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New Techniques to Reduce Observer
Inconsistency in Psychoacoustic Experiments

Judi A. Lapsley Miller*
Psychophysics Laboratory,

Victoria University of Wellington, New Zealand
Abstract

One of the biggest problems still facing experimental psychophysics is observer inconsistency.
Observer inconsistency degrades performance, hampering comparisons with other observers and
theoretical predictions. By repeating an experiment multiple times using the same stimuli, observer
inconsistency can be reduced and asymptotic errorless performance estimated by using group
operating characteristic (GOC) analysis and function of replications combined estimation (FORCE)
analysis, respectively. These new techniques are described and illustrated with results from various
psychoacoustic experiments, showing that humans are sometimes capable of performing as well as an
ideal observer once observer inconsistency is reduced.
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✺ Observer inconsistency occurs when an observer responds differently to
repeated presentations of the same stimulus

✺ Inconsistency comes from noise in the observer’s environment or from
within the observer, e.g.:

✸ Continuous background noise masker
✸ Heartbeat, muscle tension, neural noise
✸ Memory, inattention, and coordination when using response manipulanda
✸ Transient external noise: cars, aircraft, voices

✺ Inconsistency degrades performance, making it hard to compare an
observer’s performance to theoretical models and to other observers

✸ It is difficult, if not impossible, to control for all noise sources, or account for
each of their effects specifically (i.e., by modeling the noise)

✸ Another approach is to reduce or remove the effects of observer inconsistency
by repeating the experiment multiple times and averaging out the error

Why Is Observer Inconsistency a Problem?
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An example of observer inconsistency

✺ 4 observers each repeated a frequency
discrimination experiment 16 times

✺ Shown are the 64 empirical ROC
curves and the theoretical ROC curve

✺ The empirical ROC curves are below
the theory, and are a different shape

✺ The empirical ROC curves are highly
variable, despite using identical
stimuli on each replication

✸ SIFC task; 64 point rating scale
✸ Events were High tones and Low  tones,

with an overlap (even an ideal observer could
not perform perfectly)

✸ Continuous background masker to make task
more difficult

✸ The theoretical ROC curve is based on
discrete uniform distributions

Fig 1: An example of observer inconsistency
when repeating the same experiment 64 times
Reprinted with permission from Lapsley Miller, Scurfield, Drga, Galvin, &
Whitmore (1999)
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What can be done to reduce inconsistency?

✺ One technique for reducing the effects of
observer inconsistency is Group Operating
Characteristic (GOC) Analysis

✸ Introduced by Watson (1963/64) and
developed by Taylor, Boven, & Whitmore
(1991) and Drga (1999).

✸ GOC analysis has successfully been used in a
variety of experiments, including amplitude
discrimination of tones and noise, frequency
discrimination, and Type II decision making.

✸ GOC analysis can be used for subject groups
as well as individuals

✺ The result of GOC analysis is a GOC curve
in the ROC space, from which the usual
measures of detectability may be taken.

✺ GOC analysis tends to improve performance
in the ROC space, compared to the mean
ROC curve

✺ Drga (1999) has developed a theory of GOC
analysis; here the focus is on the practical
application of this technique.

✺ The key is to average out the observer
inconsistency in the decisions (ratings) for
each stimulus.  To do this, the experiment is
repeated multiple times using identical stimuli

✸ Both the signal and the masker need to be
identical on each presentation.

✸ Making identical acoustic stimuli is possible -
even for noise maskers - with digital signal
generation techniques.

✺ When ratings for each stimulus are averaged
across replications, noise that is not common
across all replications is averaged out.

✸ this is not the same as calculating a mean ROC
curve, where the averaging occurs across hit
and false-alarm rates, rather than across ratings
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How is GOC analysis done? (Part 1)

✺ The fictitious example in Table 1
shows the results of 4 replications of
an experiment

✸ There were three events: one noise-
alone (with 10 stimuli) and two signal-
plus-noise (with 5 stimuli each)

✸ Decisions were indicated on a 9 point
rating scale  (see Table 1, columns 3-6)

✸ Notice that the observer often made a
different decision in response to the
same stimulus

✺ For each stimulus, the observer’s
decisions (ratings) are averaged across
replications (see Table 1, column 7)

✸ Any type of averaging may be used,
including summing (which is
computationally more efficient)

Stimulus Event Rating Sum-of-rating
Rep 1 Rep 2 Rep 3 Rep 4

1 N 3 5 8 1 17
2 N 1 2 2 4 9
3 N 4 3 5 2 14
4 N 2 4 5 2 13
5 N 6 1 2 6 15
6 N 1 2 1 1 5
7 N 5 4 6 3 18
8 N 1 1 4 1 7
9 N 9 3 4 1 17
10 N 1 1 4 2 8
1 SN1 4 1 1 3 9
2 SN1 4 5 5 6 20
3 SN1 8 6 5 1 20
4 SN1 9 4 2 1 16
5 SN1 4 5 4 2 15
1 SN2 6 1 3 4 14
2 SN2 9 8 5 8 30
3 SN2 7 7 9 9 32
4 SN2 9 7 7 7 30
5 SN2 8 6 4 8 26

Table 1: Ratings from 4 replications
of a fictitious GOC experiment.
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How is GOC analysis done? (Part 2)

✺ From here, analysis proceeds like a
rating-scale ROC analysis

✺ The number of times each
sum-of-ratings occurred is tallied

✸ This tally is done separately for each
event (see Table 2, columns 2-4)

✸ The table is sorted so the sum-of-ratings
are in order

✺ The tallies are cumulated, using each
sum-of-ratings as a criterion, from
highest sum-of-ratings to lowest (see
Table 2, columns 5-7)

✺ Hit and False-Alarm Rates for the GOC
curve are calculated by dividing each
cumulative tally by the number of
stimuli for that event (see Table 2,
columns 8-10)

Sum-of-rating Tally Cumulative Tally Rate
N SN1 SN2 N SN1 SN2 FAR HR1 HR2

5 1 0 0 10 5 5 1.0 1.0 1.0
7 1 0 0 9 5 5 0.9 1.0 1.0
8 1 0 0 8 5 5 0.8 1.0 1.0
9 1 1 0 7 5 5 0.7 1.0 1.0
13 1 0 0 6 4 5 0.6 0.8 1.0
14 1 0 1 5 4 5 0.5 0.8 1.0
15 1 1 0 4 4 4 0.4 0.8 0.8
16 0 1 0 3 3 4 0.3 0.6 0.8
17 2 0 0 3 2 4 0.3 0.4 0.8
18 1 0 0 1 2 4 0.1 0.4 0.8
20 0 2 0 0 2 4 0.0 0.4 0.8
26 0 0 1 0 0 4 0.0 0.0 0.8
30 0 0 2 0 0 3 0.0 0.0 0.6
32 0 0 1 0 0 1 0.0 0.0 0.2

Total 10 5 5

Table 2: Calculation of Hit and False-
Alarm Rates from the sum-of-ratings
from a fictitious GOC experiment.
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An example of a GOC curve

Fig 2. A GOC curve based on 64 replications of the experiment described in Fig 1.
Also shown is the theoretical ROC curve and the mean ROC curve.
(a) linear coordinates (b) normal coordinates. Reprinted with permission from Lapsley Miller et al. (1999)
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What can GOC analysis do?

✺ Fig 2(a) shows the GOC curve based on the 64 replications shown in Fig 1.
✸ Also shown is the mean ROC curve - calculated by averaging the hit and false-alarm

rates at each criterion

✺ The GOC curve approximates the theoretical ROC curve well. In comparison,
the mean ROC curve shows the average, inconsistency-degraded, performance

✺ In this case, the GOC analysis indicates that the observers’ are able to perform
as well as an ideal observer, once error due to their inconsistency is removed

✺ Fig 2(b) shows the same ROC curves in Normal coordinates. This coordinate
system highlights the difference between the mROC and GOC curves

✸ If only single replication, or mean ROC curves, were obtained, then it may be
incorrectly concluded that the underlying distributions in this task were Normals
with equal variance. In this case, because the task was contrived, we know that the
underlying distributions are discrete Uniforms with equal variance, which is reflected
accurately by the GOC curve

✸ This tendency for inconsistency degraded performance to look Normal has meant
that many researchers now assume that the Normal model is appropriate for virtually
all detection tasks. GOC analysis can help in establishing which theory is more
appropriate, if the competing theories predict different ROC curves.
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How many replications are needed?

✺ How many replications are needed to reach inconsistency-free performance?
✸ GOC experiments run at the Psychophysics Lab have ranged from 3 to 100 replications. As a rule-

of-thumb, 16 replications will remove most of the inconsistency. Drga (1999) showed, however,
that there was still some residual observer inconsistency  even after 75 replications.

✸ The actual number of replications required depends on the observer and the difficulty of the task,
but more replications are always better!

✺ Is there a way to run fewer replications, but still get reliable estimates of
inconsistency-free performance?

✸ Yes! Vit Drga, Alan Taylor, and John Whitmore (Drga, 1999) developed FORCE analysis for just
this purpose

✸ FORCE (function of replications combined estimation) analysis enables estimation of
inconsistency-free performance with fewer replications than GOC analysis alone

✸ Good estimates may be made with around 10 replications, and reasonable estimates with as
few as six replications

✸ FORCE analysis estimates inconsistency-free measures of detectability, rather than a GOC
curve, however, this still allows estimation of psychometric functions
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An Overview and Example of
FORCE Analysis

✺ FORCE analysis extrapolates GOC
performance to an infinite number of
replications, where, theoretically, all
inconsistency is averaged out

✸ To do this, the GOC performance is
plotted as replications are added, for
the number of replications that were
run (green points, ±1SD error bars)

✸ Because there is nothing inherently
special about the order the replications
were run, all possible combinations of
one replication are calculated and
averaged, then all combinations of two
replications, etc.

✸ A function is fitted to the data (blue)
✸ The asymptote of the fitted function is

an estimate of asymptotic
inconsistency-free performance (red)

Fig 3a: An example of the results from a six
replication GOC experiment
(noise-in-noise SIFC task, WT=1, W=40Hz, T=25ms, SNR = 8dB
(from Lapsley Miller, 1999b))
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Doing FORCE Analysis

✺ All-Combinations Analysis (ACA)
✸ Plot the average measure of detectability (here we’ll use the Area under the GOC

curve), as a function of replications added, for all combinations of r replications,
sampled from the total set of n replications

✸ The number of replication combinations is given by the binomial coefficient nCr
e.g., for the 6 replications of the experiment in Fig 3:

• the first point is the average Area of all six ROC curves (the GOC curve for one replication is
just the ROC curve)

• the second point is the average Area of all possible two-replication GOC curves, which can be
selected from the six replications - fifteen GOC curves in total

• the third point is the average Area from the twenty three-replication GOC curves
• the fourth point is from the fifteen four-replication GOC curves
• the fifth point is from the six five-replication GOC curves
• the sixth point is from the one six-replication GOC curve

✺ This plot shows the average improvement in the Area as replications are added.
It gives a “Function of Replications Added” or “FORA” curve



12

Doing FORCE Analysis, cont...

✺Drga (1999) found that empirical FORA are
invariably linear when plotted as the log of
the increments in the Area, as a function of log
replications-added

✸ The linearity of virtually all examples he
examined was on the order of 0.99 to 1.00,
measured by Pearson’s correlation coefficient

✸ This linearity indicates that the series
expansion of the Riemann-Zeta function may
be used as the fitted FORA in linear coordinates

• If the log-increment plot is not linear, then the
estimate of the aysmptote is biased

✺Asymptotic Detectability
✸ Fit a Riemann-Zeta series to the empirical

FORA (in linear coordinates)  and calculate its
asymptote

• Drga (1999) shows how this may be done using a
non-linear least squares gradient-descent method

✸ Fig. 3b shows an example of the empirical
FORA from Fig 3a and the fitted FORA, in log-
increment coordinates

Fig 3b: An example of a log-increment plot from
the 6 replication GOC experiment in Fig 3a
(noise-in-noise SIFC task, WT=1, W=40Hz, T=25ms, SNR = 8dB
(from Lapsley Miller, 1999b))
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Another example of FORCE analysis

Fig 4. An example of FORCE analysis, showing the (a) empirical FORA, fitted
FORA, and the asymptotic Area estimate, and (b) the empirical and fitted FORA
in log-increment coordinates.
Based on data from Lapsley Miller et al. (1999): noise-in-noise SIFC experiment, WT=1, SNR = 7.5 dB.
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An example of FORCE analysis, cont...

✺ Fig. 4 is based on data from a noise-in-noise SIFC experiment that was
repeated 32 times by one observer.
✸ Performance is still noticeably improving, even after 32 replications.
✸ Even after 32 replications, the asymptotic Area is still above the GOC Area

• The improvement in the Area from one replication to thirty-two replications is
equivalent to 2.8 dB, assuming an energy or envelope detector model

• The improvement from the 32-replication GOC to asymptotic performance is
equivalent to 0.3 dB

• The total improvement from single replication performance to asymptotic
performance is 3.1 dB.

✸ The equivalent improvement for Fig 3 is 2.7 dB from mean ROC to
6-replication GOC, 1.1 dB from GOC to asymptotic performance, for a total
improvement of 3.8 dB
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Improvement in the Psychometric Function

✺ The improvement in the psychometric
function can be considerable, even
from only 6 replications (examples from
Lapsley Miller, 1999a,b)

✺ Fig 5a shows the data from Fig 4, plus
data from four other signal levels

✸ The theoretical psychometric function is
the full-linear model, which for WT=1 is
very similar to an energy detector

✺ Fig 5b shows a similar example where
WT=2 (W=40 Hz, T=50ms)

✸ The fitted model is the full-linear
model, which for WT=2 performs
better than the energy detector

✸ Once inconsistency has been
removed, sometimes human
observers can perform essentially
as well as an ideal observer

Fig 5: Plotted are the empirical psychometric function points from the mean ROC, GOC, and FORCE
analysis, and the theoretical and linearly attenuated psychometric functions. (a) WT=1, (b) WT=2
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Summary

✺ Group operating characteristic (GOC)
analysis can remove error in
psychophysical tasks that is due to
observer inconsistency

✺ FORCE analysis extrapolates GOC
performance to infinity, as a function of
replications added, giving an estimate of
asymptotic inconsistency-free
performance

✺ These error-reducing techniques allow a
clearer view of the processes underlying
detectability, and can show, in some
cases, that humans are able to perform as
well as an ideal observer.
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