ON,SP) P(XN=XS)

=P(XN < XS)+P(XN=XS)[tP(OS,NP)+(1−t) P(ON,SP)].
(31)

Comparing this equation to Theorem 2.1 shows that in the continuous case
ASI=P(C)2I for any prior probability since P(XN=XS)=0. If X is discrete, how-
ever, the role of the 2IFC priors and 2IFC guessing probability needs to be taken
into consideration, because ASI=P(C)2I if and only if P(OS,NP)=P(ON,SP)
=1/2, or t=1/2, or both. L

Corollary 2.3. The area under the SIFC ROC curve is equal to the hit rate of
an unbiased 2IFC observer.

Proof. By setting k=0 and t=1/2 in Eqs. (13) and (15) and expanding
DOS,NP > 0 to XN < XS, it is easily seen by comparison with Eq. (31) that

HR(0, 12)2I=P(C, 0,
1
2)2I. (32)

It follows from Theorem 2.3 that

ASI=HR(0, 12)2I. L (33)

The form of the 2IFC decision rule and, consequently, the 2IFC decision axis do
not change the value of P(C)2I because all that is required is a method for evaluat-
ing the inequality XN < XS. It follows that Green’s relationship also is not affected
by the form of the comparison. Results that depend on the 2IFC ROC curve in its
entirety, however, are dependent on the 2IFC decision rule and decision axis.

2.1. Relationships Implied byASI=P(C)2I

Bamber (1975) used Theorem 2.1 to interpret ASI as a measure of the extent to
which one distribution lies above (or below) the other distribution. This inter-
pretation is not correct, because it implies that ASI is a distance measure or metric.
ASI cannot be considered a metric because it does not have a true zero and it varies
with respect to the labeling of the events and decisions (Scurfield, 1996).

Although ASI itself is not a metric, it is possible to transform it into a metric.
Definition 2.1 shows one such transformation (Scurfield, 1996).
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Definition 2.1 (Scurfield’s SIFC Detectability Measure).

DSI=log 2−HSI, (34)

where HSI=−ASI log(ASI)−(1−ASI) log(1−ASI).

The result of this transformation of ASI is a measure of information, because HSI
represents the Shannon entropy (Shannon, 1949) of the areas above and below the
ROC curve. If base-two logarithms are used, then DSI ranges from zero to one in
bits.

Scurfield (1996) used Theorem 2.1 to show that DSI is a pseudo-metric for X and
a true metric for a(X) (or its equivalent). This leads to the important conclusion
that DSI is a measure of the distance between the random variables XS and XN.7 If

7 With a likelihood ratio decision axis, the only occasion where the distance is zero is when XS=XN,
which results in an ROC curve that falls along the chance line. A pseudo-metric allows for a distance of
zero even when XS ]XN. This can occur when the evidence distributions result in an ROC curve that
goes equally above and below the chance line (e.g., uniform distributions of equal mean and unequal
variance).

XS and XN do not overlap then DSI=1 bit, and if XS and XN are identically
distributed then DSI=0 bits. DSI is also nonparametric and independent of prior
probabilities, payoffs, and the decision criterion. It takes account of both the shape
and the location of the evidence distributions, unlike measures such as dŒ, which is
the Euclidean distance between the means of two normal evidence distributions.

Definition 2.2 (Scurfield’s 2IFC Detectability Measure). Similarly, D2I is the
2IFC task analog of DSI.

D2I=log 2−H2I, (35)

where H2I=−A2I log(A2I)−(1−A2I) log(1−A2I).

An equality similar to Green’s relationship, which relates DSI to the channel
capacity of an unbiased 2IFC observer, C2I may be derived (Scurfield, 1996).

Theorem 2.4. DSI is equal to the channel capacity, C2I, of the unbiased 2IFC
observer.

Proof. In general, for fixed k and fixed t, the channel capacity is defined as the
maximum value of the mutual information (Abramson, 1963) between the event
orderings and the decisions as the prior probabilities of the event orderings
are varied for the unbiased observer. When k=0 and t=1/2, the matrix of
event orderings and decisions has one degree of freedom because, by Eq. (17),
HR(0, 12)2I=1−FAR(0, 12)2I. In this case, the observer is said to be a uniform
channel. Applying the definition for the channel capacity of a uniform channel
(Abramson, 1963) gives

C2I=log 2+HR(0, 12)2I log[HR(0, 12)2I]+[1−HR(0, 12)2I] log[1−HR(0, 12)2I];
(36)
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and this maximum value of mutual information occurs if P(OS,NP)=P(ON,SP).
From Corollary 2.3,

C2I=log 2+ASI logASI+(1−ASI) log(1−ASI). (37)

By the definition of DSI, it follows that C2I=DSI. Therefore DSI is equal to the
channel capacity of an unbiased 2IFC observer. L

2.2. Transformed Decision Axes

In both the SIFC and 2IFC tasks, the evidence variables (X in the SIFC task or
XI and XII in the 2IFC task) can be transformed using some function, g(X), before
they are used to make a decision.

One case of interest is when the SIFC likelihood ratio is strictly monotonically
increasing with X; that is, g(X)=a(X). A second case relates difference-based
decision axes to ratio-based decision axes when X is positive-valued. If g(X)=
log(X), then the difference decision axis based on the transform Dg=g(XI)−
g(XII)=log(XI/XII) is a strictly monotonically increasing transform of a 2IFC
decision axis based on the ratio XI/XII.

In the SIFC case, the ROC curve is not affected by strictly monotonically
increasing transforms of X (Egan, 1975). Similarly, such transforms on the 2IFC
decision axis do not affect the form of the 2IFC ROC curve. A 2IFC ROC curve
derived from g(XI) and g(XII), however, may be different from the 2IFC ROC
curve derived from XI and XII, even if g(X) is strictly monotonically increasing
with X. This is because g(XI)−g(XII) is not necessarily strictly monotonically
increasing with XI−XII.

For all g, including the identity g(X)=X, the 2IFC ROC curves based on
Dg=g(XI)−g(XII) are constrained to pass through the same point on the negative
diagonal, namely the point associated with P(C)2I, where Dg=0.

Proof. Since g(X) is a strictly monotonically increasing transform defined over
the domain of XI and XII, then P(g(XI) > g(XII))=P(XI > XII), P(g(XI)=
g(XII))=P(XI=XII), and P(g(XI) < g(XII))=P(XI < XII). Hence the value of
P(C)2I in Eq. (31) can be also expressed as

P(C)2I =P(g(XN) < g(XS))

+P(g(XN)=g(XS))[tP(OS,NP)+(1−t) P(ON,SP)]. (38)

From Corollary 2.3, P(C)2I is associated with the point in the 2IFC ROC space
where the 2IFC ROC curve crosses the negative diagonal. In the discrete case, the
2IFC hit rate in Eq. (15) for this point can be re-expressed as

HR(0, t)2I=P(XI > XII | OS,NP)+tP(XI=XII | OS,NP)

=P(XN < XS)+tP(XN=XS)

=P(g(XN) < g(XS))+tP(g(XN)=g(XS)), (39)
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which is the hit rate for Dg=0. Similarly, the false-alarm rate is

FAR(0, t)2I=P(XI > XII | ON,SP)+tP(XI=XII | ON,SP)

=P(XN > XS)+tP(XN=XS)

=P(g(XN) > g(XS))+tP(g(XS)=g(XN)). (40)

Thus, the 2IFC ROC curve based on transformed evidence values g(XI) and g(XII)
will pass through the same point on the negative diagonal for all such transforms
g(X) and give the same value of P(C)2I in each case. The same result holds in the
continuous case when P(XI=XII)=0. L

2.3. Relationship ofASI toA2I

It is possible to draw bounds on the area under the 2IFC ROC curve in terms of
the area under the SIFC ROC curve. Here, two cases are considered: (a) the 2IFC
ROC curve based on the 2IFC likelihood ratio decision axis, a(D), which constrains
the slope of the 2IFC ROC curve to be monotonically decreasing; and (b) the
general case of the 2IFC ROC curve based on the D decision axis. The proofs are
based on a geometric argument and apply to both discrete and continuous evidence
variables.

Theorem 2.5. The bounds on A2I in terms of ASI for the a(D) decision axis are
ASI [A2I [AT, whereAT=1−2(1−ASI)2.

Like any ROC curve based on a likelihood ratio decision axis, the slope of the
2IFC ROC curve will be monotonically decreasing if the decision axis is monotonic
with the 2IFC likelihood ratio decision axis a(D). For such decision axes,
Theorem 2.5 indicates that the 2IFC observer performs at a level at least equal to
that of the SIFC observer.

Proof. To prove Theorem 2.5, consider the 2IFC ROC curve shown in Fig. 2.
The area of the shaded square is A2

SI, because, by Eq. (17) and Corollary 2.3, the
hit rate at the point where the 2IFC ROC curve cuts the negative diagonal is ASI.
Note that the area of each shaded triangle is 12 (1−ASI)ASI. Thus, the area of the
region enclosed by the square and the two triangles is A2

SI+2[
1
2 (1−ASI)ASI]

=ASI. If the slope of the 2IFC ROC curve is monotonically decreasing, then the
curve must lie on or outside the region bounded by the square and two triangles.
Consequently, ASI [A2I.

To derive the upper bound on A2I, consider a line of unit slope drawn through
the point where the 2IFC ROC curve cuts the negative diagonal (see the dot–
dashed line in Fig. 2). If the ROC curve rises above the line on one side of the
negative diagonal, then, by symmetry, it must rise above the line on the other side
of the negative diagonal. However, the slope of such an ROC curve cannot be
monotonically decreasing, because the ROC curve is constrained to pass through
the point where the dot–dashed line cuts the negative diagonal. Hence, the ROC
curve can never rise above the dot–dashed line. From Fig. 2, the area of the
triangle, defined by the upper left corner of the ROC space and the two points
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FIG. 2. An illustrative 2IFC ROC curve, indicating the relationship of ASI to A2I.

where the dot–dashed line cuts the boundary of the ROC space, is 2(1−ASI)2. It
follows that A2I [ 1−2(1−ASI)2. L

Corollary 2.4 (to Theorem 2.5). DSI [D2I [DT.

The upper bound in Corollary 2.4 is defined as DT=log 2−HT, where HT=
−T log T−(1−T) log(1−T) and T=2(1−ASI)2. Corollary 2.4 indicates that if
the 2IFC decision axis is monotonic with a(D), then the distance between XN and
XS can be no greater than the distance between DON,SP and DOS,NP.

Proof. To prove Corollary 2.4, note that D is a strictly monotonically increas-
ing transform of A, providing A is greater than or equal to 0.5. If the slope of the
2IFC ROC curve is constrained to be monotonically decreasing, then A2I can never
be less than 0.5. Because ASI is the point where the 2IFC ROC curve crosses
the negative diagonal, it too can never be less than 0.5. Therefore, because D is
a strictly monotonically increasing transform, the relationship among DSI, D2I,
and DT must be the same as that among ASI, A2I,and AT. Corollary 2.4 follows
immediately from these observations and Theorem 2.5. L

Theorem 2.6. Bounds on A2I in terms of ASI for the D decision axis are
A2
SI [A2I [ASI(2−ASI).

For the D decision axis, A2I may be less than ASI and may also result in perfor-
mance below the chance line, even if SIFC performance was above the chance line.

Proof. If the 2IFC ROC curve is based on the D decision axis, rather than on
a(D), then its slope may not be monotonically decreasing and it may rise above the
dot–dashed tangent or fall below the chance line. The curve, however, is still
constrained to pass through the same point on the negative diagonal. Therefore the
minimum A2I is simply the area of the shaded square, A2

SI, from Fig. 2. The
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maximum A2I is the area of the region described by the shaded square and the two
rectangles formed by the horizontal and vertical lines at HR=ASI and FAR=
(1−ASI), respectively, from Fig. 2. This area is A2

SI+2ASI(1−ASI) which, after
rearrangement, is equal to ASI(2−ASI). Therefore, A2

SI [A2I [ASI(2−ASI). L

2.4. Determining 2IFC ROC Curves

It is possible to derive or estimate a 2IFC ROC curve, given information about
the associated SIFC task. If the SIFC density or mass functions on X are known,
then the 2IFC distributions and ROC curve may be derived by cross-correlating the
SIFC distributions using Eqs. (9)–(12) as appropriate. Similarly, if the SIFC ROC
curve is empirical, and the observer ratings that were used to generate the curve are
known, then the distribution of ratings may be considered to be discrete probability
mass functions. From these probability mass functions, a 2IFC ROC curve is
estimated by taking the cross-correlation as above. This method was used in the
following experiments to see how predictable 2IFC performance was from SIFC
performance. It works best for a high-resolution rating scale, otherwise only a few
points on the 2IFC ROC curve are estimated. It is assumed that the ratings are
monotonic with the decision axis. If the density or mass functions of X are
unknown (either theoretical or empirical), then a 2IFC ROC curve can be
determined from the SIFC ROC curve itself, as follows.

Theorem 2.7. A 2IFC ROC curve can be generated from the SIFC hit rates and
false-alarm rates.

Proof. A generalization of Corollary 2.3 can be used to generate a 2IFC ROC
curve from the corresponding SIFC ROC curve. From the SIFC hit rates and false-
alarm rates, for each value of c, a curve is plotted with FAR(c) as the abscissa
versus HR(c+k) as the ordinate, where k is some constant. If X is continuous, the
area under this curve, A(k), is

A(k)=F
1

0
HR(c+k) d(FAR(c))

=F
.

−.

5F.
c+k
fX(x |S) dx6 fX(c |N) dc.

Then with a change of variable, x=c+d, and reversing the order of integration,

A(k)= F
.

k
F
.

−.
fX(c+d |S) fX(c |N) dc dd

=F
.

k
fD(d | OS,NP) dd (by Eq. (9))

=HR(k)2I.
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For discrete X, the area under the curve between FAR(c, 0) and FAR(c−1, 0), is

a(c, k)=1
2 [HR(c+k, 0)+HR(c+k−1, 0)][FAR(c−1, 0)−FAR(c, 0)]

=1
2
5 C

.

x=c+k+1
P(XS=x)+ C

.

x=c+k
P(XS=x)6

×5 C
.

x=c
P(XN=x)− C

.

x=c+1
P(XN=x)6

=1
2
5P(XS=c+k)+2 C

.

x=c+k+1
P(XS=x)6 P(XN=c)

=1
2 P(XS=c+k) P(XN=c)+ C

.

x=c+k+1
P(XS=x) P(XN=c).

Summing over all a(c, k) gives

A(k)= C
.

c=−.
C
.

x=c+k+1
P(XS=x) P(XN=c)+

1
2 C

.

c=−.
P(XS=c+k) P(XN=c).

Then with a change of variable, x=c+d, and reversing the order of summation,

A(k)= C
.

d=k+1
C
.

c=−.
P(XS=c+d) P(XN=c)

+12 C
.

c=−.
P(XS=c+k) P(XN=c)

= C
.

d=k+1
P(DOS,NP=d)+

1
2 P(DOS,NP=k) (by Eq. (11))

=HR(k, 12)2I.

Because the 2IFC ROC curve is symmetric about the negative diagonal, the
corresponding 2IFC false-alarm rate can be obtained from FAR(−k)2I=1−HR(k)2I.
By varying k between −. and . the entire 2IFC ROC curve can be generated. L

For the discrete case, the resulting 2IFC ROC curve is an approximation,
because only the midpoints of each line segment (where t=1/2), rather than the
vertices, are defined. For empirical SIFC ROC curves with many points, the result-
ing 2IFC ROC curve and A2I will only be slightly underestimated.

A crucial assumption in this proof is that both the SIFC task and the 2IFC task
are based on the same random variable X. If a strictly monotonically increasing
transform of X rather than X itself is used to derive a 2IFC ROC curve, then the
derived curve may differ from the 2IFC curve based on X. The family of 2IFC
ROC curves that result from any strictly monotonically increasing transform,
however, is constrained in the ROC space, as described by Theorem 2.6 (or by
Theorem 2.5 for the special case where D is monotonic with a(D)).

Green and Swets (1966, pp. 48–49) provided a similar method to estimate specific
points on the 2IFC ROC curve. Their method makes the assumption that the SIFC
decision axis is a(X), that a(X) is continuous, and that the 2IFC decision rule is
based on ratios rather than differences. They did not show how to estimate the
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entire ROC curve, however, because the purpose of their proof was to prove 2IFC
ROC curve symmetry.

As a final point, note that it is not possible to uniquely derive SIFC ROC curves
from 2IFC ROC curves because information is lost with the integrations and
summations involved in calculating cross-correlation functions.

3. EXPERIMENTS

Two experiments were conducted to investigate the nonparametric relationships
between the SIFC and 2IFC tasks developed here. There are few reported experi-
ments using discrete XS and XN, (Boven, 1976; Podd, 1982; Taylor, 1984; Taylor
et al., 1991), and there are none that specifically compare the SIFC and 2IFC
tasks. Therefore, the first experiment used a frequency discrimination task where
the evidence for the two events was distributed as overlapping discrete uniform dis-
tributions. The observers’ performances could then be compared with a known
theoretical model. The second experiment was the task of narrow-band Gaussian
noise amplitude discrimination. The distributions of XS and XN were not known
but were assumed to be continuous. The designs for both experiments included
ways to minimize stimulus sampling variability and to remove observer inconsistency.

Observer inconsistency is the biggest problem facing experimental psychophysics.
As Green and Luce (1974, p. 373) stated: ‘‘Perhaps the single most pervasive char-
acteristic of psychophysical data is the inconsistency of subjects when answering
most questions we ask them about simple stimuli.’’ One way of reducing the effects
of inconsistency is to repeat an experiment multiple times with reproducible stimuli
and then to use group operating characteristic (GOC) analysis (Drga, 1999; Metz &
Shen, 1992; Taylor et al., 1991; Watson, 1962).

Observer inconsistency has been characterized by using the concepts of internal
and external noise, where the emphasis is on the sources or causes of noise, or
error, in experimental tasks (e.g., Green, 1964a; Pfafflin & Mathews, 1962; Raab &
Goldberg, 1975). An alternative approach is to use the concepts of unique and
common noise, which emphasize the statistical components or effects of error rather
than the sources of error (Drga, 1999; Boven, 1976; Taylor, 1984; Taylor et al.,
1991).

Unique noise is due to random perturbations in the observer, and in its envi-
ronment, on each presentation of the same stimulus. Common noise is the result of
instances of the events that are the same across repeated presentations of the
stimuli. For any single experiment, the effects of common and unique noise are
inseparable, but when more than one replication of an experiment is run ratings can
be averaged across replications for the same stimulus, for each event. Averaging
removes some of the unique noise while retaining common noise. This process is the
basis of GOC analysis.

GOC analysis produces a GOC curve, which is an ROC curve based on group
data (either within or between observers or both). The mean rating for each
stimulus, averaged across replications, is calculated for all stimuli. The mean rating
per stimulus forms the basis of a GOC curve in the same way that the rating made
for each stimulus in a single replication forms the basis of an ROC curve. Measures
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of detectability may be obtained from the GOC curve in the same way they are
from an ROC curve. A useful comparison to the GOC curve is the mean ROC
(mROC) curve, which gives the average, noise-degraded, ROC curve (Drga, 1999;
Lapsley Miller, 1999; MacMillan & Kaplan, 1985). The mROC curve summarizes
the multiple ROC curves from a multiple replication experiment. It is calculated by
averaging the hit rates and false-alarm rates for each possible criterion, across
replications, where the averaging may be of any form (such as arithmetic,
z-transform, or arcsine-transform averaging).

If only a subset of the possible stimuli is used in an experiment (which is the
usual case), then the common noise is affected by sampling variability, and
the observer’s performance will not necessarily reflect the underlying population
statistics, even if unique noise is removed. One way of estimating the nature and
extent of sampling variability is to estimate the variability of a measure of detecta-
bility associated with the ROC curve based on a sample of stimuli. This can be done
statistically (Bamber, 1975) and by computer simulation (Lapsley Miller, 1999;
Pollack & Hsieh, 1969). Sampling variability is only slightly dependent on the form
of the evidence distributions but is strongly dependent on the number of samples.

The effects of both unique noise and sampling variability make it difficult to
interpret psychophysical results, therefore both forms of error should be reduced as
much as possible. The problem of minimizing both unique noise and sampling
variability becomes a tradeoff between the number of stimuli per replication needed
to minimize the sampling variability and the number of replications needed in order
to minimize unique noise variability. Given a fixed number of trials, one form of
error cannot be minimized without increasing the other.

3.1. Experiment I: Discrete XS and XN

This experiment consisted of three conditions: (a) an SIFC task with a continuous
rating scale, (b) a 2IFC task with a continuous rating scale (2IFCc), and (c) a 2IFC
task with a binary rating scale (2IFCb), which was included for comparison with the
2IFCc condition, because there are only a few instances of 2IFC rating scales in
the literature (Friedman & Carterette, 1964; Leshowitz, 1969; Markowitz & Swets,
1967; Schulman & Mitchell, 1966).

The SIFC task was to detect if the S event occurred in the observation interval.
The evidence for each event had a discrete uniform distribution (Fig. 3). These dis-
tributions were realized as sets of sinusoidal transients, with center frequencies
ranging in steps of 5 Hz from 595 to 640 Hz for the N event and from 620 to
665 Hz for the S event. The overlap of five frequencies meant the events were
confusable, even for an ideal observer. The frequency separation of the transients,
however, meant that they could easily be discriminated from one another. The
2IFC task was to detect in which observation interval the S event occurred. The
evidence for the 2IFC event orderings OS,NP and ON,SP was modeled as the
difference of the SIFC evidence distributions, XS−XN and XN−XS (Fig. 3).
These finitely discrete distributions were designed so the entire stimulus set could be
presented in both the SIFC and 2IFC conditions, thus there was no sampling
variability.
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FIG. 3. The theoretical evidence distributions in Experiment I. The SIFC events (a) S and (b) N

and the 2IFC event orderings (c) OS,NP and (d) ON,SP, assuming a difference decision rule, are
plotted.

Method

Observers. Four of the authors were observers. All had previous experience in
SIFC and 2IFC psychoacoustic experiments.

Stimuli and equipment. The 15 sinusoidal transients were digitally generated,
then shaped with a Kaiser data window (shaping parameter b=11) over the first
and last 15 ms (Kaiser, 1966; Rabiner & Gold, 1975). This produced an absolute
duration of 100 ms and an equivalent rectangular duration (ERD) of 81.2 ms.

The diotic transients were output from a digital-to-analog converter (DAC)
at 7.2 kHz, low-pass filtered (1.25 kHz), and mixed with a continuous, analog,
Gaussian-noise masker (4 kHz, low-pass). During the observation interval, the
transients were presented to the observer through a purpose-built headset amplifier
to TDH-39 100-W earphones mounted in Rudmose Tracor RA125 Otocups and
MX41/AR cushions. The timing was controlled by a Hewlett Packard 9825A real-
time clock and the experimental system was controlled by Hewlett Packard 9825
and 9826 computers.

The continuous background masker spectrum level was 40 dB SPL. The signal
level was 53.2 dB SPL (13.2 dB SNR) for Observer 1 and Observer 2 and 55 dB
SPL (15.0 dB SNR) for Observer 3 and Observer 4. These settings made the unique-
noise degraded performance for all observers approximately the same. The same
theoretical models were still appropriate for all observers, because the task was not
dependent on overall SPL.

Procedure. All observers completed 16 replications of each condition. Each
replication was run in two, approximately 10 minute, sessions. In the SIFC
condition, the 10 transients in each event were presented 20 times giving 400 trials
per replication. In the two 2IFC conditions, all possible pairings of the XS
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transients and XN transients were presented twice, also giving 400 trials per repli-
cation. Each presentation of the same transient within a replication was treated as a
unique stimulus to increase resolution in the ROC space. Replications in the two
2IFC conditions were alternated two at a time, then the SIFC replications were
completed. The trial order was randomized for each replication, with event run
limits randomly constrained to a maximum of four, five, or six. The durations of
the warning (50 ms), observation (100 ms), decision (1000 ms), and reset (minimum
of 750 ms) intervals were indicated by LED lights. There was a 500-ms intersti-
mulus interval in the 2IFC task.

The observers ran sessions in a sound-attenuating chamber. They indicated their
decision on each trial by either moving a slider, for continuous rating tasks, or
pressing one of two buttons, for binary rating tasks. The slider was moved from the
left-hand end of a 12-cm slot. At the end of the trial the observer was required to
reset the slider to the left before the next trial would begin. In the SIFC condition,
the observers indicated a decision by moving the slider to the right-hand side of the
scale if they were confident that the S event occurred, and to the left-hand side of
the scale if they were confident that the N event occurred. In the 2IFC conditions,
the observers used the right-hand side of the slider (or right button) to indicate
confidence that the OS,NP event ordering occurred and the left-hand side of the
scale (or left button) to indicate that the ON,SP event ordering occurred. If an
observer failed to respond during the decision interval in the binary rating condition
an incorrect decision was recorded.

FIG. 4. ROC, mROC, and GOC curves for all observers in Experiment I, compared with the known
theoretical ROC curves. The 64 ROC curves for the (a) SIFC, (b) 2IFCc, and (c) 2IFCb conditions are
shown in the top three panels. The GOC curves and the mROC curves for the (d) SIFC, (e) 2IFCc, and
(f) 2IFCb conditions are shown in the bottom three panels.
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Results and discussion. The continuous rating scale readings were converted into
64 equally spaced categories and ROC, mROC (using arcsine-transform averaging),
and GOC analyses were performed for each observer and over all observers, for
each condition.

Figure 4(a–c) shows the 64 ROC curves (or the 64 ROC points for the binary con-
dition) for all observers in each condition. The amount of variability and the fact that
all the ROC curves are below the theoretical ROC curves indicate that observer incon-
sistency has degraded performance. It is obvious that with this degree of variability
single-replication data could not be used to assess Green’s relationship. Figure 4(d–f)
shows the 64-replication GOC and mROC curves taken over all observers. Both SIFC
and 2IFC mROC curves are consistently below the theoretical ROC curves and seem
typical of psychophysical data—it looks like they would be fitted well by a normal
model. The GOC curves, on the other hand, tend toward the theoretical ROC curves.
In comparing the two 2IFC conditions, both the 2IFCc mROC curve and 2IFCb
mROC point are consistently below the theoretical ROC curve. Both of the 2IFC
GOC curves approach the theoretical ROC curve, but only the 2IFCc GOC curve
(Fig. 4b) is a good fit to the theoretical ROC curve after 64 replications.

Figure 5 is of particular interest for it shows the GOC, mROC, and theoretical
ROC curves in z-coordinates. Consistent with Hanley and McNeil’s (1982) obser-
vation that most psychophysical data would be well fitted by a normal model
(regardless of the appropriateness of this assumption), the mROC curves look
linear with slope near unity. The GOC curves are, however, curvilinear and are
good approximations to the theoretical ROC curves.

To assess Green’s relationship, the difference between ASI and P(C)2I was con-
sidered. ASI was calculated using the trapezoidal rule. P(C)2I was estimated from
the intersection of the ROC, mROC, or GOC curve with the negative diagonal. In
all cases, ASI and P(C)2I are larger for GOC curves than for the mROC curves (see
Table 1). The variability of these measures of detectability for the ROC curves
(shown in standard deviations in Table 1 and graphically in Fig. 4) indicates the
degree of observer inconsistency. GOC analysis, however, removes most of this

FIG. 5. The GOC curve and the mROC curve, in z-coordinates, for all observers, and the theoretical
ROC curves in Experiment I are given for: (a) the SIFC condition, (b) the 2IFCc condition, and (c) the
2IFCb condition.

SIFC AND 2IFC TASKS IN TSD 23



TABLE 1

The Difference betweenASI and P(C)2I ( from the 2IFCc Condition), after GOC, mROC, and
ROC Analysis (Mean and Standard Deviations of ASI and P(C)2I), over All Replications,
Compared with the Theoretical Model in Experiment I

Observer Analysis ASI P(C)2I Difference

1 GOC 0.8547 0.8650 −0.0103
mROC 0.7096 0.7076 0.0020
ROC M (SD) 0.7087 (0.0263) 0.7088 (0.0356) −0.0001

2 GOC 0.8636 0.8550 0.0086
mROC 0.7414 0.7474 −0.0060
ROC M (SD) 0.7401 (0.0203) 0.7443 (0.0255) −0.0042

3 GOC 0.8560 0.8600 −0.0040
mROC 0.7176 0.7093 0.0083
ROC M (SD) 0.7159 (0.0253) 0.7046 (0.0150) 0.0113

4 GOC 0.8597 0.8100 0.0497
mROC 0.7517 0.7337 0.0180
ROC M (SD) 0.7504 (0.0242) 0.7364 (0.0202) 0.0140

All GOC 0.8720 0.8750 −0.0030
mROC 0.7283 0.7233 0.0050
ROC M (SD) 0.7288 (0.0295) 0.7235 (0.0305) 0.0053

Theory 0.8750 0.8750 0.0000

inconsistency, producing measures of detectability that are good estimates of the
theoretical measures of detectability.

The difference between ASI and P(C)2I is small for all observers except Obser-
ver 4 (see Table 1). Observer 4’s performance is depressed in the 2IFC task, possibly
indicating that more replications need to be run to remove unique noise. Even if the
mROC measures indicate that ASI=P(C)2I, this should not be taken as evidence
that the relationship holds empirically, for it is confounded by unique noise. The
results of the GOC analysis tend to the theoretical prediction that ASI=P(C)2I. This

TABLE 2

DSI, C2I, and Their Difference (bits), after GOC and mROC Analysis,
Compared with the Theoretical Model in Experiment I

GOC mROC

Observer DSI C2I Difference DSI C2I Difference

1 0.4020 0.4290 −0.0270 0.1308 0.1282 0.0026
2 0.4253 0.4028 0.0225 0.1754 0.1846 −0.0093
3 0.4054 0.4158 −0.0104 0.1413 0.1304 0.0109
4 0.4150 0.2985 0.1164 0.1914 0.1639 0.0275

All 0.4481 0.4564 −0.0084 0.1561 0.1491 0.0070

Theory 0.4564 0.4564 0.0000 0.4564 0.4564 0.0000
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TABLE 3

RelationshipsASI [A2I [AT and DSI [D2I [DT after GOC Analysis in Experiment I

Observer ASI [ A2I [ AT DSI [ D2I [ DT

1 0.8547 [ 0.9316 [ 0.9578 0.4020 [ 0.6401 [ 0.7476
2 0.8636 [ 0.9393 [ 0.9628 0.4253 [ 0.6698 [ 0.7706
3 0.8560 [ 0.9450 [ 0.9585 0.4054 [ 0.6927 [ 0.7510
4 0.8597 [ 0.9203 [ 0.9606 0.4150 [ 0.5989 [ 0.7606

All 0.8720 [ 0.9483 [ 0.9672 0.4481 [ 0.7064 [ 0.7919

Theory 0.8750 [ 0.9588 [ 0.9688 0.4564 [ 0.7520 [ 0.7994

gives strong support to the theoretical relationship of ASI=P(C)2I for this finitely
discrete random variable. The fact that mROC analysis also gives empirical support
may indicate that the unique-noise processes are similar in each task.

The relationship DSI=C2I is also empirically supported, except for Observer 4
(Table 2). These measures were calculated from the empirical ASI and P(C)2I, using
Eqs. (34) and (36) respectively. The discrepancy in Observer 4’s results is high-
lighted using DSI, because the difference between DSI and C2I is an order of magni-
tude larger than for the other three observers.

Theorem 2.5 and Corollary 2.4 provide bounds for A2I in terms of ASI and for
D2I in terms of DSI, respectively. Table 3 shows that in all cases, after GOC
analysis, the experimental results are consistent with these theoretical predictions.

A predicted 2IFC ROC (pROC) curve was estimated by tallying the SIFC
sum-of-ratings for each event, then taking the discrete cross correlation of the
sum-of-ratings distributions for the two events, for each 2IFC event ordering,

FIG. 6. A comparison of the predicted 2IFC ROC (pROC) curve (derived from the SIFC GOC
sum-of-ratings), the 2IFCc condition GOC curve, and the theoretical 2IFC ROC curve, for all observers
in Experiment I.
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using Eqs. (11) and (12). This resulted in a probability mass value for each value
of d for each 2IFC event ordering, where D is the decision axis for the difference
of the sum-of-ratings. The mass functions were then cumulated in the usual way to
obtain the 2IFC hit rates and false-alarm rates. Figure 6 shows the 2IFC pROC
curve, the obtained 2IFC GOC curve, and the theoretical 2IFC ROC curve. The
similarities among the three curves are striking, once observer inconsistency is
removed.

3.2. Experiment II: Continuous XS and XN

Experiment I indicated good support for the theoretical relationships developed
here for discrete random variables. It is important to also establish whether the
theoretical relationships hold for a task such as amplitude discrimination where the
evidence is assumed to be distributed continuously. In Experiment II, observers
were asked to detect narrow-band short-duration Gaussian noise with a bandwidth-
duration product of unity, masked by wide-band Gaussian noise. Three ideal
observers have been suggested for this signal-known-statistically observer: the
energy detector (Green & McGill, 1970), the envelope detector (Drga, 1988;
Whitmore et al., 1968), and the full-linear detector (Lapsley Miller, 1999). The
theoretical evidence distributions are unknown but are suggested to be q2 (energy)
or Rayleigh (envelope) for the SIFC task, although Lapsley Miller (1999) found
evidence that neither distribution was appropriate. Both a difference and a ratio
decision rule have been used to model the 2IFC case (Drga, 1988; Green, 1960a;
Green & McGill, 1970). The inability to draw firmer conclusions about the nature
of amplitude discrimination is partly due to the similar predictions of competing
models and partly due to the problem of observer inconsistency in experimental
data.

A computer simulation was used to estimate the minimum number of stimuli
required, by considering the sampling variability of ASI for ROC curves from
Rayleigh distributions. Based on this simulation, 250 S and 250 N stimuli were
chosen. Ideally, more stimuli would have been used, but there was a tradeoff
between the number of stimuli and the number of replications it was feasible to run.

Each observer was allocated a unique set of stimuli for use in both the SIFC and
the 2IFC conditions. In the SIFC condition, observers listened to each stimulus
once in each replication. In the 2IFC conditions, it was practically impossible to
present every pairing of S and N stimuli because there were 2502 combinations of
250 stimulus pairs per event ordering. Here, the OS, NP stimulus pairs were
assigned by randomly pairing one S transient with one N transient, without
replacement. The ON, SP stimulus pairs were assigned by swapping the order of
the OS, NP stimulus pairs, thus each transient was presented twice in each replication.
Using this sampling method, only one possible set of 250 stimulus pairs was
sampled per event ordering. To assess the effect of stimulus-pair sampling, the 2IFC
condition was repeated three times; each block using the same S and N stimuli but
different random stimulus pairings. The three 2IFC blocks were analyzed separately
(as 250 stimulus pairs per event), then pooled (as 750 stimulus pairs per event) to
decrease variability due to stimulus-pair sampling.
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Method

Observers. The four observers from Experiment I participated in Experiment II.

Stimuli. The digitally generated, narrow-band, Gaussian transients were gener-
ated using an inverse fast Fourier transform (IFFT) method (Drga, 1999). This
method is better than a digital filter approach because it produces reproducible
noise transients with steep roll-offs in the frequency domain and minimal leakage in
the time domain.

The signal-alone transients were generated using 250 215-point IFFTs with an
input bandwidth of 35 Hz centered on 250 Hz. Four 276-point transients (one for
each observer) were randomly selected (without overlap) from each IFFT. 500
maskers (noise-alone transients) were generated similarly, except that the input
bandwidth was 1500 Hz (low-pass). The distributions of these unwindowed
transients were consistent with a Gaussian distribution out to 2.5 SD for the
signal-alone transients and to 3 SD for the maskers.

The 20-ms unmixed signal-alone transients and maskers were windowed over
their entire duration with a Kaiser data window (b=9), giving an ERD of 8.2 ms
(Kaiser, 1966; Rabiner & Gold, 1975). The ERB of the windowed signals was 92 Hz
and the ERB of the windowed maskers was 1500 Hz. Thus the equivalent
bandwidth–duration product for the signal-alone transients was approximately
0.75. This corresponds to an essential bandwidth–duration product of approxi-
mately unity (Lapsley Miller, 1999, 2001).

To make the signal-plus-noise transients, the signal-alone and masker transients
were mixed to give 7.5 dB SNR. The masker spectrum level was 69 dB SPL. During
an observation interval, a randomly selected digital transient was output to the
12-bit DAC at 13.8 kHz, low-pass filtered (3 kHz), then mixed with a continuous
background Gaussian-noise masker (4 kHz, low-pass, 33 dB SPL spectrum level).

Procedure. Each observer ran 32 SIFC replications and 16 2IFC replications
(for each 2IFC block). Each replication was run in two approximately 20-min
sessions. The SIFC replications were completed first, followed by the three, counter-
balanced, 2IFC blocks. Within a replication, trial sequences were randomized and
constrained so that sequences were limited to four, five, or six events in a row.
A new run limit was randomly chosen each trial. A trial consisted of a 100-ms
warning interval, a 20-ms observation interval, a 500-ms interstimulus interval and
a 20-ms observation interval (2IFC condition only), a 1500-ms decision interval,
and a 900-ms (minimum) reset interval.

In the SIFC condition, the observer’s task was to detect whether the S event
occurred. In the 2IFC condition, the observer’s task was to detect whether the
OS, NP event ordering occurred. Observers indicated their decisions on the
continuous rating scale like in Experiment I.

Results and discussion. The continuous ratings were binned into 64 categories,
and ROC, mROC, and GOC analyses were performed for each observer, in each
condition, like in Experiment I. Data were not combined across observers, because
each observer used a different stimulus set. All of the comparisons between tasks
were based on the pooled 2IFC results unless otherwise stated.
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FIG. 7. GOC and mROC curves for each observer in the SIFC condition (left column), in the
pooled 2IFC condition (middle column), and in the three unpooled 2IFC conditions (right column) in
Experiment II are shown.

Figure 7 shows that performance improved from mROC analysis to GOC analysis
for all observers in each condition. Figure 7 (right column) shows the mROC
and GOC curves for the three 2IFC blocks. The pooled 2IFC curves in Fig. 7
(middle column) are smoother compared to the three unpooled curves. Assuming
most of the unique noise is removed, the variability among the three 2IFC blocks
(right column in Fig. 7) is possibly due to sampling variability of the three
250-stimuli-per-event sample sets.

There is an improvement in all measures of detectability after GOC analysis
(see Table 4). Table 4 shows that Observer 1 and Observer 4 have the smallest
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TABLE 4

The Difference betweenASI and P(C)2I, after GOC, mROC, and ROC Analysis
(Mean and Standard Deviations ofASI and P(C)2I) in Experiment II

Observer Analysis ASI P(C)2I Difference

1 GOC 0.7077 0.6920 0.0157
mROC 0.6346 0.6254 0.0092
ROC M (SD) 0.6353 (0.0237) 0.6236 (0.0139) 0.0117

2 GOC 0.7767 0.7411 0.0356
mROC 0.7333 0.6877 0.0457
ROC M (SD) 0.7334 (0.0143) 0.6885 (0.0164) 0.0449

3 GOC 0.7466 0.7183 0.0283
mROC 0.6438 0.6114 0.0324
ROC M (SD) 0.6452 (0.0223) 0.6115 (0.0185) 0.0337

4 GOC 0.7822 0.7920 −0.0098
mROC 0.7242 0.7288 −0.0046
ROC M (SD) 0.7238 (0.0221) 0.7263 (0.0231) −0.0025

differences between ASI and P(C)2I, after both mROC and GOC analysis. The
relationship DSI=C2I is also somewhat supported (Table 5). Whether or not one
should take these results as evidence that ASI=P(C)2I or DSI=C2I is debatable.
The differences could be due to (a) sampling variability, (b) unique noise, or (c)
inappropriate assumptions about the observers’ decision processes, especially in the
2IFC task. The relationship ASI [A2I [AT and its corollary DSI [D2I [DT,
however, are supported in all cases (see Table 6).

In analyzing amplitude-discrimination data, the theoretical evidence distributions
are unknown. Compounding this with observer inconsistency and sampling varia-
bility, it is difficult to come to any firm conclusions about the relationship between
the SIFC and 2IFC tasks. It is therefore useful to generate a 2IFC ROC curve from
the SIFC ratings, because 2IFC performance can then be predicted based on
empirical SIFC performance, without needing to know the underlying distributions
—providing that the same stimuli are used in each task.

TABLE 5

DSI, C2I, and Their Difference (bits) after GOC and mROC Analysis in Experiment II

GOC mROC

Observer DSI C2I Difference DSI C2I Difference

1 0.1283 0.1091 0.0192 0.0529 0.0459 0.0071
2 0.2339 0.1749 0.0589 0.1635 0.1042 0.0593
3 0.1834 0.1422 0.0411 0.0605 0.0361 0.0244
4 0.2439 0.2624 −0.0185 0.1503 0.1568 −0.0065
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TABLE 6

RelationshipsASI [A2I [AT and DSI [D2I [DT after GOC Analysis in Experiment II

Observer ASI [ A2I [ AT DSI [ D2I [ DT

1 0.7077 [ 0.7755 [ 0.8291 0.1283 [ 0.2317 [ 0.3403
2 0.7767 [ 0.8174 [ 0.9003 0.2339 [ 0.3143 [ 0.5319
3 0.7466 [ 0.7962 [ 0.8716 0.1834 [ 0.2705 [ 0.4469
4 0.7822 [ 0.8866 [ 0.9051 0.2439 [ 0.4899 [ 0.5475

It would be expected that Observer 1 and Observer 4 would have the best fit
between predicted and obtained 2IFC ROC curves, because the difference between
ASI and P(C)2I was small for them. Figure 8 indicates that this is indeed the case.
The difference between the predicted 2IFC ROC curve and the obtained 2IFC
ROC curve is pronounced for Observer 2 and Observer 3, with the pROC curve
overestimating the actual 2IFC ROC curve. This discrepancy may be due to observer
inconsistency or sampling variability. Only 16 replications were run in the 2IFC
conditions compared with the 32 replications for the SIFC condition; thus there
may have been more residual unique noise in the 2IFC conditions. The 2IFC
sample-ROC curve may also have been different from the predicted sample-ROC
curve because only a subset of the possible 2IFC pairings was presented or because
of the monotonic transform between the observer’s evidence and the observer’s
rating (Drga, 1999). Finally, the assumptions underlying the tasks may not have

FIG. 8. The predicted 2IFC ROC (pROC) curve, derived from the SIFC GOC ratings, and the
2IFC GOC curve for each observer in Experiment II are shown.
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been fulfilled (e.g., the observer may not have used a decision rule monotonic with
the difference decision rule, or there may have been interactions between the inter-
vals in the 2IFC task).

4. DISCUSSION

The theoretical relationships between the SIFC and 2IFC tasks for discrete
random variables, developed in this paper, were strongly supported by the results of
Experiment I. Once observer inconsistency was reduced using GOC analysis,
human observers were in most cases able to perform as well as an ideal observer. It was
also shown by comparison to the theoretical ROC curves that mROC curves do not
necessarily reflect the underlying evidence distributions because of the effects of observer
inconsistency. Experiment II provided some evidence that the nonparametric
relationships hold for a continuous random variable, but the results were not as
strong. These results are more robust than the results of previous experimental
research (Emmerich, 1968a; Green & Moses, 1966; Whitmore et al., 1968), however,
because error due to observer inconsistency was reduced using GOC analysis.

Observer inconsistency helps to explain psychophysicists’ preoccupation with
normal models. Hanley and McNeil (1982) comment that the majority of
psychophysical data can be fitted very well on the assumption that the underlying
random variables are normal, regardless of the appropriateness of this assumption.
The results from Experiment I demonstrated this phenomenon by using known,
finitely-discrete evidence distributions. The mROC curves appeared normal, but
after GOC analysis this apparent normality disappeared and the GOC curve
reflected the shape of the theoretical ROC curve. These results, and those of Drga
(1999), Lapsley Miller (1999), and Taylor et al. (1991) using experiments and
computer simulations, suggest that using data from any single replication of an
experiment can not provide strong support for any theory.

Experiment I showed that rating scales may be used instead of binary responses
in 2IFC experiments. Green and Swets (1966) suggested that the crucial issue
is whether or not the two methods yield essentially the same curves. Although
performance in the binary-decision 2IFC task was lower than in the rating-scale 2IFC
task, both 2IFC GOC curves (and their related measures of detectability) tended
toward the theoretical 2IFC ROC curve as replications were added (Drga, 1999).
Decisions made on a rating scale supply more information than binary decisions
(Watson et al., 1964), and trials do not necessarily take longer. We recommend that
rating scales be used in preference to binary decisions, for both SIFC and 2IFC
tasks, because fewer replications are needed to achieve the same GOC performance
and the entire ROC curve is approximated—not just one point.

Despite the equivalence between measures of detectability in the SIFC and 2IFC
tasks, the 2IFC task is often considered preferable in practice because it is
(incorrectly) assumed to be unbiased (e.g., Mackworth, 1970). There are, however,
good reasons why researchers should consider using an SIFC task.

1. Interpreting SIFC experimental results with respect to a theory may be
easier because fewer assumptions are required.
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2. 2IFC ROC curves (with appropriate assumptions about X) and their
associated measures of detectability may be derived from SIFC ratings or from the
hit rates and false-alarm rates, but SIFC ROC curves cannot be derived from the
2IFC ROC ratings or hit rates and false-alarm rates.

3. Empirical 2IFC results can be confounded if the evidence in one interval
interacts with the other. This may occur if there is temporal asymmetry in the task
(e.g., due to memory) or, separately, if there is an effect of the duration of the
interstimulus interval. 2IFC theory assumes symmetry and does not specify the
duration, or even the existence, of the interstimulus interval.

4. Additional sampling may be required to form 2IFC stimulus pairings (as
described in Section 3.2).

5. An SIFC trial is faster than a 2IFC trial because the 2IFC trial has an
extra observation interval and an interstimulus interval.

In summary, the relationship ASI=P(C)2I was derived from the cross-correlation
function of the SIFC evidence distributions, thereby relating both ASI and P(C)2I to
P(XN < XS), something which previous theoretical developments have not expli-
citly done. ASI=P(C)2I was demonstrated for continuous and finitely and infinitely
discrete unidimensional random variables, arbitrary prior probabilities, and with no
requirement for using a likelihood ratio decision axis. Guessing probabilities in the
discrete case were shown to be important, because ASI=P(C)2I holds if and only if
the 2IFC guessing probabilities are equal, or the 2IFC prior probabilities are equal,
or both. Connections between the two tasks were extended to the new measure
of detectability, DSI, and the channel capacity, C2I, of the 2IFC observer. These
measures have been shown elsewhere to have a number of properties desirable in a
measure of detectability (Scurfield, 1996, 1998). Nonparametric bounds on A2I in
terms of ASI were derived, and similar bounds for D2I in terms of DSI. Furthermore,
it was shown how a 2IFC ROC curve may be calculated from the SIFC ratings or
the SIFC hit rates and false-alarm rates. Finally, all these results are based on the
relationship ASI=HR(0, 12)2I.

Elsewhere, Scurfield (1996, 1998) has extended ASI=P(C)2I to three events and to
unidimensional and multidimensional decision axes by specifying an equality
between one of the three-event, single-interval, three-alternative ROC volumes and
the corresponding proportion of correct decisions in the three-event, three-interval,
six-alternative task (for equal prior probabilities). Furthermore, he showed that
D=C for the same tasks, respectively, and that results are generalizable to
n-events.
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