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AbstractAbstract

The energy detector is usually proposed as the ideal observer for the detection of
narrow-band short-duration Gaussian noise, masked by wider-band Gaussian noise.
For some values of the bandwidth-duration (WT) product, however, the energy
detector (filter, square-law rectifier, and true integrator) is not as good as a full-linear
detector (filter, linear rectifier, and true integrator). Because human decisions in
detection tasks are subject to inconsistency, performance rarely approaches that of an
ideal observer. This makes it difficult, if not impossible, to evaluate whether the
energy detector is appropriate for modeling human detection. By repeating a noise-
in-noise detection experiment multiple times using the same stimuli, then using
group operating characteristic (GOC) analysis and function-of-replications-combined
estimation (FORCE) analysis, the effects of observer inconsistency are minimized
and asymptotic error-free performance estimated, respectively. At least for one
combination of noise bandwidth and duration, we show that a human observer can do
better than the energy detector and do as well as a full-linear detector, once error due
to inconsistency is removed. This finding implies that the energy detector is not
necessarily an appropriate model for the task of noise-in-noise detection in humans.
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Why do humans perform worse thanWhy do humans perform worse than
theory in psychophysical tasks?theory in psychophysical tasks?

❅ Mathematical theory may not accurately reflect reality
due to simplifications in stimulus representation

❅ Observer inconsistency when making decisions degrades
human performance

❅ Possible solutions include:
❄Using computer simulations to model theory using more

realistic stimuli
❄Reducing or removing observer inconsistency through

experimental design and statistical methods
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Ideal observersIdeal observers

❅ Ideal observers are theories that predict the maximum
detectability of a class of signals

❅ Ideal observers are used in psychophysics to
❄put an upper bound on detectabilty
❄ find insights into human detectability by studying how it

differs from ideal detectability
❄ find parsimonious explanations of human detectability

❆ it is “unnecessary to invent psychological mechanisms
to explain a change that may be traced to the stimulus
situation itself” (Green & Swets, 1966).

❅ Ideal detection ≠ perfect detection
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Detectability of noiseDetectability of noise
❅ The energy detector is normally considered the ideal observer

for detecting noise signals masked by wide-band noise
(Green, 1960; Green & McGill, 1970)

❄ filter
❄ square-law rectifier
❄ true integrator
❄ two parameters

❆ signal-to-noise ratio
❆ bandwidth-duration product (WT)

❅ But a detector using a linear (full or half-wave) rectifier is
better than the energy detector for small-WT noise
❄ We call this detector a full-linear detector

❆ There is currently no mathematical theory
❆ The engineering literature suggests that the full-linear detector is better then the energy detector for

1<WT<70, the energy detector is better for WT>70, and that they are equally good for WT=1 and 70
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Simulated ideal observersSimulated ideal observers
❅ Stimuli used in mathematical

theories are idealized
❄ Differences between theoretical and

real stimuli are noticeable for Gaussian
noise (WT=1, 2, and 4)

❄ Psychometric functions for
simulated energy detector different
to mathematical theory

❄ Simulations allow evaluation of
theories that may be mathematically
intractable

❄ Differences between humans and
theory may be due to idealized stimulus
representation

❅ Human and simulated detectability
can be compared for the same stimuli

❅ Simulations show that the
full-linear detector is better than
the energy detector for WT=2, 4
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Observer inconsistencyObserver inconsistency

❅ Observer inconsistency occurs when an observer’s
decisions (ratings) differ across repeated presentations
of the same stimulus
❄It occurs in all psychophysical tasks

❄It decreases performance and thus detectability

❅ It is difficult to evaluate psychophysical theory when
human performance is degraded by observer
inconsistency
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Internal & external noiseInternal & external noise

❅ Observer inconsistency results from variability (noise)
internal and external to the observer

❆ Continuous background noise masker
❆ Heartbeat, breathing, muscle tension, neural noise
❆ Memory, inattention, sequential dependencies, and coordination

when using response manipulanda
❆ Transient external noise: cars, aircraft, voices

❅ It is difficult to account for each separate noise source
and the effect it has on detectability

❅ A different approach is to consider the effects of noise,
rather than the source
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Unique & common noiseUnique & common noise

❅ Variability in an observer’s ratings can be partitioned
into unique noise and common noise
❄ On any one experimental replication, unique and common noise are

confounded
❄ When an experiment is replicated multiple times, unique noise in an

observer’s ratings is the component of variability that differs across
experimental replications

❄ Common noise in ratings is the same across replications and is
generally what we are interested in measuring

❅ Unique noise can be averaged out of ratings, leaving
behind common noise
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Removing observer inconsistencyRemoving observer inconsistency

❅ Unique noise can be removed by
1) running a multiple-replication experiment
2) averaging ratings across replications for the same stimulus

❅ Through this experimental design:
❄ Reproducible stimuli are the main sources of common noise
❄ Variability from inattention, body noise, etc., are unique noise

sources and their effects are averaged out
❅ Average ratings form the basis for two data analyses

❄ Group Operating Characteristic (GOC) analysis, and
❄ Function of Replications Combined Estimation (FORCE)

analysis
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Group Operating CharacteristicGroup Operating Characteristic
(GOC) analysis(GOC) analysis

❅ Each replication of an experiment gives a single ROC curve–a
plot of hit rate against false-alarm rate in a detection task
❄ Each single-replication ROC curve is based on one rating per stimulus

❅ A GOC curve is an ROC curve based on the mean-rating per
stimulus, averaged across replications
❄ Because GOC removes unique noise, the GOC curve is generally

higher than any of the contributing ROC curves

❅ The next panel (#12) shows
❄ ROC curves from six replications of an experiment for one observer in

a noise-in-noise detection task
❄ The mean-ROC curve and GOC curve based on the same replications
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The ROC curve Area
 increases from a mean 

of 0.79 to 0.86
after GOC analysis

Notice the variability in
the ROC curves when 
the same experiment

 is run six times
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Asymptotic error-free performanceAsymptotic error-free performance
❅ A function of replications added (FORA) shows how

performance improves, on average, as more replications are
averaged together in GOC analysis

❅ FORAs increase smoothly and tend to an asymptote
❄ The asymptote indicates the performance level that is possible once all

of the error due to observer inconsistency is removed
❄ In principle, removing all inconsistency requires an infinite number of

replications
❄ In practice, a particular function can be fitted to a FORA (from a finite

number of replications) and extrapolated to infinity to estimate the
asymptote

❅ Fitting this function and extrapolating to the asymptote is called
function of replications combined estimation (FORCE) analysis
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Example of FORCE analysisExample of FORCE analysis
❅ This is the empirical and fitted FORA for

the data set from panel #12
❄ The measure of performance used here is

Area under the GOC curve
❄ FORCE works for any measure of sensitivity

❅ The first point on the empirical FORA
shows the average single-replication ROC
performance

❅ The last point on the empirical FORA
shows GOC performance after six
replications

❅ The asymptote represents unique-noise free
performance
❄ In this case, detectability would improve

further if more replications were run
❅ Human asymptotic detectability can be

compared to an ideal observer without an
attenuation factor

0.70

0.75

0.80

0.85

0.90

1 2 3 4 5 6

A
re

a

Replications added

Empirical and Fitted FORA for 6 Replications
 Obs 1: WT=2 [50ms, 40Hz] 

Asymptote=0.873

Empirical FORA
0.70

0.75

0.80

0.85

0.90

1 2 3 4 5 6

A
re

a

Replications added

Empirical and Fitted FORA for 6 Replications
 Obs 1: WT=2 [50ms, 40Hz] 

Asymptote=0.873

Fitted FORA

ROC

GOC



ARO - 7 Feb 2001 1515

Human experiment repeated 6 timesHuman experiment repeated 6 times

❅ Task was to detect small-WT
Gaussian noise signals
❄ Single-interval forced-choice task
❄ WT=1, 2, 4

❆ W: 2.5 to 160 Hz
❆ T: 6.25 to 400 ms

❄ 18 W&T combinations
❄ 5 signal-to-noise ratios
❄ 500 stimuli per event
❄ Wide-band noise masker

❆ 4000 Hz, low pass
❄ Two observers

❆ Repeated experiment 6 times
❆ 324000 trials per observer

❅ ROC analysis
❄ lots of variability over the six

replications

❅ GOC analysis
❄ always improved performance

❆ 2 to 3 dB from ROC

❅ FORCE analysis
❄ generally improved performance

further
❆ 0.5 to 2 dB from GOC

❅ For some W&T combinations
❄ Performance equivalent to ideal,

simulated, full-linear detector
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Human does better thanHuman does better than
energy detectorenergy detector
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Interpretation of resultsInterpretation of results

❅ In all cases, GOC analysis
improved performance as
replications were added

❅ Humans were better than a
simulated energy detector
for some WT combinations

❅ Human performance was as
good as an ideal simulated
full-linear detector for some
WT combinations

❅ For most WT combinations
humans did worse than ideal
even after FORCE analysis

❄ This difference is NOT due to
observer inconsistency

❄ Perhaps the human auditory
filter (critical) bandwidth was
wider than the signal
bandwidth?

❄ Could human detectability
still be like a full-linear
detector, but with a sub-
optimal filter bandwidth?
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Human & simulation Human & simulation correlationscorrelations
❅Correlations were calculated between

human and simulation ratings for the
same stimuli, over many simulation
filter bandwidths
❄ In general, correlations were larger for

the full-linear detector, compared to the
energy detector, regardless of bandwidth

❅Graph shows how the best-correlated
simulation filter bandwidth varied
with signal bandwidth
❄ Auditory filter (critical) bandwidths are

for Obs. 2, estimated from the sub-
optimal full-linear detector simulations

❄ Best-correlated bandwidth was not
constant, nor was it ideal
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SummarySummary

❅ A human was shown to perform like a full-linear detector, and
better than an energy detector in a noise-in-noise detection task

❅ Computer simulations showed that the energy detector is not as
good as a full-linear detector for detecting Gaussian noise with
WT=2 and 4

❅ GOC and FORCE analyses remove the effects of observer
inconsistency
❄ When observer inconsistency is reduced, human detectability can be

better compared to theoretical detectability
❄ Asymptotic error-free performance may be estimated from as few as

six replications (although more replications result in more reliable
estimates)
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For further information...For further information...
❅Available at www.psychophysics.org

❄ Drga, V. (1999) The theory of group operating characteristic
analysis in discrimination tasks. PhD Thesis, Victoria
University of Wellington, New Zealand.

❆ Theory of GOC analysis and development of FORCE analysis

❄ Lapsley Miller, J. A. (1999) The role of the bandwidth-
duration product in the detectability of diotic signals. PhD
Thesis, Victoria University of Wellington, New Zealand.

❆ Human experiments and simulated ideal observers

❄ Lapsley Miller, J. A. (2000) New techniques to reduce the
effects of observer inconsistency in psychoacoustic
experiments. Journal of the Acoustical Society of America,
107 (5) 2914(A). (Full poster available)

❆ Tutorial-style overview of GOC and FORCE with examples from
various experiments. Gives simple example of GOC calculations.

❄ Linton Miller’s C code for FORCE analysis
❅Available in your local library

❄ Taylor, A., Boven, R., and Whitmore, J. (1991). Reduction of Unique
Noise in the Psychophysics of Hearing by Group Operating
Characteristic Analysis. Psychological Bulletin, 109(1), 133-146.

❄ Green, D. (1960). Auditory Detection of a Noise Signal. J. Acoust. Soc.
Am., 32, 121-131.

❄ Green, D. & Swets, J. (1966). Signal Detection Theory and
Psychophysics. Wiley: NY.

❄ Green, D. & McGill, W. (1970). On the equivalence of detection
probabilities and well-known statistical quantities. Psych. Rev., 77,
294-301.
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February 2000 when John Whitmore retired. The lab
continues to exist in a more abstract sense on the internet
at www.psychophysics.org. The authors may also be
contacted at their current affiliations:

❅ Judi Lapsley Miller

❄ NSMRL, Subase NLON, Groton CT 06349, USA.
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