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Abstract

Inconsistent decision making is a long�standing problem in psychophysics� where decisions
based on the same stimulus often di�er across replications of an experiment� Inconsistency
is described statistically by the concept of unique noise� the e�ects of which are removed
by averaging ratings across replications on a per�stimulus basis� A group operating char�
acteristic �GOC	 curve is a type of receiver operating characteristic �ROC	 curve based
on the mean rating per stimulus� GOC analysis is shown to improve task performance
dramatically compared to ROC analysis� and can recover theoretical ROC curves from
noisy data� This thesis presents a theory of GOC analysis showing why the procedure
works� It also develops transform�average GOC analysis� transfer function analysis� and
shows how to estimate unique�noise�free performance from a 
nite� unique�noise�a�ected
data set�

Transform�averaging of ratings �for example� by using geometric or harmonic means	
extends GOC analysis to include strictly monotonic increasing �s�m�i�	 transformations
of rating scale data� Although s�m�i� transforms do not alter ROC curves on any single
replication� it is shown that they do alter GOC curves because of unique noise� Neverthe�
less� GOC analysis may be transform�invariant� apart from residual unique noise e�ects�
Empirical evidence is given showing how GOC performance improves towards theoretical
performance regardless of the particular rating scale that is involved�

A psychophysical transfer function is an s�m�i� mapping from a decision axis onto a
rating scale� Transfer functions underlie theoretical interpretation of empirical ROC anal�
ysis� and it is shown how they can be estimated from empirical data� The theory of GOC
analysis incorporates both transfer functions and transform�average GOC analysis under
the same framework� The theory shows that GOC analysis will work under arbitrary �and
possibly unknown	 transfer functions� and under arbitrary ordinal scalings of a rating
scale� but only when a family of unique�noise�a�ected evidence distributions are stochas�
tically ordered on the decision axis� If stochastic ordering does not hold� unique�noise�free
GOC performance changes according to the scaling of a rating scale� When that is the
case� empirical results and subsequent theoretical interpretation become somewhat arbi�
trary� This 
nding about unique�noise�a�ected rating scales also extends to theoretical
models that incorporate unique noise� Without stochastic ordering on a decision axis� the
theoretical unique�noise�free ROC curve can change following an s�m�i� transform of the
decision axis�

GOC performance improves as a function of replications added �FORA	� Stable em�
pirical FORAs result from all combinations analysis �ACA	� where average performance is
calculated over all possible GOC curves for a given number of replications� The logarithm
of FORA increments is generally a linear function of the logarithm of the number of repli�
cations� typically with r� � ������ This pattern implies a three�parameter data model
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that provided an excellent description of FORAs from six di�erent experimental projects�
These projects involved di�erent aural discrimination tasks� experimental paradigms� de�
cision methodologies� individual observers� levels of performance� stimulus parameters�
and measures of sensitivity� Dozens of di�erent FORAs followed the same mathematical
formonly the three parameters of the data model changed�

Extrapolation of a FORA to an in
nite number of replications makes it possible to es�
timate asymptotic unique�noise�free performance and its sample statistics based on a 
nite
data set� Empirical FORA analysis showed that the observer with the best �unique�noise�
a�ected	 ROC performance was often not the observer with the best unique�noise�free per�
formance� This shows that unique noise can generate deceptive results in psychophysics�
but that its e�ects can be removed by using GOC analysis�
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to �� along with their complementary combinations of size � � � � � � � � � � � � ���

F�� All combinations of size � taken from a set of integers from � to � � � � � � ���

G�� FORA values and regression parameters for Taylor et al��s �����	 con�
tinuous rating scale experiment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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amplitude discrimination experiment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

G�� FORA values and regression parameters for Lapsley Miller et al��s
�����	 discrete case �IFC experiments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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G�� FORA values and regression parameters for the �IFC amplitude dis�
crimination experiment in Section ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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Notation

Table �� Notation� acronyms� and abbreviations�

Symbol Meaning

st
� Stochastically strictly less than
st
� Stochastically less than or equal to
st

� Stochastically not less than
st

� Stochastically not less than or equal to
� Unique and common noise mixing process
� The Riemann zeta function
� Observer number� or division index
� Stimulus index number
� Combination�size
� Quantising function from R to Q
� Weighted sum of random variables
	 Speci
c value of �
A� Initial performance value in FORA regression
A� Asymptotic performance value in FORA regression
A Area under the ROC curve
ASIFC Area under the SIFC ROC curve
A�IFC Area under the �IFC ROC curve
ACA All combinations analysis
c�d�f� Cumulative distribution function
d� Measure of sensitivity d�prime
de Alternative notation for ds
ds Measure of sensitivity for a Gaussian unequal variance model
dz Measure of sensitivity for a Gaussian unequal variance model
D� Scur
eld�s discriminability measure for two events �bits	
D� Scur
eld�s discriminability measure for six events �bits	
Dn Scur
eld�s discriminability measure for n events �bits	
DAC Digital�to�Analog converter
ESO Equivalent statistical observer
f Probability density function
F Cumulative distribution function

�continued � � � 	
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Table �� Notation� acronyms� and abbreviations continued
� � �

Symbol Meaning

FAR False alarm rate
FFT Fast Fourier transform
FORA Function of replications added
G�t	 Di�erence between c�d�f��s
G��s	 Di�erence between c�d�f��s
GOC Group operating characteristic
h Transfer function from Y to R �or from X to R	
H� Average uncertainty about the ordering of two events
HR Hit rate
IFFT Inverse fast Fourier transform

 Scalar parameter in FORA regression
k Ratio of unique�to�common noise variances
L�X	 Likelihood ratio decision axis
L�x	 Speci
c value of likelihood ratio
m Number of observers� or

Number of replications
� Exponent parameter in FORA regression� or

Mean of a random variable
mean ROC Mean receiver operating characteristic
N Noise�alone
nr Number of resamplings of ACA sets
P �C	SIFC Proportion correct in the SIFC task
P �C	�IFC Proportion correct in the �IFC task
q Size of discrete rating scale
Q Discrete rating scale
Qj Random variable on Q for the jth stimulus
qji Sample value of Qj on the ith replication
R Real number line
R Continuous rating scale
Rj Random variable on R for the jth stimulus
rji Sample value of Rj on the ith replication
r Rating value� or

Pearson�s product�moment correlation coe�cient
r� The square of the correlation coe�cient
ROC Receiver operating characteristic
� Standard deviation
�� Variance
�N Standard deviation for the N event
��
N

Variance for the N event
�SN Standard deviation for the SN event
��
SN

Variance for the SN event

�continued � � � 	
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Table �� Notation� acronyms� and abbreviations continued
� � �

Symbol Meaning

��
c

Variance of common noise
��
u

Variance of unique noise
SHIN Signal hidden in noise
SIFC Single�interval forced�choice task
s�m�i� Strictly monotonic increasing
SN Signal�plus�noise
SNR Signal�to�noise ratio
sorting�key The numerical value upon which a stimulus set may be ordered
SPL Sound pressure level
�IFC Two�interval forced�choice task
TSD Theory of signal detectability
X Decision axis� or

Common noise decision axis
XN Random variable on X conditional on the N event
XSN Random variable on X conditional on the SN event
xc Observer�s criterion
xj Sample value of X for the jth stimulus
Y Decision axis incorporating unique noise
Yj Random variable on Y for the jth stimulus
yji Sample value of Yj on the ith replication
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Preface

A psychophysical discrimination task is where an observer� has to make a decision about
objectively de
ned events in the world� How well an observer performs in a discrimination
task depends on the speci
cs of the task� the types of stimuli involved� the conditions
under which they are presented� the motivation of the observer� and physiological and
physical limitations of the observer� All of these factors� and more� contribute to observer

inconsistency in decision making� which leads to extra error in the task� Observer inconsis�
tency refers to the fact that observers make di�erent decisions over repeated observations
of the same stimulus� This is not a trivial in�uence on performance� because experimental
evidence suggests there is as much decision variability due to inconsistency as there is due
to uncertainty regarding the stimuli presented� Human beings are not perfect discrimi�
nators� The consequences of wrong decisions may be dire for some tasks� yet trivial for
others� Investigating observers� performance characteristics and limitations is a key topic
of modern psychophysics�

The e�ects of observer inconsistency can be reduced substantially by group operating

characteristic �GOC� analysis� GOC analysis addresses the question of whether a group
could perform better than an individual� that is� are many ears �or eyes	 better than one�
If the group is better than the individual observer� the potential bene
ts are great in
situations where detection or discrimination is critical �such as cancer detection� search
and rescue� jury verdicts� sonar or radar detection� or fault detection	�� GOC methodology
may also be used to improve and assess individual performance in discrimination tasks�
by having the same observer make decisions about identical stimuli presented on di�erent
occasions�

Statistically� performance may be partitioned into unique noise and common noise�
where unique noise di�ers across replications and common noise remains the same� GOC
analysis removes unique noise e�ects from experimental data� Performance tends toward
the level associated with common noise� as unique noise is removed� Reduction of observer
inconsistency and the estimation of asymptotic� unique�noise�free performance are the
main topics of this thesis�

All of the experimental data sets that are analysed in this thesis involve aural discrim�
ination tasks in which an observer is presented with a sound and then makes a decision
about what type of sound was presented� Some of these experiments used frequency dis�
crimination tasks designed so that theoretical results were known a priori� Results from

�The term observer is used here in preference to subject� following psychophysical convention �Green �
Swets� ����� p	 ��
	 The former encompasses theoretical and simulated decision�making devices� as well
as human and non�human experimental subjects	

�Psychophysical methodologies and analyses �nd application in a wide range of topic areas �Swets�
���� Green � Swets� ����� Swets� ���
	 Hutchinson �����
 describes a host of unusual applications� and
is highly recommended reading for anyone with an interest in psychophysics	
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such experiments unambiguously demonstrate the e�ects of observer inconsistency and
show how these e�ects can be removed� Other experiments investigated aural amplitude
discrimination� These were more substantive experiments for which theoretical perfor�
mance was not known� Although various theories of performance in such tasks have been
proposed� there is no model that is generally agreed upon� Theories of discrimination tasks
have mostly been evaluated using psychophysical methods that incorporate the e�ects of
inconsistent decision making� The methods and analyses that are developed here can be
used to evaluate theories and performance� both with and without the e�ects of observer
inconsistency�

The thesis is divided into two parts� Part I is about GOC analysis� what can be
accomplished by using it� and how it works� in theory� Part II is about what is called FORA
regression� which allows the estimation of asymptotic unique�noise�free performance from
a 
nite� unique�noise�a�ected data set�

Chapter � describes aspects of the Theory of Signal Detectability �TSD	 which form
the basis for theoretical and experimental developments in later chapters� The main
departures from conventional TSD in this thesis �which are not original	 are� ��	 an
ideal observer is not necessarily an optimal observer� ��	 receiver operating characteristic
analysis and rating scales are just as applicable to two�interval forced�choice tasks as they
are to single�interval forced�choice �or yes�no	 tasks� and ��	 there is no essential di�erence
between binary�decision and rating scale tasks�

Chapter � describes observer inconsistency� how it can be modelled� and computational
analyses for dealing with its e�ects� In particular� mean receiver operating characteristic

�mean ROC� analysis and GOC analysis are each described in turn� and are applied to
the same unique�noise�a�ected data set� GOC analysis is shown to remove unique noise
e�ects� whereas mean ROC analysis does not�

Chapter � extends GOC analysis to incorporate general transform�average mean rat�
ings� and shows how this extension formally relates to arbitrary ordinal rescalings of rating
scale data� Transform�average GOC analysis is applied to an experimental data set� and
the results are shown to be generally similar across a variety of transforms�

Chapter � describes psychophysical transfer functions� which relate a decision axis to a
rating scale� Given an assumed decision axis� it is possible to estimate a transfer function
from experimental data�

Both transfer functions and ordinal transforms are incorporated within a general model
of a unique�noise�a�ected observer� presented in Chapter �� A theory of GOC analysis
follows from the model� which describes the statistical properties that must hold in order
for GOC analysis to work in general� In the theory� the removal of unique noise from
rating data parallels the removal of unique noise on a decision axis� and may do so under
any transfer function and any arbitrary ordinal scaling of a rating scale�

In Part II� Chapter � introduces the function of replications added �FORA	� Per�
formance generally improves as more replications are combined in GOC analysis� Very
smoothly increasing FORAs result from all combinations analysis �ACA	� which involves
calculating a GOC curve for each possible subset of a data set and averaging performance
for all subsets of the same size� FORA increments and numbers of replications are gen�
erally related by straight lines in double�logarithmic coordinates� A summed power�law
FORA regression function that follows from this provides an excellent description of data�
The FORA function can be extrapolated to an in
nite number of replications to provide
an estimate of asymptotic unique noise�free performance fwrom a 
nite data set� FORAs
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are found to be stable for measures based on an entire ROC curve� such as area under the
curve� but are not as stable for performance measures based on only a single ROC point�
such as percent correct�

Di�erent sets of replications provide di�erent estimates of an asymptote� Using a
very large data set� Chapter � shows how it is possible to estimate sample statistics of
asymptotes and to obtain an indication of how many� or few� replications are needed to
obtain a stable estimate of asymptotic performance� Solutions are given to problems that
arise when applying ACA to very large data sets�

Chapter � provides FORA results from a variety of experiments in which FORA regres�
sion was found to be extremely robust� Asymptotic estimation was possible for di�erent
experiments� tasks� rating scales� observers� types of stimuli� performance levels� and mea�
sures of sensitivity�

The experimental system that was used in the experiment in Section ��� was developed
and tested by Judi Lapsley Miller and Linton Miller� for Lapsley Miller�s �����	 doctoral
thesis �Section ���	� Lapsley Miller �����	 contains a full description of the experimental
system� The experiment in Section ��� occurred after the work in Section ���� although
they are presented in reverse chronological order to aid the development of Chapter ��
The core FFT code used to generate the stimulus sets for the experiments in Sections ���
and ��� was coded in assembler by Linton Miller� who also programmed all combinations
analysis of D� for Lapsley Miller�s project�

Stylistic notes� Several stylistic points should be noted in this thesis� Long lists of
references sometimes appear as bracketed footnotes� especially when such lists would have
appeared in the middle of a paragraph� Numerical ranges are sometimes expressed using
brackets� where square brackets denote inclusion� and round brackets denote exclusion�
for example� x � �� �	 means that � � x � �� The term  ordering! is used as a noun
more frequently than as an active verb� For example�  stochastic ordering! is not an
active process� but rather describes an ordered pattern� In Part II� although FORA

stands for  Function Of Replications Added!� all graphs of FORAs have abscissas labelled
Replications Combined� as a reminder that FORAs resulting from ACA are derived by
averaging over combinations of replications� rather than from the addition of a single
replication to an existing subset�

There is one historical note that does not quite 
t in elsewhere� The linear log�log plot�
which forms the intuitive basis for FORA regression� was discovered by accident during
exploratory data analysis of a data set� A graph of the logarithm of FORA increment
plotted against replications added �like Figure ����c		 was displayed on a computer screen�
when John Whitmore suggested to try applying the logarithm of the abscissa as well as
the ordinate� A straight line resulted immediately� John got one of the axes� and I got
the other�
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Part I

Group operating characteristic

analysis

Part I is concerned with the e�ects of observer

inconsistency in discrimination tasks	 and how the e�ects

can be removed within the context of the Theory of Signal

Detectability �TSD�� Chapter 
 gives an overview of TSD	

with details of methodologies and measures of performance

that are used in later chapters� Chapter � describes models

of observer inconsistency	 and also mean receiver operating

characteristic analysis and group operating characteristic

�GOC� analysis as means for removing variability due to

inconsistency� Chapter � describes transform�average GOC

analysis	 which is a generalisation of GOC analysis that
encompasses generalised mean ratings and arbitrary ordinal

scaling of a rating scale� Chapter  introduces the transfer

function	 which relates values on a decision axis to values

on a rating scale and shows how it can be estimated from

data� Chapter � provides a theory of GOC analysis that

incorporates the developments of previous chapters within a

single framework� Stochastic ordering is shown to be the

key statistical property needed in order for GOC analysis to

remove the e�ects of inconsistency from experimental data�

If stochastic ordering holds	 then GOC analysis works for

arbitrary transfer functions and arbitrary scalings of a
rating scale�



Chapter �

Elements of the Theory of Signal

Detectability

The fundamental detection problem� The simplest� non�trivial discrimination task

is the fundamental detection problem� where one of two possible events occurs in an ob�

server�s enviroment� and the task of the observer is to state which event occurred �Swets�

Tanner� " Birdsall� ����# Egan� ����	� In aural detection experiments� the events are

labelled SN and N� for Signal�plus�Noise and Noise�alone respectively� The N event

would typically be the presentation of a background masking noise during a trial� and the

SN event would be the presentation of an extra signal waveform added to the masking

noise� A trial formally consists of an observation interval� a decision interval� and an

optional payo� interval� in that order� One of the events occurs during the observation

interval� decisions are made during the decision interval� and possible consequences of the

decision �if any	 occur during the payo� interval� The two events are mutually exclusive�

and are assumed to be independent over a series of trials�

Decision

 yes!  no!

Event
SN Hit Miss

N False Alarm Correct Rejection

Table ���� Event�decision matrix for the fundamental detection problem�

The observer�s task in the fundamental detection problem may be posed as the ques�

tion  Did the SN event occur�!� and the possible decisions are �yes� and �no�� There

are four possible event�decision conjunctions� as seen in Table ���� These are labelled

a hit� miss� false alarm and correct rejection� Over a series of trials� the proportion of

�
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times these conjunctions occur de
ne the hit rate� false alarm rate� miss rate� and correct

rejection rate�� Generally� observers do not perform perfectly in discrimination tasks� and

consequently hit rates and correct rejection rates do not typically equal one� The higher

the hit rate and correct rejection rate� the better an observer performed in the task� These

proportions are used as the basis of performance measures in the task �some of which are

described in Section ���	�

��� The Theory of Signal Detectability

The Theory of Signal Detectability� The Theory of Signal Detectability �TSD	 is

an amalgamation of two theories� the theory of ideal observers and statistical decision

theory� The theory of ideal observers �Green " Swets� ����# Tanner " Sorkin� ����	 is a

theoretical framework which describes how stimuli may be processed by an observer� In

a psychophysical context� statistical decision theory �Green " Swets� ����# Egan� ����	

describes how the results of stimulus processing� which is typically a random variate�

may form the basis of decision making in a discrimination task� Together� the theory of

ideal observers and statistical decision theory provide a broad theoretical framework for

describing observers in discrimination tasks� Each of these components of TSD is described

in turn��

Ideal Observers� In psychophysical discrimination tasks� it is assumed that an ob�

server�s decisions are made based on a particular characteristic �or characteristics	 of the

stimuli presented� There are many possible characteristics that may su�ce� for example in

aural tasks the characteristic may be the amplitude� energy� frequency� phase� bandwidth

or duration of the sounds presented� An ideal observer is viewed here as a model� theory�

or simulation of an observer� The model is able to process or analyse stimuli� and provide

some quantity which di�ers across events� or has di�erent statistical properties for each

event� The quantity may then be used as the basis for decisions in a task�

In a strict sense� an ideal observer is an input�output system that does not make

decisions� Its input is a stimulus �a sound pressure wave for example� or a representation

of such a wave	 and its output is a measurable quantity or numerical value� In a broader

�These terms were borrowed in the ����s from the �eld of engineering	 In medical diagnostics� which
also uses discrimination tasks� the terms sensitivity or true positive rate are used instead of hit rate� the
term speci�city is used of correct rejection rate� and false positive rate is used instead of false alarm rate
�Hanley� ����� Hsieh � Turnbull� ���
	 A potential confusion exists in the use of the term sensitivity�
which is synonymous with hit rate in a medical diagnostic task� and in a classical psychophysical context�
but is synonymous with overall performance in a psychophysical discrimination task	 Throughout this
thesis� sensitivity is used in the modern psychophysical sense� and is never used to refer to hit rate in any
context	

�The terminology in this area of psychophysics di�ers across authors� and sometimes the distinctions
among TSD� statistical decision theory� and the theory of ideal observers are blurred	 Egan ������ p	 �
�
for example� equated the theory of signal detectability with the theory of ideal observers	
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sense which is often used �including here	� an ideal observer makes decisions if a decision

rule �part of statistical decision theory	 is incorporated with the observer�

Many psychophysical experiments involve sampling stimuli from random processes� a

case in point being the detection of a signal in the presence of background noise� Given

a random process input to an ideal observer� the output values are distributed according

to some random variable� X� which is called the decision axis� X has also been called the

evidence� or evidence variable� or decision variable �McNicol� ����# Egan� ����	�

The form of X depends on the stimuli and type of ideal observer� Gaussian random

variables are widely used in TSD� largely because of the widespread applicability of the

Gaussian form to empirical data �Hanley� ����	� and also because of theoretical derivations

that lead to Gaussian statistics �Elliot� ����# Green " Swets� ����	� TSD is seen by some

as a theory restricted to Gaussian random variables only �Simpson and Fitter� ����#

Eijkman� ����� cited in Scur
eld� ����	� but this is false �Scur
eld� ����# Lapsley Miller

et al�� ����	� Ideal observers based on other types of distributions have been derived in

psychophysics �for example� chi� chi�squared and F distributions# Je�ress� ����# Green "

Swets� ����# Green " McGill� ����	� It has also been stated that TSD assumes that the

decision axis X is continuous �Gilkey� ����� p� �	� This may have been true in the original

formulation of TSD �Peterson� Birdsall and Fox� ����� cited in Gilkey� ����	� but is not

true in general� For example� auditory signal detection tasks have been modelled using

ideal observers that are based on poisson counting �McGill� ����# Schacknow " Raab�

����# McGill " Teich� ����	� In the broadest form of TSD� there are no constraints on

the type of evidence distributions that may be generated by an ideal observer�

Events� evidence and stimuli� Three key concepts in TSD are events� evidence and

stimuli� In TSD� the task is to discriminate between environmental events� which is done

on the basis of evidence derived from stimuli� The most di�cult concept to de
ne is

that of the stimulus� �Gibson� ����� describes several very di�erent uses of the term�	�

As it is used here� a stimulus refers to a pattern which occurs in a given portion of an

observer�s immediate physical environment� for example a particular acoustical waveform�

In an experimental context� stimulus may also refer to the pattern only� rather than

the medium or location in which it occurs �e�g� waveforms stored on computer may be

referred to as stimuli	� An event is a state of nature� which may or may not be part of an

observer�s immediate environment� In some circumstances� an event could be synonymous

with a particular set of stimuli� or a class or type of stimulus �e�g� a set of waveforms with

particular spectral characteristics	� Evidence is taken to be the output of an ideal observer�

although the term has been used in a broader sense� by referring to physical evidence �i�e� �

a stimulus	 in a discrimination task �Egan " Clarke� ����	�
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Statistical decision theory� In TSD� the type of stimulus characteristic used to de�

rive X is the same for each event� SN and N� but the properties or parameters of SN

stimuli and N stimuli are di�erent �e�g� if the characteristic was acoustical power� the av�

erage signal�plus�noise power is typically greater than the average noise�alone power	� The

form of X� including parameters of the distribution of X� typically depend on the event

that occurs� There are two probability distributions that need to be taken into account�

The x�values of the SN stimuli are distributed� say� as XSN� and the x�values of the N

stimuli are distributed as XN� By itself� the random variableX refers to the distribution of

x�values over the entire stimulus set� whereas XSN and XN are its event�conditional forms�

Knowing the evidence value on a trial does not by itself result in a decision� What is also

needed is a decision rule� which is an algorithm for producing a decision� given an evidence

value� x� The application of decision rules to evidence values is a topic of statistical decision

theory �Green " Swets� ����# Egan� ����	� There are many possible decision rules� some

deterministic� some probabilistic� some optimal� and others sub�optimal� A simple� yet

e�ective� and widely used rule is a criterion�based decision rule� in which the evidence� x�

is compared to a criterion value� xc� In answer to the question  Did the SN event occur�!�

the decision rule would conventionally be expressed as

If x � xc then say  yes!�

if x � xc then say  no!�

Given the distributions of XSN and XN for an ideal observer� the value of the criterion

determines the hit rate� false alarm rate� miss rate and correct rejection rate�

Ideal observers and optimal observers� It is well known that performance can be

optimised� with respect to a variety of decision goals� by a criterion�based decision rule

applied to the likelihood ratio� L�X	� which is derived from event�conditional probability

density functions �or probability mass functions	 on X �Green� ����b# Green " Swets�

����# Egan� ����	� If X is a strictly monotonic increasing transform of L�X	� then any

criterion on X has an equivalent criterion on L�X	� resulting in the same decision for

speci
c related values x and L�x	 �Egan� ����� Chapter �	� For a given decision axis X�

and with respect to a given decision goal� optimal performance is achieved by setting an

appropriate criterion on L�X	�

According to Green and Swets�  the adjective $ideal� �in the term ideal observer % refers

to the best possible performance in detecting signals under speci
ed conditions�! �Green

" Swets� ����� p� ���	� For them� an ideal observer is synonymous with an optimal

observer� That equivalence is not used in this thesis because there is no objective de
nition

of an optimal observer which is independent of the observer itself� The  best possible

performance! is dependent on the detector or ideal observer� and also on the model that

is used to describe stimuli �Green " Swets� ����� Section ���	� In a very general sense�
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the only optimal observer is one that always performs a task perfectly �i�e� makes no

error in the task	� Under that de
nition� most observers� including ideal observers� are

sub�optimal�

Finding or inventing an optimal observer is di�erent from optimising performance given

an ideal observer or decision axis� Statistical decision theory shows that it is possible to

achieve optimal performance for any given decision axis� X�� by converting to likelihood

ratio� L�X�	� but there is no guarantee that L�X�	 must result in the best possible per�

formance in the task�� For the same discrimination task� some other detector could result

in a di�erent decision axis� X�� whose likelihood ratio� L�X�	� provides better perfor�

mance than L�X�	� Which decision axis provides better performance depends on how X�

and X� are derived from the stimuli� or most importantly in a theoretical context� how

they are derived from a model� theory� or description of the stimuli �Green " Swets� �����

Section ���	�

An ideal observer represents a stimulus transduction and measurement device� or a

theory of such a device� A demonstration that such a device or theory is in some sense

optimal is not required� and the decision axis X from the ideal observer is not necessarily

strictly monotonic increasing with L�X	� The bene
t of this is twofold� ��	 real observers

often do not perform optimally� and non�optimal ideal observers may provide a better

model than optimal observers� and ��	 it is sometimes easier to construct an ideal observer

than it is to demonstrate that it is optimal�

Bias� There are two ways of being correct and two ways of being incorrect in the funda�

mental detection problem� Hits and correct rejections are correct decisions� while misses

and false alarms are incorrect decisions� There is redundancy in Table ���� because the

hit and miss rates sum to one� and the false alarm and correct rejection rates sum to one�

If one value from each pair of rates is known� then performance in the task is completely

speci
ed� Conventionally� the hit rate �HR	 and false alarm rate �FAR	 are presented

�Green " Swets� ����# Egan� ����	� although other pairings have also been used �Bamber�

����# Scur
eld� ����	�

Hit and false alarm rates are not independent� since they both depend on an observer�s

willingness to decide  yes!� This willingness is called the decision bias �or just bias	� The

bias is determined� in TSD� by the criterion� xc� If xc is high �relative to the evidence

distributions	� then an observer is biased towards deciding  no! and both the hit and false

alarm rates are low� If xc is low� then an observer is biased towards deciding  yes!� and both

the hit and false alarm rates are high� Factors that can a�ect bias include an observer�s

motivation� instructions in the task� consequences of possible decisions �payo�s	� and the

prior probabilities of each event �Green " Swets� ����	� Bias in�uences an observer�s

apparent ability by a�ecting task performance� without changing an observer�s inherent

�Lapsley Miller� ����� personal communication	
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ability to discriminate between events� which is determined by the nature of the stimuli

and the observer� A key contribution of TSD to psychology is to formalise the distinction

between sensitivity� or discriminability� and bias�

Receiver Operating Characteristic analysis� Given a criterion� xc� the hit rate is

HR �xc	 � P �X � xcjSN	

and the false alarm rate is

FAR �xc	 � P �X � xcjN	�

These are conditional probabilities which systematically increase as xc decreases� The plot

of HR versus FAR taken over all values of xc is called the receiver operating characteristic

curve� or ROC curve� The ROC curve is plotted in the ROC space� in which the false

alarm rate de
nes the abscissa and the hit rate de
nes the ordinate� Chance performance

implies that HR � FAR for all values of the criterion� and so the positive diagonal� where

HR � FAR� is called the chance line� Another feature of the ROC space is the negative

diagonal� where HR � � � FAR� which is used in Section ��� to calculate measures of

performance� The use of ROC curves is called ROC analysis�

Ideal observers and ROC analysis� The use of ideal observers puts the results of

real observers into a theoretical context� If an ideal observer is used to explain the results

of a real observer� it is assumed that the real observer uses a decision axis and decision

rule analogous that of the ideal observer� It is not possible to work backwards from

an ROC curve to derive the decision axis underlying it� although it has been claimed

otherwise McNicol �����	� Egan ������ Appendix B	 shows that the form of the underlying

distributions cannot be inferred from a given ROC curve� Any decision axis which is a

strictly monotonic increasing transform of an ideal observer�s decision axis will result

in the same theoretical ROC curve� This shows that there are an unlimited number of

possible decision axes and ideal observers that result in the same ROC curve� Even if a

theoretical ROC curve matches an empirical ROC curve exactly� the strict monotonicity

result implies that no single ideal observer can be claimed to provide the explanation of

the real observer�s decision making� Without other knowledge� it can only be claimed that

the ideal observer�s decisions are consistent with those of the real observer�
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����� The single�interval forced�choice �SIFC� task

The simplest discrimination task is the single�interval forced�choice �SIFC	 task� An

SIFC trial consists of a single observation interval� decision interval and payo� interval�

The simplest example of an SIFC task is the fundamental detection problem� The SIFC

task extends beyond two�event� binary�decision methodology to incorporate multiple�point

rating scales� and multiple�event tasks� Formal extensions to multiple�event� single�interval

tasks are described in Scur
eld ������ ����� ����	� and analyses by Lapsley Miller �����	�

based on such extensions� are summarised in Chapter �� Apart from Lapsley Miller�s

�����	 experiments� all of the other SIFC experiments presented in later chapters involve

two�event tasks�

����� The two�interval forced�choice ��IFC� task

Another widely�used task is the two�interval forced�choice ��IFC	 task� A �IFC trial

consists of two observation intervals� followed by a decision interval and an optional payo�

interval� During each trial� one of the SN or N events occurs in the 
rst observation

interval� while the other event occurs in the second observation interval� The order of

events is not known to the observer� and the task is to decide which order of events

occurred�� Care must be taken in using the term �event� when dealing with �IFC tasks�

because it may refer to either the SN or N event within one of the observation intervals�

or it could refer to either event�ordering across observation intervals� The two possible

event�orderings de
ne two �IFC events� These are labelled hSNNi when SN occurs in

the 
rst interval� and hNSNi when SN occurs in the second interval� Although both the

SN and N events occur during each �IFC trial� only one of the two �IFC events �event�

orderings	 occurs� Which of the �IFC events occurs in a trial is not known� and hence

there is a parallel between the �IFC task and the fundamental detection problem�

The Theory of Signal Detectability is much more complicated for �IFC tasks than

for SIFC tasks� due to the need to compare stimuli from two observation intervals� The

requirement of a �IFC decision rule introduces an extra layer of abstraction� and extra

assumptions� in psychophysical theories of a �IFC tasks compared to theories of SIFC

tasks� Roughly speaking� SIFC tasks test stimulus processing ability� while �IFC tasks

test stimulus processing and stimulus comparison ability� The confounding of stimulus

comparison with stimulus processing in �IFC tasks is not widely recognised�

There are at least two approaches to modelling an ideal observer in the �IFC task�

��	 by manipulation and comparison of the two stimuli prior to deriving an evidence

value� or ��	 by the separate calculation of an evidence value for each stimulus� and a

�The �IFC task could be formulated in several di�erent� but equivalent ways	 It is usually formulated
as the observer having to state in which interval the SN event occurred �Green � Swets� ����
	 The
formulation in terms of orderings follows Scur�eld�s extension of TSD to multiple�event� multiple�interval
tasks �Scur�eld� ����� ���� ����
� in which the order of events is important	
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comparison of the two evidence values� These two ways may produce the same result� or

di�erent results� depending on the speci
cs of the model� The second approach is much

more common� possibly because the derivations involved may be more straightforward�

An example of the 
rst approach would be to sample the stimulus waveforms in each

observation interval� subtract the two sampled waveforms� and then derive a �IFC deci�

sion axis from the di�erence waveforms �Tanner " Birdsall� ����	� The second approach

requires an ideal observer to separately process the stimulus from each observation in�

terval� resulting in one SIFC evidence value per �IFC observation interval� Statistical

decision theory applies in the form of a �IFC decision rule that combines the two SIFC

evidence values across intervals in order to arrive at a decision� Possible decision rules in�

clude those based on di�erences of SIFC evidence values �Tanner " Birdsall� ����# Green�

����a# Robinson " Watson� ����# McNicol� ����# Simpson " Fitter� ����# Green " Swets�

����# Egan� ����# Siegel� ����# Lapsley Miller et al�� ����	� and those based on ratios of

SIFC evidence values �Green " McGill� ����	 or likelihood ratios �Marill� ����# Green "

Swets� ����	� Whatever type of decision rule is used� the result is a �IFC decision axis�

which is analogous to the SIFC decision axis� but which has evidence distributions that

are di�erent from those on the SIFC axis for any speci
c experiment�

However a �IFC decision axis is derived� a criterion�based decision rule can be applied

to it in the same way as for an SIFC task� and systematic manipulation of the �IFC

criterion yields a �IFC ROC curve� �It is customary in �IFC ROC analysis to associate

the �IFC hit rate with the hSNNi event� and the �IFC false alarm rate with the hNSNi
event�	 When the prior probabilities of each �IFC event are equal� which is typically the

case in �IFC studies� ROC performance of an unbiased �IFC observer falls on the negative

diagonal of the ROC space�

Prior probabilities� The prior probabilities of each event play a role in optimal decision

making for any given decision axis� since observers should adjust their criteria for deciding

yes or no� according to which event is more likely to occur �Green " Swets� ����# Egan�

����	� The priors are denoted as P �SN	 and P �N	 in the SIFC task and P �hSNNi	
and P �hNSNi	 in the �IFC task� One way of deriving experimental ROC curves is by

manipulation of the priors� and while this is sometimes done in SIFC experiments �e�g�

Emmerich� ����b# Nachmias� ����# Schulman " Greenberg� ����	� it is rarely done in

�IFC experiments� although a notable exception is found in a study by Friedman and

Carterette �����	� Usually� both priors in �IFC experiments are set to ��� to aid the

achievement of unbiased performance�
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The �IFC task in the context of TSD

The �IFC task is similar to the fundamental detection problem because there are two

mutually exclusive events and two mutually exclusive decisions� Consequently� results

from �IFC experiments can be analysed in the same way as SIFC experiments� although

the interpretation may di�er due to the di�ering experimental designs�

ROC analysis of �IFC tasks has appeared only rarely in the psychoacoustic literature�

The majority of studies employing �IFC ROC analysis are Friedman and Carterette �����	�

Schulman and Mitchell �����	� Markowitz and Swets �����	� Leshowitz �����	� Watson�

Kellogg� Kawanishi� and Lucas �����	� and Lapsley Miller et al� �����	� Theoretical

descriptions of �IFC ROC curves can be found in these studies� and also in McNicol

�����	� Simpson and Fitter �����	� Green and Swets �����	� and Egan �����	�

As Luce �����	 points out� there is a common misconception that the �IFC task is bias�

free� whereas the in�uence of bias in the SIFC task is well known� For example� Mackworth

�����	 states that  no change in criterion can occur �in the �IFC task%! �Mackworth� �����

p� ��	� which is false� In both the SIFC and �IFC tasks� TSD formalises the in�uence of

bias in terms of decision criteria� and ROC analysis provides a means of taking such bias

into account� Much of the misconception about the �IFC task stems from the apparent

symmetry of the �IFC procedure� and from the theoretical result that the proportion of

correct decisions in the �IFC task� P �C	�IFC� is equal to the area under the SIFC ROC

curve� ASIFC �Green " Swets� ����	�

The symmetry of �IFC tasks is two�fold� and relates to decision making and to evi�

dence statistics� In terms of decision making� there appears to be no inherent reason for

preferring one �IFC decision over the other� This is largely a consequence of experimental

design� �IFC experiments typically use equal �IFC prior probabilities� neutral payo�s

and symmetrical instructions to observers �ones that do not favour one decision over an�

other	� In SIFC experiments� systematic manipulations of priors� payo�s and instructions

have been shown to change the operating characteristics of observers �Egan� Schulman� "

Greenberg� ����# Schulman " Greenberg� ����# Green " Swets� ����# Emmerich� ����b	�

Similar manipulations in �IFC experiments should do the same� but there are few such

experiments in the psychoacoustical literature�

The symmetry of evidence statistics results from the assumption that there is no tem�

poral interference across observation intervals# speci
cally� that the statistical properties of

XSN and XN do not change according to the observation interval� and that XSN and XN are

independent across observation intervals �Egan� ����# Green " Swets� ����� Section �����	�

If this is the case� then a �IFC decision rule based on di�erences of XSN and XN results

in mirror�symmetric distributions the �IFC decision axis� which in turn results in a sym�

metric �IFC ROC curve �Green " Swets� ����# Egan� ����	� A �IFC decision rule based

on ratios would do the same �where the logarithm of the ratio results in mirror�symmetric
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distributions	� If the assumptions above do not hold� for example if there are time�order

e�ects due to memory� or to temporal di�erences in masking �Je�ress� ����# Lakey� ����	�

then there may be asymmetry on a �IFC decision axis� and in the resulting �IFC ROC

curve�

��� Measures of performance

There are a plethora of measures of task performance �or measures of sensitivity	 in TSD

�Simpson " Fitter� ����# Green " Swets� ����# Egan� ����	� Three widely used measures

are the area under the ROC curve �denoted here as A	� the Gaussian�related measure� d��

and the proportion of correct decisions� P �C	� Two other measures� D� and D�� are also

used later� These are both special cases of a new multiple�event measure� Dn �Scur
eld�

����� ����� ����	� A is the primary measure used in this thesis� and both d� and D� are

calculated using transforms of A�

The termsmeasures of performance andmeasures of sensitivity are used interchangably

throughout the thesis� depending on the context� The former term applies to discrimi�

nation tasks both within psychology and outside of psychology� whereas the latter term

re�ects usage in psychophysics� The terms detectability and discriminability could also be

used instead of sensitivity� Discriminability refers to the ability to discriminate between

events� regardless of whether the events are correctly labelled� whereas performance also

includes the ability to correctly label events� For example� an observer could say  no! for

the SN event and  yes! for the N event� in which case� discriminability may be high� but

performance is low� Performance and discriminability are synonymous when situations

where ROC curves lie above the chance line� which is mostly the case in this thesis�

Two categorisations of measures are useful� A measure is either criterion�free or

criterion�dependent� and is either distribution�free or distribution�dependent �Robinson

" Watson� ����	� A criterion�free measure is independent of any speci
c decision crite�

rion� where the criterion is a parameter or parameters in a decision rule� such as xc in

a theoretical context� or a cuto� on a rating scale in an empirical context �Section ���	�

A distribution�free measure is free of assumptions that the evidence variables take on

particular distributional forms�

The area under the ROC curve� A� A well known measure in TSD is the area

under the ROC curve� denoted here as A �Green " Swets� ����# Egan� ����	� It is both

criterion�free and distribution�free� An ROC curve is the locus of all possible hit and

false alarm rate pairings� taken over all possible criteria� If X is continuous� then the A
is calculated by integration of a continuous ROC curve� If X is discrete� then the ROC

curve consists of discrete points in the ROC space� Conventially� these points �along with

the points ����	 and ����		 are joined together by line segments to make up a continuous
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curve� ROC line segments result when the decision rule given earlier is modi
ed for the

discrete case� to take into account the possibility that X may equal the criterion xc� A

detailed justi
cation is given by Egan ������ p� ��	� and is discussed by Lapsley Miller

et al� �����	� In the discrete case� A is de
ned as the area under the curve de
ned by the

joined line segments� and is typically calculated using a trapezoidal rule �McNicol� �����

pp� �������� provides a worked example	� Experimental ROC curves are always discrete

rather than continuous� which relates to the fact that only a 
nite number of stimuli can

be used in practice�

The experimental analyses in later chapters are primarily based on A� calculated using

the trapezoidal rule� There are valid concerns that empirical values of A obtained in this

manner can underestimate theoretical values of A �Bamber� ����	� particularly when the

discrete rating scale ROC curve �including line segments	 is a poor approximation to the

theoretical curve� These concerns are alleviated in practice when using continuous rating

scale methodology �Watson� Rilling� " Bourbon� ����	� which is described in Section ������

For both continuous and discrete X� the area under the theoretical ROC curve �in an

SIFC task	 is equal to

A � P �XSN � XN	 �
�

�
P �XSN � XN	 ����	

�Bamber� ����# Lapsley Miller et al�� ����	� If an observer can correctly discriminate

between the two events� then the ROC curve would lie above the chance line and the area

under the curve would be greater than ���� The better the performance� the higher the

ROC curve is above the chance line and the greater the value of A� up to the possible

maximum value of one� The measure A is equal to a scaled Mann Whitney U statistic

�Bamber� ����# Hanley " McNeil� ����	�

The sensitivity measure d�� The distribution�dependent measure� d�� is widely�used

throughout psychophysics� It was originally based on the assumption that XSN and XN are

Gaussian with equal variance and di�erent means �McNicol� ����# Green " Swets� ����	�

The use of d� also extends to any strictly monotonic increasing transform of the decision

axis� since the ROC curve is identical to that based on the original decision axis� This

extension is referred to as the binormal assumption �Hanley� ����# Somoza " Mossman�

����	� In practice� d� may be calculated from any point lying on an ROC curve� If the

ROC curve is binormal and symmetrical �where symmetry is consistent with Gaussian

XSN and XN equal variance	� then d� is criterion�free� This is because all criteria� and all

points on the binormal ROC curve� yield the same value of d�� If the ROC curve is not

binormal and symmetrical� the assumption is not met� and d�� is criterion�dependent�
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The relationship between d� and A� When the assumptions underlying d� are met�

then

d� �
p
�&���A	 ����	

and

A � &

�
d�p
�

�


where & is the cumulative distribution function of the standard N����	 Gaussian random

variable� and &�� is its inverse �Wilcox� ����# Simpson " Fitter� ����	�

Values of d� reported in later chapters are always calculated using Equation ���� where

A is calculated by using the trapezoidal rule� The measure d� is not interpreted in terms

of a Gaussian decision axis� or any strictly monotonic increasing transform of it� Rather�

d� is viewed as a scaled z�score� without requiring assumptions about the decision axis

�Wilcox� ����	� When used as a scaled z�score� d� is criterion�free and distribution�free

because A is criterion�free and distribution�free�

Measures based on Gaussian evidence distributions� d�� dz� and ds� As well

as d�� two other measures that are based on the assumption that XSN and XN are Gaus�

sian random variables are dz� and ds� Let �N and �N be the mean and standard deviation�

respectively� of the N distribution� and let �SN and �SN be the mean and standard devia�

tion� respectively� of the SN distribution� If �N � �SN� then

d� �
�SN � �N

�N
� ����	

In theory� d� can only be calculated from parameters of the Gaussian distributions if the

variances� or standard deviations� are equal� In the more general case where the variances

may or may not be equal�

dz �
�SN � �N�
��
SN

���
N

�

� �

�

 ����	

�Je�ress� ����	� and

ds �
�SN � �N�
�SN��N

�

�  ����	

�Simpson " Fitter� ����	�� If �N � �SN� then dz and ds are both equal to d� in Equation ����

�The measure dz has also been labelled as d
� �de Boer� ��
� and also as da �Simpson � Fitter� �����

Bamber� ����
	 The measure ds has also been labelled de �Green � Swets� ����
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Proportion correct� The proportion of correct decisions� or P �C	� is a distribution�

free� criterion�dependent measure� that can be applied equally well to either the SIFC

task or the �IFC task� Given a hit rate and a false alarm rate in an SIFC task �HRI and

FARI	�

P �C	SIFC � HRI � P �SN	 � ��� FARI	� P �N	� ����	

Similarly� for a hit rate and a false alarm rate in a �IFC task �HRII and FARII	�

P �C	�IFC � HRII � P �hSNNi	 � ��� FARII	� P �hNSNi	�

P �C	�IFC is widely used as a measure of sensitivity� and is generally seen as a bias�free

measure� In either task� however� P �C	 varies as a function of the criterion� because both

HR and FAR are functions of the criterion� This makes it uncertain whether a change in

P �C	 re�ects a change in sensitivity or of bias� a problem a�ecting both the SIFC task

and the �IFC task�

Proportion correct is used in Chapters � and �� where it is calculated from a ROC

curve by using the hit and false alarm rates at the point where the ROC curve crosses the

negative diagonal� For any point on the negative diagonal� HR � ��FAR� so P �C	 � HR�

from Equation ����� The ROC point generated by an unbiased observer in a symmetric

binary�decision �IFC task lies on the negative diagonal�

The relationship ASIFC � P �C�IFC� A key relationship in theoretical ROC analysis

is that the proportion of correct decisions in the �IFC task is equal to the area under

the SIFC ROC curve �Green " Swets� ����# Egan� ����# Bamber� ����# Lapsley Miller

et al�� ����	� This result� originally derived by Green� is distribution�free� It is claimed

to hold experimentally �Green " Moses� ����# Emmerich� ����a	� but the variability in

performance found across observers �Emmerich� ����a	 and across multiple experimental

replications �Emmerich� ����a# Lapsley Miller et al�� ����	 suggest that experimental

claims that the measures are equal must be taken with caution�

ASIFC� P �C�IFC� and bias� Whereas ASIFC is a criterion�free measure of performance

in the SIFC task� P �C	�IFC is not a criterion�free measure of performance in the �IFC task�

Corrections for bias in the �IFC task have been suggested because�  we should like an index

of sensitivity uncontaminated by response bias�! �Green " Swets� ����� p� ���	� If one

of the main reasons for using the �IFC task and P �C	�IFC is because �IFC performance

should be unbiased� then it is better to use �IFC ROC analysis� which systematically

takes �IFC bias into account� and to calculate A�IFC �a criterion�free measure	� than it is

�If there is no ROC point exactly on the negative diagonal� then P �C
 is taken from the intersection of
the negative diagonal with the line segment between the two ROC points that straddle the diagonal	
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to calculate P �C	�IFC �even when corrected for bias	� If necessary� P �C	�IFC may also be

calculated from the �IFC ROC curve� In an early study of �IFC ROC analysis� Schulman

and Mitchell �����	 state that

The use of con
dence ratings circumvents the problem of bias since an entire

operating characteristic is obtained� At the same time� existing listener bias�

given nearly free rein� may be measured by those interested in such phenomena�

�Schulman " Mitchell� ����� p� ���	

In short� �IFC ROC analysis provides an entire ROC curve� and is much more informative

than the single ROC point on which P �C	�IFC is based�

Scur�eld�s measure of sensitivity� D�

The measure of sensitivity D� was recently developed by Scur
eld �Scur
eld� ����� ����	�

It can be derived from A� and is both criterion�free and distribution�free� D� follows from

an information�theory analysis of the fundamental detection problem� and is expressed in

units of information �e�g� bits	�� Scur
eld showed that D� measures the amount of infor�

mation that is contained in an observer�s decisions about event�orderings� The following

explanation is based on the development of D� in an SIFC task� showing how D� is derived

from A �speci
cally� ASIFC	� The same development� under di�erent notation� also applies

to D� calculated in a �IFC task from A�IFC� How D� is used is made clear from the context

in which it appears�

Given two values� xSN and xN� sampled from continuous random variables� XSN andXN�

the information gained from knowing that xSN � xN is a function of the probability

P �XSN � XN	� namely

I�XSN � XN	 � � log �P �XSN � XN		 

and the information gained from knowing that xSN � xN is

I�XSN � XN	 � � log �P �XSN � XN		 

These are both non�negative� 
nite values� assuming the probabilities do not equal ei�

ther zero or one� Prior to sampling xSN and xN� the average uncertainty about whether

fxSN � xNg or fxSN � xNg will occur is

H� � �P �XSN � XN	 log �P �XSN � XN		� P �XSN � XN	 log �P �XSN � XN		

� ����A	 log���A	�A log�A	

�Scur�eld showed how an observer in a two�event discrimination task can be viewed as a binary�
symmetric information channel	 The derivation of D� given here is directly from Scur�eld �����
	 Details
are also available in Scur�eld ����� ����
� Lapsley Miller et al	 �����
 and Lapsley Miller �����
	 D� is un�
related to Sakitt�s �����
 D� Schulman and Mitchell�s ���
 DYN � or Green and Swets�s �����
 D��m� s
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where P �XSN � XN	 � A is the area below the ROC curve for continuous X� by Equa�

tion ���� and P �XSN � XN	 � ��A is the area above the ROC curve in the ROC space�

If information is measured in bits then the logarithms are taken to the base �� and H� can

vary from a minimum of zero bits �if A � � or A � �	 to a maximum of one bit �if

A � ��A � ���	� Scur
eld de
ned his measure of discriminability� D�� as the  di�erence

between the maximum �possible% value of H� and the obtained value of H��! �Scur
eld�

����� p� ��	� which is

D� � log ��H��

Using base � logarithms�

D� � � � ���A	 log
�
���A	 �A log

�
�A	 ����	

as measured in bits�	

Equation ��� is for continuous X� Although modi
cations are possible when X is

discrete� because P �XSN � XN	 may be non�zero� Scur
eld �����	 recommends using

Equation ��� for both the discrete and continuous cases� where A is calculated using

Equation ��� in both cases�

D� is strictly monotonic increasing with both d� and A for d� � � and A � ���� Unlike

the other measures though� D� does not distinguish between ROC performance below the

chance line and ROC performance above the chance line� From Equation ���� D� would

be the same for A � ���� for example� as for A � ���� Because of this� D� is a primarily

a measure of discriminability �the ability to discriminate between events	� rather than

purely a measure of performance �the ability to discriminate and correctly label events	�

ROC performance below the chance line rarely appears in this thesis� and so for practical

purposes� D� is treated as a measure of performance�

D� 
ts into a more general framework of multiple�event and multiple�interval tasks

�Scur
eld� ����� ����� ����	� D� is a speci
c example of a more general measure� Dn�

which describes overall performance in an n�event discrimination task� Most of the results

that appear in later chapters are from two�event experiments� so D� is used� Data analysis

from Lapsley Miller �����	� which is based on the six�event measure D�� is described in

Section ������

��� Rating scale experiments

The SIFC and �IFC tasks were described as binary�decision tasks because of the number

of possible decisions� A binary�decision task can be posed as a question such as  Did the

SN event occur�!� two possible answers to which are  yes! and  no!� It is also reasonable

�The subscript ��� in D� and H� refers to a two�event task� and not to the base of the logarithm	
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Rating

� � � � � � � q � � q No� Stimuli

Event
SN � � � nSN

N � � � nN

Table ���� Event�decision matrix for a q�point rating scale experiment� where nSN and nN are
the number of stimuli per event�

to allow other answers also� such as  maybe!�  possibly so!�  probably not!� and so on

�McNicol� ����# Watson et al�� ����	� A graded decision scheme can apply to any two�

event discrimination task� and is called an ordinal rating scale� or just a rating scale� The

implementation and bene
ts of using rating scales in psychophysical discrimination tasks

have been widely described �Egan et al�� ����# Watson et al�� ����# Schulman " Mitchell�

����# Emmerich� ����b# Robinson " Watson� ����# McNicol� ����# Watson et al�� ����#

Green " Swets� ����	�

Let q be the number of possible ratings that de
nes a discrete q�point rating scale�

where q is greater than or equal to two� The results of a rating scale experiment can be

summarised in a ��q event�decision matrix such as in Table ���� It is analagous to the ���

table which results from a binary�decision task �Table ���	� Table ��� applies to an SIFC

task� but could apply equally well to a �IFC task� given only minor modi
cation to the

labelling of events �Schulman " Mitchell� ����	� If q � �� then a rating scale task reduces

to a binary�decision task� and Table ��� reduces to Table ���� so the binary�decision task

is seen as a limiting case of a rating scale task�

Initial entries in Table ��� are counts of the number of times each event�decision con�

junction occurred� These are then converted into relative proportions by dividing by the

number of stimuli per event� An empirical ROC point results from setting a cuto� on the

rating scale and applying a criterion�based decision rule to the rating scale �rather than

to a decision axis� as before	� Cumulating the proportion of trials greater than or equal

to the cuto�� conditional on SN and on N� results in a hit rate and a false alarm rate�

respectively� The steps of cumulation and conversion into proportions may be done in

either order �a fact that is relevant to the equivalence between pooled�ROC curves and

mean ROC curves� described in Section ���	� The set of hit and false alarm rate pairings�

taken over all possible rating cuto�s� de
nes the rating scale ROC curve�

A crucial characteristic of a rating scale is that it is an ordered scale with respect to

the discrimination task that is demanded of an observer� The graded decisions may be

interpreted as re�ecting the con�dence of an observer in the occurrence of a particular

event� say the SN event� on a given trial �Green " Swets� ����	� so that rating value

and con
dence are linked in an increasing manner� For example� the decision �
� re�ects
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the lowest con
dence that SN occurred� whereas the decision �q� in Table ��� re�ects

the highest con
dence that the SN event occurred� The way in which rating categories

between the ends are used is determined by observers� They may be instructed or trained

to use all categories equally often� This results in a set of approximately equally�spaced

points in the ROC space� and a well�de
ned rating scale ROC curve� given a large enough

rating scale�

Successive criteria on a rating scale have been interpreted as re�ecting successive cri�

teria de
ned by an observer on a decision axis �McNicol� ����# Green " Swets� ����	� An

equivalent interpretation is that rating scales have an order�preserving relationship with

the decision axis �Green " Swets� ����# Metz " Shen� ����	� This property holds if there

is a monotonic increasing function that maps the decision axis onto the rating scale� Such

functions� and how they may be estimated� are the topic of Chapter �� The theoretical

implications of such transforms are explored in Chapter ��

In TSD� it is conventional that successive ratings on a rating scale are assigned succes�

sive positive integers� namely f���� � � � qg� Although conventional� this is not necessarily

required� Numerical values are not even required� as long as there is an implied order

to the categories �semantically�labelled scales are used� for example	� Developments in

the following chapters require that real�valued numbers are assigned to each rating cate�

gory� The numbers do not need to be integers� although they often are integers in practice�

because of convenience� convention and simplicity�

��	�� Continuous rating scales

There are two broad types of rating scales� discrete and continuous� In a discrete rating

scale experiment� observers may indicate their con
dence that a particular event had

occurred by pushing one of a row of buttons� for example� In a continuous rating scale

experiment� they may indicate their con
dence by positioning a slider on a continuum�

for example� Watson et al� �����	 were the 
rst researchers to apply a continuous rating

scale to ROC analysis� In their experiment� observers indicated con
dence by adjusting

the position of a ���inch mechanical slider� One end of the slider was used to indicate

high con
dence in the N event� while the other end was used to indicate high con
dence

in the SN event� Observers were instructed that they should  use the whole rating scale

in indicating their certainty that the signal was presented� and be very sure when using

positions close to the ends! �Watson et al�� ����� p� ���� original emphasis	� Watson et al�

manually measured the slider position on each trial and partitioned the continuum into

an ordered set of q � �� intervals� each of which was interpreted as a separate rating

category� The data was analysed in terms of a ���point rating scale� which provided very

well�de
ned� ���point ROC curves �including the points ����	 and ����		�

There are di�erent ways of implementing continuous rating scales� including via me�

chanical sliders� icons on a computer screen� and by reporting posterior probabilities� Con�
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tinuous rating scales have primarily been implemented using mechanical sliders�
 They

also may be implemented by using a computer mouse to move a pointer icon on a computer

screen �Friedman " Massaro� ����	� Furthermore� observers could be asked to estimate

the posterior probability that a speci
c event had occurred during a trial �Swets et al��

����# Rockette� Gur� " Metz� ����	� which provides a continuous scale� in principle���

Continuous rating scales may seem continuous from the point of view of an observer�

but they are measured and analysed as discrete scales in practice� typically by using a

few dozen categories or less� Even if the number of categories was much larger� there are

practical limitations on the resolution of the measurement device that e�ectively result in a

discrete scale �e�g� when using a computer mouse	� Even estimated posterior probabilities

are discrete in practice� because human observers are unlikely to report values to more

than � or � signi
cant 
gures� The essential distinction between discrete and continuous

scales is the �exibility available by using the latter� Continuous scales provide a much


ner resolution and ability to grade decisions than do discrete scales�

The number of rating categories used to analyse a continuous rating scale is up to the

experimenter� Watson et al� �����	 showed that the amount of information contained in

a multiple�category partition of a continuous scale increases as more categories are used�

and that most of that increase is achieved within �� categories� In practice� as many

categories as possible should be used if there is no extra cost involved in doing so���

	�Watson et al	� ���� Emmerich� ���b� ���a� Leshowitz� ���� Robinson � Watson� ����� Taylor
et al	� ����� Whitmore et al	� ����� Lapsley Miller et al	� ����� Galvin� Podd� Drga� � Whitmore� �����
Lapsley Miller� ����


�
In an important article on the role of TSD in psychology� Swets et al	 ����
 asked observers to
estimate the posterior probability of the SN event� but had observers categorise each probability estimate
themselves into one of six numerical ranges� and then report which range they had used	 In practice� this
was a discrete six�point rating scale and not a continuous rating scale	

��The following number of rating categories have been used in practice� �� �Leshowitz� ���
� �� �Em�
merich� ���a� ���b
� � �Watson et al	� ���� Robinson � Watson� ����� Taylor et al	� ����� Galvin
et al	� ����
� � �Lapsley Miller et al	� ����
� �� �in Section �	�
� and approximately ���� �Lapsley Miller�
����
	



Chapter �

Observer inconsistency in

discrimination tasks

The major factor in�uencing performance in a discrimination task is the nature of the

stimuli� For example� the detection of tonal signals in the presence of masking noise

depends on the duration and frequency of the tone� as well as the signal�to�noise ratio

�Green� Birdsall� " Tanner� ����# Green " Swets� ����	� Two other factors that have

a substantial bearing on performance are observer bias and observer inconsistency� As

discussed in the preceding chapter� the e�ect of bias is well recognised� and has been sys�

tematically incorporated into modern psychophysics� The e�ect of observer inconsistency

is less well recognised�

In a discrimination task� observer inconsistency occurs when di�erent decisions are

made for the same stimulus� This applies across individuals in a group� and also applies

within individuals� if the stimulus is reproducible and can be presented multiple times��

The e�ect of observer inconsistency is to increase the amount of error in the task� It is not

a trivial in�uence� because experimental evidence suggests that there is as much decision

variability due to observer inconsistency as there is due to the variation of stimuli in a

stimulus set�� If the variability and error due to observer inconsistency was removed� task

performance could increase substantially�

Inconsistent decision making based on any particular stimulus has consequences for

performance based on an entire stimulus set� For example� if an experiment is replicated

multiple times using identical stimuli� and an ROC curve is calculated for each replication�

��Smith � Wilson� ����� Watson� ���� Green� ���� Pfa�in � Mathews� ��� Ahumada� ����
Pfa�in� ���� Thijssen � Vendrik� ���� Yerushalmy� ���� Bell � Nixon� ����� Ahumada � Lovell� �����
Ahumada� Marken� � Sandusky� ����� Boven� ���� McAulay� ����� Siegel� ����� Gilkey� ����� Spiegel �
Green� ����� Taylor� ����� Gilkey� Robinson� � Hanna� ����� Siegel � Colburn� ����� Isabelle � Colburn�
����� Taylor et al	� ����� Metz � Shen� ����� Whitmore et al	� ����� Galvin et al	� ����� Lapsley Miller
et al	� ����� Lapsley Miller� ����


��Swets� Shipley� McKey� � Green� ����� Watson� ���� Green� ���� Ahumada et al	� ����� Spiegel �
Green� ����� Gilkey� ����� Siegel � Colburn� ����


��
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then ROC curves and measures of performance tend to di�er across replications� Overall

performance is often much less than what it could be without the extra error��

Apparent discrepancies between psychophysical theory and data may be because of

error due to observer inconsistency� or because of an inappropriate theory� or both� Since

the e�ects of observer inconsistency are confounded with those due to stimuli� these two

e�ects are not immediately separable in an experimental data set� The situation is rem�

iniscent of the confounding of sensitivity and bias in earlier psychophysical paradigms�

in that there are two factors that in�uence performance� and a change in one could be

mistaken for a change in the other� The solution to the confounding of bias and sensitivity

was a change in experimental design and data analysis� Similarly� changes in experimental

design and data analysis are also needed to account for and remove the e�ects of observer

inconsistency� Such changes have been available for some time �e�g� Swets et al�� ����#

Watson� ����	� but they have not been widely implemented�

Identical stimuli

In order to assess observer inconsistency and to remove its e�ects� it is necessary to run

a multiple�observation experiment� in which the same stimulus set is presented multiple

times to the same observer� or is presented one or more times to each of a group of

observers� The stimulus set needs to be the same for each set of observations� otherwise

decision variability across observations or observers could be attributed solely to sampling

variability of the stimuli�� rather than to inconsistency on the part of an observer�

Identical stimuli refer to stimuli that can be faithfully reproduced� or can be simulta�

neously presented to multiple observers� Reproducible stimuli are possible if waveforms

are stored on magnetic tape �Swets et al�� ����# Green� ����	 or as digital waveforms in a

computer �Pfa'in� ����# Siegel� ����	� Simultaneously identical stimuli could be achieved

by running multiple observers in a free�
eld environment� or by splitting a single electronic

channel into multiple channels� each of which leads to a di�erent pair of headphones �Smith

" Wilson� ����# Watson� ����# Watson� Franks� " Hood� ����	� Reproducible visual stim�

uli have been used in medical diagnostic tasks� for example� by re�presenting the same set

of X�ray 
lms to di�erent observers �Yerushalmy� ����# Metz " Shen� ����	�

��Smith � Wilson� ����� Watson� ���� Ahumada� ���� Yerushalmy� ���� Boven� ���� McAulay�
����� Taylor� ����� Taylor et al	� ����� Metz � Shen� ����� Whitmore et al	� ����� Galvin et al	� �����
Lapsley Miller et al	� ����� Lapsley Miller� ����


�Since performance is known to vary across masker waveform samples �Pfa�in� ���� Gilkey� �����
Gilkey et al	� ����� Isabelle � Colburn� ����
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Multiple�observation experiments

Two broad types of multiple�observation experiments that have been run are multiple�

presentation experiments� and single�presentation multiple�replication experiments� In

both cases� an observer�s task is to discriminate between predetermined experimental

events� such as the SN and N events in a signal�detection task� In a multiple�presentation

experiment� stimuli are presented more than once per trial� before a decision is made

�Swets et al�� ����# Berg� ����� ����� ����# McKinley " Weber� ����	� whereas in a single�

presentation experiment� stimuli are presented only once per trial� prior to the decision� A

multiple�replication experiment involves repeating a single�presentation experiment multi�

ple times� using an identical stimulus set each time�� Multiple replications can be achieved

within observers� or across observers� or both� If stimuli are reproducible� a group of ob�

servers can be run sequentially rather than simultaneously� and multiple replications are

possible from the same observer� either running within a group� or running individually��

The bene
t of using either type of multiple�observation experiment is that performance

generally improves as an observer is allowed more observations of the same stimulus� Both

multiple�replication experiments and multiple�presentation experiments share theoretical

features in common� although the assumptions underlying each are di�erent� The main

di�erence is that multiple�presentation experiments rely on an observer averaging out error

internally� prior to the decision on each trial� whereas in multiple�replication experiments�

variability in decisions is averaged out externally by the experimenter� once a data set

is collected� Whether or not the two types of averaging are the same� or have the same

e�ect� is unclear�

Much of experimental psychophysics is based on single�presentation experiments that

are run only once� Although observer inconsistency can a�ect any single replication�

its e�ects can only be assessed and removed once multiple replications have been run�

This thesis is primarily concerned with multiple�replication experiments� and the removal

of error due to inconsistency� Some of the results in later chapters may also apply to

multiple�presentation experiments�

Overview of chapter

This chapter deals with descriptions of observer inconsistency� and what can be done to

remove it� Section ��� deals with classi
cation of error in discrimination tasks� and at�

tempts to clarify what is intended in psychophysical models of error� Section ��� introduces

a multiple�replication experiment� originally from Taylor et al� �����	� which graphically

��Smith � Wilson� ����� Watson� ���� Ahumada� ���� Yerushalmy� ���� Bell � Nixon� ����� Boven�
���� McAulay� ����� Taylor� ����� Taylor et al	� ����� Metz � Shen� ����� Whitmore et al	� ����� Galvin
et al	� ����� Lapsley Miller et al	� ����� Lapsley Miller� ����


��Yerushalmy� ���� Bell � Nixon� ����� Ahumada � Lovell� ����� Ahumada et al	� ����� Taylor� �����
Taylor et al	� ����� Metz � Shen� ����� Whitmore et al	� ����� Galvin et al	� ����� Lapsley Miller et al	�
����� Lapsley Miller� ����
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shows the results of observer inconsistency� and the detrimental e�ect it can have on

performance� Section ��� deals with mean ROC analysis� which is one way of remov�

ing variability from a multiple�replication data set� When applied to Taylor et al��s data

set� it is seen that although mean ROC analysis removes variability� it does not remove

error from the datamean ROC performance remains relatively poor� Section ��� devel�

ops group operating characteristic �GOC	 analysis� which is a di�erent way of analysing

the results of a multiple�replication experiment� GOC analysis is also applied to Taylor

et al��s data set� It provides a great improvement over mean ROC analysis� both in terms

of performance and in the recovery of the theoretical ROC curve� Section ��� provides a

historical development of GOC analysis� which can be traced at least as far back as Smith

and Wilson�s �����	 study of multiple observer psychophysics�

��� Classi�cation of error

Error in multiple�observation experiments has been classi
ed according to its sources as

either external noise or internal noise� that is� external or internal with respect to an

observer �Swets et al�� ����# Green� ����	� Error has also been classi
ed according to its

e�ects� depending on whether the error is correlated across observations� or is uncorrelated

�Taylor et al�� ����# Metz " Shen� ����# Sorkin " Dai� ����	� Classi
cation of error

according to its e�ects involves the concepts of unique noise and common noise �Taylor

et al�� ����	�

����� Internal noise and external noise

Researchers in psychophysics are interested in the error due to the types of stimuli that

are used� because it is indicative of the capabilities of the observer under investigation�

Such external noise has also been called stimulus�dependent noise �Gilkey et al�� ����	�

A major source of external noise would be masking noise that is presented in conjunction

with a signal�

The e�ects of external noise on discriminability are compounded by the e�ects of other

sources of noise that are internal to an observer� These extra e�ects come under the general

label of internal noise� which is seen as  internal �uctuation! or  random perturbation

of the sensory processes! �Green� ����# Spiegel " Green� ����	� Internal noise sources

are many and varied� and include things such as muscle tension� heartbeat and breathing

�Soderquist " Lindsey� ����# Lindsey " Soderquist� ����	� physiological aural noise in the

ear canal �Shaw " Piercy� ����# Anderson " Whittle� ����	� neural noise and membrane

noise �Fatt " Katz� ����	� memory noise �Durlach " Braida� ����# Jesteadt " Sims�

����	� sequential e�ects �Speeth " Mathews� ����# Green� ����# Spiegel " Green� ����#

Triesman " Faulkner� ����	� fatigue �Smith " Wilson� ����	� and criterion variability

�Tanner� ����# Wickelgren� ����# Triesman " Faulkner� ����	�
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On the topic of internal noise� Green �����b	 said

If the concept is to have any importance� it must be made speci
c� This

implies that we have to ��	 state exactly what this noise is� i�e� that we have

to characterize it mathematically� ��	 specify in what way it interacts with the

detection or discrimination process� and ��	 evaluate speci
cally what e�ect it

will have on performance� �Green� ����b� p� ����	

It is clear from this description that Green views internal noise as a theoretical construct

which is part of a model or theory of an observer� Together� Green�s 
rst two points

approximately equate to a noise�a�ected decision axis and decision rule� Green�s third

point relates to e�ects on experimental data� and may be addressed at two di�erent levels�

molecular and molar �Green� ����# Gilkey� ����# Gilkey et al�� ����# Gilkey " Robin�

son� ����	� Molecular psychophysics describes performance on the basis of an individual

stimulus� whereas molar psychophysics describes performance on the basis of an entire

stimulus set� The fundamental e�ect of internal noise is molecular� and is apparent as ob�

server inconsistency in decisions that are made based on repeated presentations of a given

stimulus� The global e�ect of internal noise is molar� and is apparent in the variability of

ROC curves and measures of performance such as A or d�� Task performance is typically

depressed compared to what it could otherwise be without internal noise� In a later study

on observer inconsistency� Green �����	 said

On an operational level� internal noise is equivalent to the observation that the

same physical stimulus may elicit di�erent responses� �Green� ����� p� ���	

Similarly� Richards and Zhu �����	 said

The term internal noise is intended to capture the fact that identical stimuli

do not always generate identical responses� �Richards " Zhu� ����� p� ���	

These statements describe observer inconsistency� In comparison to the earlier list of

internal noise sources� the statements by Green �����	 and by �Richards " Zhu� ����	 show

that there are� in fact� two di�erent but related concepts that are both called internal noise�

One concept is described in terms of the sources of noise� whereas the other is described

in terms of the e�ects of noise� Using the same term to describe these two di�erent

concepts obscures the di�erence in emphasis� Furthermore� the double�meaning allows

measurements of one concept to be confused with measurements of the other� Although

the two concepts are related� they are not synonymous� and can be inconsistent with

each other under some circumstances� From hereon� the term internal noise is used with

reference to sources of noise that are internal to an observer� rather than to the e�ects of

noise�
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����� Unique noise and common noise

Taylor� Boven and Whitmore�s formulation of unique noise and common noise�

A break with the original conception� emphasis� and terminology associated with internal

noise was taken by Boven �����	� Taylor �����	 and Taylor et al� �����	� Instead of the

internal�versus�external noise dichotomy� they distinguish between noise that is correlated

across replications� which they label common noise� and noise that is uncorrelated across

replications� which they label unique noise� According to Taylor et al� �����	�

Unique noise is a statistical concept that refers to the component of the total

noise variance of an observer that is uncorrelated with other noise� It may

include internal noise� The complement of unique noise is common noise� � � �

The two most important points are that unique noise is a statistical concept

�emphasis added% and that� unlike internal noise� it is not identi
ed with any

particular source� �Taylor et al�� ����� p� ���	

Although unique and common noise are de
ned in terms of correlation� it is unclear as

to what is correlated or uncorrelated� It also needs to be stated what the  total noise

variance of an observer! refers to� Generally� the variability and variance of decisions

on a rating scale� for example� are di�erent from the variability and variance of evidence

values on a decision axis� Total noise variance may depend on the scale that is being

considered� whether it is a rating scale� or a decision axis� or some strictly monotonic

increasing transform of a given decision axis�

Whitmore ������ personal communication	 said that the concepts of unique and com�

mon noise refer to a model of observer performance based on correlated and uncorrelated

noise processes �e�g� time series	� akin to Licklider and Dzendolet�s two�source model of cor�

related noise �Licklider " Dzendolet� ����# Je�ress " Robinson� ����# McFadden� ����	�

Within this context� unique and common noise are viewed as di�erent channels within a

multichannel system� Unique noise and common noise sources in Taylor et al��s �����	

model are akin to random process generators� and the correlation of noise in an experiment

is viewed in terms of a mixture of independent unique and common noise processes� In

general� and outside of the multichannel context� unique and common noise do not need to

be de�ned in terms of correlation� although they could be speci
ed or quanti
ed in terms

of correlation�

The concepts of unique and common noise are a useful way of viewing performance in a

multiple�replication� discrimination task experiment� Under Taylor et al��s �����	 model�

unique noise results in observer inconsistency� and it is possible to remove the e�ects of

unique noise� essentially by averaging it out �Watson� ����# Boven� ����# Taylor� ����#

Taylor et al�� ����# Metz " Shen� ����# Lapsley Miller� ����	� Once all of the unique noise

is removed� whatever data pattern that remains is due to common noise� The removal

of unique noise can improve performance substantially and better indicate an observer�s
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abilities and limitations� once performance is unhampered by inconsistent decision making�

Boven summarised this by saying that

The sources of unique noise are an interesting research problem in themselves�

but need not hold up the search for models of hearing based on the common

component of noise which will remain if the unique noise can be removed from

the data� �Boven� ����� p� �	

Reformulation of unique noise and common noise

In order for the concepts of unique and common noise to be generally applicable� their

de
nitions should be independent of any particular observer� either real or ideal� and of

any particular task or experiment� If the de
nitions depended on the particular observer

or experiment� then the concepts would not be broadly applicable�

The aim of the following is to clarify what is intended by unique noise and common

noise� and by the model proposed by Boven �����	� Taylor �����	 and Taylor et al� �����	�

The concepts of unique and common noise are based on a broad statistical model of

an inconsistent observer in a multiple�replication experiment� The model is called an

equivalent statistical observer �ESO��� The ESO is set up so that� in principle� the statistics

of the decisions of the ESO are identical to the statistics of the decisions of either a real

or an ideal observer� The statistics would be the same at a molecular level for any single

stimulus across replications� and at a molar level for an entire stimulus set� both across

stimuli and across replications�

For the purpose of de
ning unique and common noise� the ESO is not an ideal observer�

in the sense of a stimulus�processor �Section ���	� The inputs to the ESO are not stimuli�

but are instead samples from separate unique and common noise processes� The processes

are analogous to the output of a noise generator� or of a random number generator� but are

not necessarily de
ned in time� or space� They are a set of numbers� and in the simplest

formulation �used in Chapter �	� there is only one number per source� per stimulus� and

per replication� For the purpose of de�ning unique and common noise� it does not matter

whether these processes provide a single value each� or a set of values� What is important

is what the ESO does with the unique noise and common noise samples� which is to make

decisions that have statistical properties that match those of a given observer� The concept

of the ESO is only used here to help in the de
nition of unique and common noise� It is

not suggested as a replacement for the concept of an ideal observer�

Figure ��� shows a general outline of an ESO� that illustrates the contribution of both

unique and common noise to decisions that are made on di�erent replications� For a given

stimulus� the decision that is made on each replication is based on two inputs�	 one input

�Boven ����
� Taylor �����
 and Taylor et al	 �����
 did not use this term	
�Taylor et al	 �����
 modelled unique noise as an input� although it can a�ect all parts of the decision

process including the output process	 Modelling it as an input is just a simpli�cation �Whitmore� �����
personal communication
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Figure ���� Block diagram of an equivalent statistical observer� showing how unique and com�
mon noise contribute to decisions based on a given stimulus over the course of m replications�
Each source outputs a number� or set of numbers� that contribute to the observation �or ev�
idence� on each replication� The common noise is the same across replications� whereas the
unique noise di�ers across replications �after Taylor et al�� �		�� Figure 
�b���

sampled from each of the common and unique noise sources� One type of input is common

or identical across replications� and the other type of input is unique to each replication�

The decision of the ESO is based on an amalgamation of the two types of input� and

is a function of a decision rule� The ESO is like an ideal observer� except applied to

outputs from the unique and common noise sources� rather than stimuli� The unique and

common noise sources are not necessarily associated with any particular sources of internal

or external noise�

The ESO is a model of any observer� including any unique�noise�a�ected ideal ob�

server� Many ideal observers model unique noise in straightforward ways� for example� as

an internal Gaussian random variable that is either added or subtracted from Gaussian

external noise distributions on the decision axis �Swets et al�� ����# Tanner� ����# Wick�

elgren� ����# Metz " Shen� ����	� In such cases� the proposed ideal observer is an ESO�

for the simple reason that the partitioning of variability into common and unique compo�

nents is obvious� Such an ideal observer is based on the assumption that all unique noise

can be characterised by a single statistical distribution or process� More complicated
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ideal observers can have multiple internal noise sources at various stages of processing

�e�g� Taylor� ����# Durlach� Braida� " Ito� ����	 and non�linear transforms between stages�

For example� the initial input is a�ected by internal noise factors such as physiological noise

and extraneous environmental noise� Processing of the input has its own� less tangible�

unique noise such as that from inattention� criterion variability and random neural 
rings�

The process of expressing decisions �the output stage	 is also a�ected� for example by

the trial�by�trial motor coordination of subjects� as well as measurement factors such as

equipment limitations and the size of the rating scale� As more complex ideal observers

and models are proposed �e�g� Sorkin " Dai� ����	� the partitioning of their resulting

statistics into unique and common components will not necessarily resemble the statistics

of the contributing internal and external noise sources� Hence a unique�noise�a�ected ideal

observer is not necessarily an ESO� although in simpler cases� it could be�

Common noise takes on event�conditional forms� and the ESO model treats repro�

ducible signals in the same way as reproducible noise� Decision variability associated with

signal�plus�noise trials can be partitioned into common and unique components� as can

variability associated with noise�alone trials� Generally� unique noise is modelled as being

independent of experimental event� implying that event�conditional forms of a unique�

and�common�noise mix are due to event�conditional forms of common noise only� Unless

otherwise stated� the term common noise will generally refer to common components of

variability� regardless of event�

This description of common noise allows for unusual situations in which it is possible

to have noisy decisions and still achieve perfect performance �e�g� A � � or d� ��	� This

could occur� for example� if there is no unique noise� and if the event�conditional common

noise distributions on a decision axis do not overlap� Although there is no variability in

decisions across replications �because there is no unique noise	� there is still variability

in decisions across stimuli �because the SN and N distributions are not identical	� His�

torically�  noise! is associated with error in the task� for example in the masking of a

signal� but that is not the case here� The term  noise! is used here as a label to identify a

component of the model of an observer in Figure ���� and otherwise should not be taken

too literally as something that only interferes with detection of a signal�


The relationship between the internal�external noise dichotomy and the unique�

common noise dichotomy

Both common and unique noise are statistical in nature� and are not tied to any particular

sources of noise or error� Common and unique are not synonymous with the original

conception of external and internal noise� Both external and internal noise sources could

contribute to either common noise� or to unique noise� or to both� An example of each of

	In a similar vein� what constitutes noise� and what constitutes signal� is largely arbitrary	
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the four possible combinations across the two dichotomies is given�

	 One example where external noise contributes to common noise is where external

signals and maskers are identical across replications��� The signals and maskers

presumably contribute to a component of the decision statistics that is the same

across replications� that is� common noise�

	 An example where external noise contributes to unique noise is where maskers are

di�erent for each replication��� The signals and maskers presumably contribute to a

statistical component that is di�erent across replications� that is� unique noise�

	 An example of internal noise contributing to unique noise is random physiological

noise that is not controlled experimentally� such as physiological aural noise in the

ear canal �Shaw " Piercy� ����# Anderson " Whittle� ����	 and neural noise �Fatt "

Katz� ����	� The internal noise presumably contributes to the unique noise� because

it has a similar e�ect e�ect to non�reproducible external masking noise� except that

the masker source is internal to the observer�

	 An example where internal noise contributes to common noise is where stimuli are

presented in phase with either heartbeat or breathing cycles �Soderquist " Lindsey�

����# Lindsey " Soderquist� ����	� In that case� the masking e�ects of heartbeat or

breathing are reproducible to some degree� and so contribute to the common noise�

This type of experiment may seem odd� but it has potential bene
ts� For example�

Soderquist and Lindsey �����	 measured the e�ects of heartbeat phase on detection

and found an improvement in d� of up to ��� for ��� Hz tonal signals� depending on

heartbeat phase�

The point of these examples is that unique noise is not equivalent to internal noise� and

common noise is not equivalent to external noise� Hence� models of observers de
ned in

terms of real sources of decision variability are not the same as models de
ned in terms of

the statistical consequences of decision variability�

In the examples given� each source of internal or external noise does not necessarily

contribute exclusively to unique noise� or exclusively to common noiseeach source may

contribute to both common noise and unique noise� Other known sources of observer in�

consistency are di�cult to classify as wholly internal noise or as wholly external noise� For

example� sequential e�ects depend on both internal and external circumstances� namely

the observer�s sequential propensities in decision making �which are internal to the ob�

server	� and the particular experimental trial sequence �which is external to the observer	�

�
�Smith � Wilson� ����� Watson� ���� Pfa�in� ���� Gilkey� ����� Gilkey et al	� ����� Whitmore
et al	� ����� Lapsley Miller et al	� ����� Lapsley Miller� ����


���Boven� ���� Taylor� ����� Taylor et al	� ����� Whitmore et al	� ����� Galvin et al	� ����� Laps�
ley Miller et al	� ����� Lapsley Miller� ����
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The use of experimental design and procedure in determining unique noise

and common noise

Experimental design and procedure often� but not always� determines whether a particular

source of error contributes to unique noise or to common noise� A particularly important

source of error is the set of experimental maskers� As noted in the examples above�

whether the maskers mainly contribute to unique noise or to common noise depends upon

whether they are di�erent or the same across replications� A combination of both identical

and unique maskers can also be used� for example� when reproducible masker transients

are presented along with a continuous background masker �e�g� Whitmore et al�� ����#

Lapsley Miller et al�� ����# Lapsley Miller� ����	�

The contribution of sequential dependencies to unique noise and to common noise is

also a question of experimental design �Boven� ����# Taylor� ����# Taylor et al�� ����#

Lapsley Miller et al�� ����# Lapsley Miller� ����	� Sequential dependencies depend on

past decisions as well as on past stimuli� Assume that identical stimuli are used in a

multiple�replication experiment� and that sequential dependencies exist� If the stimulus

order is di�erent on each replication� perhaps in a random or haphazard order� then

sequential dependencies contribute mainly �if not entirely	 to unique noise� because their

e�ect is randomised across replications� If the stimuli in the experimental stimulus set

are presented in the same order on each replication� then sequential dependencies could

contribute towards common noise �because the stimulus sequence is the same	� as well as to

unique noise �if the decision sequence is di�erent across replications� due to other sources

of unique noise	� If it is desirable to average out the e�ects of sequential dependencies�

then an experiment should use a di�erent haphazard order on each replication� This helps

ensure sequential dependencies contribute to random error rather than constant error�

because random error can then be removed using GOC analysis�

The contribution of physiological noise to unique noise� or to common noise� may be

in�uenced by experimental design� As noted previously� internal noise associated with the

heartbeat and breathing cycles can be made mainly common across replications� if desired�

by timing the presentation of stimuli with particular phases of the heartbeat or breathing

cycles� This type of internal noise would usually be associated with unique noise� because

it is not usually controlled for by the experimental procedure� Soderquist and Lindsey

�����	 showed how this internal noise could be controlled for� at least to some degree�

If identical stimuli are used across replications� then their e�ects may contribute mainly

to common noise� However� if the stimulus set is di�erent on each replication� then the

stimuli would contribute to unique noise� This follows even if the stimulus sets have been

generated by the same mechanism �e�g� sampled from the same noise generator	� and have

the same parameters and statistics� but are non�identical� This is why it is important to

use identical stimuli when the aim of a multiple�replication experiment is to understand

performance without confounding by unique noise�
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Using identical stimuli does not in itself guarantee the presence of common noise� how�

ever� Identical stimuli could contribute partly or even entirely to unique noise� For exam�

ple� in aural discrimination experiments involving replications of identical long�duration

stimuli� an observer may only attend to� or sample� a portion of a reproducible waveform

on one replication and another portion on another replication �Siegel " Colburn� ����#

Taylor et al�� ����	� One possible mechanism for this e�ect would be if the integration

time of the ear was small relative to the duration of the signal� Such sampling would

e�ectively decrease the amount of common noise and increase the amount of unique noise�

because the evidence that is usedas opposed to presentedchanges to some extent from

replication to replication� A similar sampling e�ect could occur in the frequency domain

for wideband signals if the e�ective bandwidth of the ear was small relative to the band�

width of the signal� The e�ect could also occur in visual discrimination tasks� if observers

were able to scrutinise a complex scene in detail on each replication� where the detail

attended to di�ers on each replication�

Statistical aspects of existing models

Figure ��� is not speci
c about the statistical details of decision making� since the dia�

gram is only intended to illustrate unique and common noise in general� An ESO that is

amenable to detailed statistical modelling is given later in Section ��� �particularly Fig�

ure ���	� For any given experiment� details would be be 
lled in� specifying the nature

of the unique and common noise� how they interact� the types of distributions involved�

assumptions about correlation and independence� and how all of these factors translate

into decisions� Many models of unique�noise�a�ected ideal observers often rely on the

assumption that unique and common noise sources are either uncorrelated �Siegel� ����#

Yost� ����# Metz " Shen� ����	� or are independent� implying zero correlation���

Along with a common noise random variable� X �or its event�conditional forms� XSN

andXN	� it is often assumed that unique noise can also be characterised by a single random

variable� U � and that unique and common noise are additive �or subtractive	� especially

on a decision axis� The mathematical bene
t of assuming additivity of uncorrelated noise

sources is two�fold� ��	 unique�noise�a�ected event�conditional random variables are sim�

ply sums of two random variables� either XSN � U or XN � U # and ��	 that the variance

of the sum of unique and common noise is equal to the sum of the variances �the  total

noise variance! referred to by Taylor et al�� ����� p� ���	�

Under the assumptions of zero correlation� additivity� and having a single unique noise

distribution� U � then unique and common noise can be characterised in terms of vari�

ances��� If ��
u
is the unique noise variance� and ��

c
is the common noise variance� then the

���Swets et al	� ����� Watson� ���� Wickelgren� ���� Wilcox� ���� Green � Swets� ����� Boven� ����
Taylor� ����� Taylor et al	� ����� Richards � Zhu� ����


���Swets et al	� ����� Watson� ���� Wickelgren� ���� Green � Swets� ����� Boven� ���� Taylor� �����
Metz � Shen� ����
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total noise variance is ��
c
���

u
� The ratio of unique�to�common noise variances� k � ��

u
���

c
�

is one way of characterising the relative contribution of unique noise towards overall per�

formance� �This ratio is usually stated in the literature in terms of internal and external

noise�	 If k � �� then there is no unique noise� and all of the error in the task is due

to common noise# if k � �� then unique noise entirely dominates common noise# and if

k � �� then unique and common noise contribute equally to the error in the task�

Di�erent ways of estimating k have been proposed� including derivations based on

multiple�observation experiments that compare performance when unique noise is fully

present with when it has been partly removed �Swets et al�� ����# Watson� ����# Taylor�

����	� and modi
ed �IFC experiments that compare performance using identical and

non�identical noise samples in each observation interval �Green� ����# Pfa'in " Mathews�

����# Siegel� ����# Spiegel " Green� ����	� Empirical estimates of k vary across observers�

experimental parameters and methodologies� and range from extremes of ���� Swets et al�

�����	 to in
nity �Spiegel " Green� ����	� Earlier estimates lie in the vicinity of k � �

�Swets et al�� ����# Watson� ����# Green� ����	� but later estimates lie in the range from

k � � to about k � �� �Siegel� ����# Spiegel " Green� ����# Taylor� ����# Siegel "

Colburn� ����	�

The concept of k is well�established as an indicator of the relative in�uence of unique

noise on performance in a discrimination task� The estimation of k is not a major topic

in this thesis� although some of the analyses developed here could contribute towards

its estimation� A new way of estimating k is developed in Chapter �� and follows as a

consequence of the main material in that chapter�

Since k represents a ratio of variances of random variables on a decision axis� some type

of distributional form must be assumed in order to assign values to k based on experimental

data� The type of distribution usually re�ects statistical details of a model of unique noise�

and the most common assumption is that unique noise is Gaussian �Swets et al�� ����#

McNicol� ����# Siegel� ����# Metz " Shen� ����# Sorkin " Dai� ����	� Common noise is

also often assumed to be Gaussian� although it need not be �Boven� ����# Taylor� ����#

Berg� ����# Richards " Zhu� ����# Lapsley Miller et al�� ����	� Unlike the concept of

sensitivity� for which there are various non�parametric measures� there is not� as yet� a

general non�parametric analog of k that quanti
es the level of unique noise�
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��� Taylor� Boven� and Whitmore�s 	�

�� continuous rat�

ing scale experiment

Taylor et al� �����	 ran a series of multiple�replication SIFC frequency discrimination

experiments� to demonstrate group operating characteristic �GOC	 analysis as a method

for reducing the e�ects of observer inconsistency� The data set for their continuous rating

scale experiment was obtained through the courtesy of the authors� The data is re�

analysed here to illustrate the e�ects of observer inconsistency� and to illustrate the steps

required and results obtained for three possible types of analysis applicable to a multiple�

replication experiment� These analyses are� ��	 single�replication ROC analysis� ��	 mean

ROC analysis� and ��	 GOC analysis� Experimental methodology is described below�

followed by ROC analysis of single replication data� Mean ROC analysis of the data is

presented in Section ���� and GOC analysis is presented in Section ����

The e�ectiveness of GOC analysis can only be demonstrated unambiguously under

three conditions� ��	 if the theoretical ROC curve is known� ��	 if there is enough unique

noise to appreciably a�ect performance� and ��	 if enough replications are run to remove

unique noise e�ects� To achieve the 
rst requirement� all of Taylor et al��s frequency

discrimination experiments were unusual� in that the distributions of tonal frequency were

completely speci
ed by the experimenters beforehand� The experiments were like aural

equivalents of the dice game �Swets et al�� ����# Green " Swets� ����	� in order that the

theoretical ROC curves could be known a priori� The second and third requirements were

achieved largely through experimental design and procedure�

Method��

Three observers ran eight replications each of an SIFC� aural frequency discrimination

experiment� A tonal transient was presented on each trial during the observation interval�

The transient could have come from a set of high�frequency tones or a set of low�frequency

tones��� The task of an observer was to provide a con
dence rating as to whether or not

the higher�frequency event had occurred�

Observers� The observers were three adults� two of whom had not previously acted as

observers in an experiment� All three of them knew the distributions of tonal frequency�

The observers� training was brief� but enough for them to demonstrate pro
ciency in the

task�

��Experimental details are taken from Taylor et al	 �����
� and also from the original experimental
documentation	

���Frequency� refers to tonal frequency in Hertz� and not frequency of occurrence	



�� Observer inconsistency in discrimination tasks ��

Stimuli� Reproducible tonal transients were generated by computer as digital code se�

quences� The absolute duration of each transient was ��� ms� Tones were gated on and

o� over the 
rst and last �� ms of the transient and had a constant amplitude over the

central ��� ms� The gating used a Kaiser data window with a shape parameter of ��� Dig�

ital codes were converted to voltage transients using a ���bit digital�to�analog converter

�DAC	 clocked at � kHz� The output of the DAC was smoothed using a passive ���� kHz

low�pass 
lter� and passed through a passive attenuator� additive mixer� and a headset

ampli
er which drove a pair of headphones� An analog Gaussian noise generator produced

a continuous masker process� which was low�pass 
ltered at � kHz� attenuated� and passed

to the mixer� The masker ran continuously throughout the experimental session�

Stimuli were presented diotically to observers using TDH��� headphones mounted in

Rudmose Tracor RA���� headsets with MX���(AR cushions� Observers sat in a booth in

a sound�attenuated chamber� which attenuated airborne sound by �� dB at ��� Hz and by

�� dB at ���� Hz �Taylor� ����	� The sinusoidal transients were presented to observers at

�� dB SPL� while the Gaussian noise masker had a spectrum level of �� dB SPL� resulting

in a signal�to�masker ratio of �� dB�

The frequencies of the tonal transients followed the discrete� overlapping uniform dis�

tributions shown in Figure ���� The label SN refers to the set of high�frequency tones and

N refers to the set of low�frequency tones� There were �� separate frequencies altogether�

de
ned in � Hz steps over the range ��� Hz to ��� Hz inclusive� The N event was associated

with the bottom �� frequencies �������� Hz	� the SN event with the top �� frequencies

�������� Hz	� and the overlap consisted of the middle � frequencies �������� Hz	�

Procedure� Each replication consisted of ��� trials� involving the presentation of �� iden�

tical stimuli per frequency per event� or �� � �� � ��� stimuli per event� On each repli�

cation� stimuli were randomly sampled without replacement� resulting in a haphazard

sequence of events and frequencies� A di�erent sequence was used for each replication and

for each observer� On each replication� the empirical proportions of tonal frequency for

each event exactly matched the theoretical uniform distributions�

Each trial consisted of a warning interval of ��� ms� an observation interval of ��� ms�

a decision interval of ���� ms� and a reset interval of ��� ms� The reset interval was a

minimum duration� The next trial could not begin until the slider had been reset to its

extreme left� A set of LED lights on the decision panel were switched on and o� to mark

the trial intervals� No trial�by�trial knowledge of results was given� but observers could

later view their single�replication ROC curves at the conclusion of each replication� Only

one observer ran at a time� and there was only one session per replication� which took

about �� minutes to complete� All �� replications were completed over the course of one

week�
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Figure ���� Probability mass functions of sinusoidal frequency used for the N and SN events
�after Taylor et al�� �		�� Figure 
�b���

Observers rated their certainty that the SN event had occurred by using a �� cm

horizontal slider as a continuous rating scale� According to Taylor et al��  The instructions

suggested that observers use tonal frequency as the decision variable� and that they map

their ratings onto this variable�! �Taylor et al�� ����� p� ���	� Observers were asked to

use all portions of the slider length equally often� The slider was a continuously variable

resistor� and the voltage across it was a linear function of slider position� The position

was measured electronically at the end of each decision interval� and the slider continuum

was partitioned evenly into �� rating categories�

Unique noise was deliberately introduced into this experiment� in addition to any

unique noise which observers contributed� Experimentally�introduced unique noise pri�

marily came from the continuous background masker� and possibly from sequential de�

pendencies �since the haphazard trial sequence was di�erent for each replication	� The

extent of the unique noise was not measured by Taylor et al�� since this was not the purpose

of their study�

Results

The distributions of tonal frequencies in Figure ��� result in a discrete theoretical ROC

curve consisting of points lying along two axes of the ROC space� and along a line that is

parallel to and above the chance line� Figure ��� shows the theoretical ROC curve and all

�� single�replication ROC curves�
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A large amount of variability was evident across replications� both from within and

across observers� �If each observer was entirely consistent� but performance di�ered across

observers� then there would be only three ROC curves evident in Figure ����	 The ROC

curves were generally irregular� and none of them followed the theoretical curve� including

the best ROC curve out of eight from each observer �Taylor et al�� ����� Figure �	� Given

any single replication� the theoretical interpretation of results is likely to be wrong� because

common noise was confounded by unique noise� If the theoretical ROC curve was unknown�

it would not be recovered� or even approximated� based on ROC results�

All single�replication values of A fell short of the theoretical value of ������� The

best single�replication value of A was ������ for Observer ��s eighth replication� and the

worst was ������ for Observer ��s eighth replication� Each observer showed a di�erent

level of unique noise� which is known to be the case because the theoretical performance

was known to be the same across observers� The mean and standard deviation of A were�

respectively� ������ and ������ for Observer �# ������ and ������ for Observer �# ������

and ������ for Observer �# and ������ and ������ for all � observers together� Although

the standard deviations are very similar across observers� Observer � demonstrated the

largest amount of unique noise� because his performance was the worst compared to the

theoretical curve�

Since the theoretical performance was the same across observers� no distinction is made

from hereon between replications from di�erent observers for this experiment� Instead�

the data is treated as a single set of �� replications�

��� Mean ROC curves

One solution to the problem of variablity across replications is to calculate some form

of average ROC curve �Macmillan " Kaplan� ����	� There are at least four variants of

mean ROC curve� namely the pooled ROC curve� the arithmetic mean ROC curve� the

z�averaged mean ROC curve� and the arcsine�averaged mean ROC curve� All of these

analyses indicate typical or expected single�replication ROC performance� and all reduce

ROC variability across replications�

It is shown here that under certain conditions� the pooled ROC curve and the arithmetic

mean ROC curve are identical� It is also shown that there are problems with the arithmetic

mean �or pooled	 ROC curve because it is subject to �oor and ceiling e�ects� which result

in biased estimation of average performance� These problems may be circumvented by

calculating the z�averaged mean ROC curve� but new problems are introduced� because

probabilities of zero or one result in z�scores that are in
nite� The arcsine�averaged mean

ROC curve is a compromise between �oor and ceiling e�ects� and setting 
nite transform

values for probabilities of zero or one� Each of these analyses are described in turn� and
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the arithmetic mean ROC curve and arcsine�averaged mean ROC curve are applied to

Taylor et al��s continuous rating scale experiment�

Apart from the mean ROC curves shown in this section� all other mean ROC curves

shown in subsequent chapters are arcsin�averaged mean ROC curves�

��	�� Pooled ROC curves and arithmetic mean ROC curves

Pooled ROC curves� Let q be the number of categories on the rating scale� and let m

be the number of replications� Each replication�s q�point ROC curve derives from its own

� � q event�decision matrix� like the one in Table ���� The initial entries in Table ��� for

each replication are tallies showing the number of times each event�decision conjunction

occurred for that replication� A pooled ROC curve is derived by summing tallies across

m replications for each event�decision conjunction �i�e� across matrices on a cell�by�cell

basis	� resulting in a pooled event�decision matrix� If the numbers of stimuli per event are

nN and nSN� then the total numbers of tallies per event in the pooled matrix are m� nN

and m� nSN for the N and SN events respectively� The pooled tallies are converted into

proportions by dividing by m� nN and m� nSN� which may then be cumulated in the

same way as an ordinary rating scale data set to produce the pooled ROC curve� The

pooled ROC curve indicates what a single�replication ROC curve would be like if m� nN

and m� nSN stimuli were used instead of just nN and nSN stimuli�

Arithmetic mean ROC curves� Section ��� described how each replication�s ROC

curve derives from a ��q event�decision matrix� The entries are initially tallies� which are

converted into hit rates and false alarm rates by the converting tallies into proportions and

cumulating appropriately� The arithmetic mean ROC curve is de
ned by the arithmetic

mean hit rate paired with the arithmetic mean false alarm rate� where the averaging occurs

across m replications for each given rating category� In terms of the ROC space� there are

m ROC points associated with the kth rating category� The arithmetic mean ROC point

associated with the kth category is the centroid of contributing ROC points �Macmillan

" Kaplan� ����	� Hence� the arithmetic mean ROC curve must� by de
nition� lie in the

middle of the set of single�replication ROC curves�

The relationship between the pooled ROC curve and the arithmetic mean

ROC curve� The pooled ROC curve is identical to the mean ROC curve based on the

arithmetic mean hit and false alarm rates� in a multiple�replication experiment��� To

show this� assume that a multiple�replication data set has been tallied into event�decision

matrices such as Table ���� with one matrix per replication� Starting with the tallied data�

��Pooled and arithmetic mean ROC curves can also be calculated without running replications based on
identical stimuli	 The general conditions that need to be satis�ed in order for the pooled ROC curve to
equal the arithmetic mean ROC curve are that the number of stimuli per event� and the rating scale that
is used� are the same for each contributing ROC curve	 These conditions are automatically satis�ed by a
multiple�replication experiment	
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the four steps involved in deriving the arithmetic mean ROC curve are� ��	 conversion into

proportions by dividing by either nN or nSN� �as appropriate	� ��	 cumulation of all values

greater than or equal to a given rating cuto�� for each event� ��	 summing �cell�by�cell	

across replications� and ��	 dividing the results by the number of replications� m� Steps

��	 and ��	 are 
rst applied� in either order� resulting in a set of single�replication ROC

curves� Next� steps ��	 and ��	 are applied in either order to average the single�replication

ROC matrices and obtain the arithmetic mean ROC curve� To derive a pooled ROC curve�

step ��	 is applied to the raw tallies 
rst� and then steps ��	� ��	 and ��	 could be applied

in any order� although ��	 and ��	 generally go together for the pooled ROC curve� Mean

ROC curves could be based on any type of mean� and not just the arithmetic mean� If

the type of mean is something other than the arithmetic mean� then the pooled and mean

ROC curves are generally not identical�

��	�� Mean ROC curves based on transform�averaging

Strictly speaking� probabilities and proportions should not simply be averaged using the

arithmetic mean� because these quantities are subject to �oor and ceiling e�ects when the

values being averaged are close to either zero or one� In such circumstances� samples which

lie away from the extremes have disproportionate e�ects on the mean� and the distribution

of probability values is skewed away from zero or from one���

The e�ect of averaging hit and false alarm rates is to pull the mean ROC curve away

from the axes of the ROC space� and consequently to depress related measures of per�

formance� In the context of a Gaussian decision axis� McNicol ������ p� �������	 gives a

worked example showing how d� based on average hit and false alarm rates can seriously

underestimate the average d� value when performance levels are high�

One solution to the problem of �oor and ceiling e�ects is to transform the hit and

false alarm rates into z�scores of the standard N����	 Gaussian random variable� and 
nd

the arithmetic mean of the transformed values �Macmillan " Kaplan� ����	� To retrieve

the ROC curve in the linear ROC space� the mean z�score must be transformed back

�from zero to one	 onto the original scale� Calculating the z�transformed average has well

known problems� though� because the z�score is unde
ned whenever a hit or false alarm

rate equals either zero or one� At least four solutions have been proposed to this problem

�mostly in the context of calculating values of d�	� These are� ��	 setting the z�score to

equal �
�n or � � �

�n for probabilities of zero or one� respectively� where n is the number

of stimuli per event �Macmillan " Kaplan� ����# Hautas� ����	# ��	 adding a small�

non�zero value to each and every category of Table ��� for each replication� and adjusting

��For example� if a set of false alarm rates �FARs
 from � replications consists of nine values of �	�� the
mean is �	�	 If one additional replication has a FAR of �	�� the mean FAR becomes �	��	 If �� further
replications all had FARs of �	�� then the mean becomes �	���	 This example illustrates that the e�ect of
one value displaced away from zero has a larger e�ect on the mean than the �� additional values which
are all bounded below at zero	 Similar e�ects apply at the upper bound of one	
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the nominal number of stimuli per event appropriately �Hautas� ����	# ��	 arbitrarily

setting the largest possible absolute z�score to a 
nite value �Isabelle " Colburn� �����

used z � �� for example	# and ��	 for each rating criterion� only averaging over ROC points

whose hit and false alarm rates do not equal either zero or one� These four solutions are

noted here� but z�averaged mean ROC curves will not be used in subsequent data analyses�

The problem of unde
ned z�scores are circumvented by using a sigmoidal transform that

is well�de
ned at probabilities equal to zero or one�

The purpose of using the normal cumulative distribution function to transform prob�

ability values is to provide an average probability value which is unbiased by �oor and

ceiling e�ects� Stuart Slater ������ personal communication	 suggested this could also be

done using a transform based on a strictly monotonically increasing section of the sine

function� The transform is sigmoidal� like the normal cumulative distribution function�

but there are 
nite values �at 
�
� radians	 for when the proportions �hit or false alarm

rates	 equal either zero or one� If pi is the ith proportion from a set of m proportions�

then the arcsin�averaged mean proportion is

p �
�

�

�
� � sin

�
�

m

mX
i��

arcsin ��pi � �	

	

� ����	

Arcsin�averaging is described in detail in Appendix A� and Equation ��� is the amalga�

mation of Equations A�� and A�� in the appendix� There is another alternative to the

z�transformed average� which is the transform�average based on the function arcsin�
p
pi	

and its inverse �McNicol� ����# Macmillan " Kaplan� ����	� It is shown in Appendix A

that the transform�average mean value based on arcsin�
p
pi	 is identical to the mean value

given by Equation ����

��	�	 Mean ROC curves for Taylor et al�
s ������ experiment

The arcsin�averaged mean ROC curve� the arithmetic mean �pooled	 ROC curve and the

theoretical ROC curve are given�	 in Figure ���� It is clear that the average ROC curves

lie well below the known theoretical ROC curve for this experiment� and are not even

of the same form as the theoretical curve� Expected or average ROC performance is

distinctly di�erent from and appreciably worse than theoretical performance because of

unique noise� The implications of this result are described in Section ������ in comparison

with the results of GOC analysis�

The arcsin�averaged mean ROC curve is almost the same as the arithmetic mean

ROC curve for this data set� The former is consistently higher than the latter� albeit

by a very small amount� The areas under the curves are ������ and ������ respectively�

��A z�averaged mean ROC curve was also calculated� based only on ROC points that lay o� the borders
of the ROC space	 This was the fourth z�averaging option	 The z�averaged mean ROC curve lay between
the two curves shown in Figure �	�	
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Figure ���� The 
��replication arcsin�averaged mean ROC curve �upper curve�� the 
��
replication arithmetic mean ROC curve �lower curve� and the theoretical ROC curve �dashed
line�� The areas under the curves are ������� �����	� and ������� respectively� The arithmetic
mean ROC curve is equivalent to the pooled ROC curve�

�In comparison� A for the theoretical curve was ������� and the average value of A across

single�replication ROC curves was �������	 Arcsine�averaging does provide an improve�

ment in performance compared to arithmetic averaging� but only minutely� The large

discrepancy between the mean ROC curves and the theoretical ROC curve is not due to

�oor or ceiling e�ects� Transform�averaging is more important if the performance level

is much higher �e�g� A � ����	� because in that case� the contributing single�replication

ROC curves would tend to lie mainly along the axes of the ROC space� but not in this

case where the curves lie well o� the axes�

An ROC curve based on a Gaussian unequal variance model was 
tted �by eye	 to

the arcsin�averaged mean ROC curve in Figure ���� The model assumed Gaussian event�

conditional distributions with respective means and standard deviations of �N � ����

�N � ���� �SN � ����� and �SN � ����� resulting in a sensitivity measure of dz � �������
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The Gaussian curve provided a very good 
t to the data� If plotted on linear normal�

deviate scales� the ROC curve is close to a straight line with slope �������� � ���� and

intercept ����� �from Egan� ����� Equation ����	�

The various mean ROC curves� including the pooled ROC curve� estimate expected

single�replication performance� Although variability is decreased by averaging ROC curves�

unique noise e�ects are not removed by averaging ROC curves� If unique noise was re�

moved by mean ROC analysis� then the mean ROC curve should follow the theoretical

ROC curve� which it clearly does not�

Summary of mean ROC curves

The results from a unique�noise�a�ected multiple�replication experiment may be presented

as a set of single�replication ROC curves� A mean ROC curve is a single ROC curve which

is derived by averaging ROC points across replications based on the same rating category�

Pooling data prior to calculating an ROC curve is also possible� It was shown that the

pooled ROC curve and the arithmetic mean ROC curve are identical� Mean ROC curves

can be calculated based on transform�averaged hit and false alarm rates� Averaging ROC

curves based on Gaussian z�scores is desirable� in order to decrease bias due to �oor

and ceiling e�ects� However� z�averaging su�ers from the limitation that the z�score is

unde
ned whenever a hit or false alarm rate is either zero or one� A compromise solution

to is to use the arcsine transform� which is well�de
ned when its argument is either zero

or one�

Mean ROC curves were calculated for Taylor et al��s �����	 continuous rating scale

experiment� Mean ROC performance was well down from theoretical performance� and was

of a di�erent form to the theoretical ROC curve� Mean ROC performance was described

in terms of a Gaussian unequal variance model� whereas unique�noise�free performance

in the experiment was based on overlapping uniform distributions� Mean ROC analysis

reduced variability across replications by the process of averaging ROC curves� but mean

ROC analysis did not remove error due to unique noise�

There was minimal di�erence across di�erent types of mean ROC curves� The arcsine�

averaged mean ROC curve was consistently higher than the arithmetic�averaged mean

ROC curve� but only slightly� Any �oor and ceiling e�ects for this data set were minimal

in comparison to the e�ects of unique noise�
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�� Group operating characteristic 	GOC� analysis

The main topic of this thesis is group operating characteristic �GOC� analysis� which is an

empirical technique that removes the e�ects of observer inconsistency� GOC analysis can

be applied to multiple�replication experiments� in which all of the replications are based

on an identical set of stimuli� GOC analysis results in a GOC curve� which is a type of

ROC curve calculated from group data� A GOC curve is based on the sum of ratings�

or the average rating� taken across replications for the same stimulus� Any TSD measure

that is applicable to an ROC curve is also applicable to a GOC curve�

GOC and mean ROC analyses can be performed on the same multiple�replication data

set� but the calculations involved are di�erent and the resulting curves in the ROC space

are di�erent� This can be seen in the next section� which compares mean ROC with GOC

results for Taylor et al��s �����	 experiment� Following that� Section ����� describes in

detail how to calculate a GOC curve� A historical development of GOC analysis� given in

Section ���� is best left until last�

����� GOC analysis of Taylor et al�
s ������ experiment

Group operating characteristic analysis of Taylor et al��s �����	 continuous rating scale

experiment was done using the conventional GOC algorithm� based on the sum of ratings

per stimulus� where the ratings were coded as integers from � to ��� Figure ��� shows the

GOC curve based on all �� replications� in comparison with the �arcsin�averaged	 mean

ROC curve for the same data �from Figure ���	� and the theoretical ROC curve� The GOC

curve based on �� replications was in very good agreement with the theoretical curve�

especially when compared with the mean ROC curve� Consequently� GOC performance

was much better than mean ROC performance� The area under the GOC curve was �������

compared to a theoretical value of ������� whereas the area under the mean ROC curve

was ������� The GOC curve did not precisely match the theoretical ROC curve� which

indicates there was a small amount of error still present� Adding further replications

to the data set would help to remove the remaining error� and achieve an even better

approximation to the theoretical curve�

The di�erence between average ROC performance and theoretical performance in this

experiment is due to the e�ects of observer inconsistency� This is known precisely because

the form of the common noise was experimentally controlled as much as possible� Both

mean ROC analysis and GOC analysis average out variability across replications� To

use Green�s �����	 terminology� mean ROC analysis removes variability at a molar level�

whereas GOC analysis does so at a molecular level� The removal of variability across

replications is not the same as the removal of error in the task� Figure ��� demonstrates

that although both analyses decrease variability� GOC analysis removes the e�ects of

unique noise� whereas mean ROC analysis still incorporates these e�ects�
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Figure ���� The theoretical ROC curve� 
��replication GOC curve and 
��replication arcsin�
averaged mean ROC curve� The areas under the curves are ������� ������� and �������
respectively �after Taylor et al�� �		�� Figure �d���

There are important implications for psychophysical theory that are illustrated by

Figure ���� The mean ROC curve can be 
tted by a theoretical ROC curve based on a

Gaussian unequal variance model with dz � ������ �Section �����	� whereas the GOC curve

approximates the theoretical uniform model� The results show that not only can unique

noise depress performance	 but it can also alter the form of the apparent model� Much

of experimental psychophysics involves single�replication single�presentation experiments�

and performance in such experiments is often described by Gaussian models of either

equal or unequal variance �e�g� Green " Swets� ����# Egan et al�� ����# Hanley� ����	� If

the experiments are not replicated� erroneous conclusions may be drawn based on ROC

analysis� Unless multiple replications are run� the contribution of observer inconsistency to

performance is unknown� and the form and level of unique�noise�free performance remains

unknown�
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����� GOC algorithms

There are two di�erent ways of calculating a GOC curve from a multiple�replication data

set� the conventional algorithm and the generalised algorithm� The conventional algorithm

refers to how GOC analysis has been done until now��
 whereas the generalised algorithm

is relatively new to GOC analysis �it was used by Lapsley Miller� ����� and presumably

by Metz and Shen� ����	� Each algorithm re�ects a di�erent way of thinking about ROC

analysis�

The conventional algorithm consists of calculating a GOC curve using sums�of�ratings�

where ratings are summed across replications on a per stimulus basis� Once the tallying

is complete over all stimuli in a stimulus set� the sum�of�ratings is treated as a new rating

scale� and a GOC curve is derived from tallied sum�of�ratings data in the same way that a

�single�replication	 rating scale ROC curve is derived from tallied rating data� In contrast�

the generalised algorithm is based on the sorting or ordering of a stimulus set according

to a sorting�key� The sorting�key is either the sum of ratings per stimulus� or some type

of average rating� If the sum of ratings is used as the sorting�key� then both algorithms

result in the same GOC curve�

Ordering a stimulus set to calculate an ROC curve is not new� It would be used�

for instance� to calculate an ROC curve for simulated ideal observers that produced

continuously�distributed evidence values on a decision axis� A di�erent procedure is gen�

erally used to calculate empirical ROC curves� however� Rating scale ROC curves are

based on event�decision matrices� such as Table ��� in the preceding chapter� The process

of calculating an event�decision matrix is in fact a type of ordering or sorting procedure�

even though the calculations may not seem to be like that� Similarly in GOC analysis�

the conventional algorithm may not be viewed as the ordering of a stimulus set� but that

is what the algorithm does� Much emphasis is placed here on stimulus ordering� because

the idea is crucial for the theory of GOC analysis given in Chapter ��

The di�erence between the two GOC algorithms partly relates to the scaling of a

rating scale� Since rating scales are ordinal scales� then the set of numbers that are

assigned to the rating categories are� in principle� arbitrary but ordered� Rating scales in

ROC analysis typically use successive integers ������ � � � 	� which are treated here as part

of the conventional algorithm� Arbitrary�valued ordinal scales are treated as part of the

generalised algorithm� The scaling of a rating scale is not the crucial distinction between

algorithms� but it partly characterises the di�erent approach that underlies each of the

two algorithms�

�	�Watson� ���� Ahumada� ���� Boven� ���� McAulay� ����� Taylor� ����� Taylor et al	� �����
Whitmore et al	� ����� Galvin et al	� ����� Lapsley Miller et al	� ����
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The conventional GOC algorithm

Watson �����	 and Taylor et al� �����	 describe the conventional GOC algorithm as fol�

lows� Assume an experiment is run consisting of m replications having the same n stimuli

presented in each replication� The results can be presented in an n � m table� like in

the centre of Table ��� �in the example� m � � replications and n � ��� stimuli	� The

entries in the table beneath the heading Replication are ratings made for each stimulus on

each replication� The ith column gives the ratings made on the ith replication� and the ith

ROC curve is based on the data in this column� The jth row gives the ratings made for

the jth stimulus� �Row order in Table ��� does not have to re�ect the order of stimulus

presentation�	 A sum of ratings is calculated for each stimulus� and the event is also noted

for each stimulus�

Unique noise is indicated by rating variability within rows and across columns� Com�

mon noise is indicated by variability across rows� although it cannot be properly assessed

until unique noise has been removed� The two types of error are not taken here to be nec�

essarily independent� although independence is usually assumed in GOC studies �Watson�

����# Taylor et al�� ����	�

The conventional GOC algorithm uses an event�decision matrix like in Table ����a	�

The table entries are counts or tallies of the number of times that each event�and �sum�

of�rating conjunction occurs in Table ���� For an m�replication GOC curve� the sum of

ratings data set �second column from the right in Table ���	 is collated in a ���m�q��	��	

event�decision matrix like in Table ����a	���

Table entries in Table ����a	 are tallies of the number of times that each event�versus�

sum�of�ratings con
guration occurs �in Table ���	� The total number of tallies per event

equals the total number of stimuli per event� The entries are converted into relative

proportions� in Table ����b	� by dividing the entries in each row of Table ����a	 by the

appropriate number of stimuli per event �nSN or nN� where nSN � ��� and nN � �� in

the example	� A cuto��based rule is applied to the sum�of�ratings axis and GOC hit and

false alarm rates are calculated by successively cumulating relative proportions from the

right� as displayed in Table ����c	� This is analogous to the calculation of a rating scale

ROC curve� For each sum of ratings in Table ����c	� the hit rate is the upper fraction and

the false alarm rate is the lower fraction� The false alarm and hit rates� paired according

to sum�of�ratings value� de
ne the points of the GOC curve� The GOC point �FAR�HR	

� �� �	 �from proportions �
�� and �

��� 	 is included by convention� �In a binary�decision

task this is the equivalent of saying  no! all of the time�	 The GOC curve for the example

is given in Table ����c	� that is� hit rate �the SN row	 as a function of false alarm rate

�the N row	� paired according to sum�of�rating value�

�
When ratings are integers in the set f���� � � � qg� then the sum of ratings across m replications lies in
the set fm�m��� � � � mqg� meaning there are mq�m�� � m�q� �
 � � possible sums of ratings	 In the
example in Table �	��a
� there are �� � � � � �� possible sums� but not all of them have occurred	
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Stimulus Replication Sum of Average

Number Event � � � � � � Ratings Rating

� SN � � � � � � �� ����

� N � � � � � � �� ����

� SN � � � � � � �� ����

� SN � � � � � � �� ����

� � � � � � �

� � � � � � �

� � � � � � �

��� N � � � � � � �� ����

Table ���� Example data table for a GOC experiment� showing the sum of ratings and arithmetic
average rating per stimulus� In this example� � replications were run using a 	�point rating
scale� and there were ��� stimuli in total across both events �after Taylor et al�� �		�� Table ���

�a	 Sum of Ratings

� � � � � � �� �� �� �� �� �� No� Stimuli

Event
SN � � � � � � � � � � � � ���

N � � � � � � � � � � � � ��

�b	 Sum of Ratings

� � � � � � �� �� �� �� �� ��

Event
SN �

���
�
���

�
��� � � � �

���
�
���

�
���

�
���

�
���

�
���

N �
��

�
��

�
�� � � � �

��
�
��

�
��

�
��

�
��

�
��

�c	 Sum of Ratings

� � � � � � �� �� �� �� �� ��

Event
SN ���

���
���
���




��� � � � �

���
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���
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���
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���
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���

�
���

N ��
��

�	
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�� � � � �

��
�
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�
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�
��

�
��

�
��

Table ���� Event�decision matrix calculations for GOC analysis of the example data in Table 
���
In this example� � replications were run using a 	�point rating scale� with nSN � ��� SN

stimuli and nN � �� N stimuli� The matrices show �a� raw tallies� �b� relative proportions�
and �c� cumulated proportions �hit and false alarm rates� �after Taylor et al�� �		�� Table ���
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There are generally more points on a GOC curve than on any of the single�replication

ROC curves� because the sum�of�ratings can take on more possible values than the original

ratings do� The number of points on a GOC curve generally increases as more replications

are combined� Some GOC points may occur more than once �e�g� for sums of ratings of ��

and ��� in Table ����c		� This happens whenever there are possible sum�of�rating values

that do not occur �such as ��� in Table ����a		�

The generalised GOC algorithm

The generalised GOC algorithm derives GOC curves from a set of data based on the

ordering of stimulus event�labels �N or SN	 according to some sorting�key that is derived

from a data set of ratings� The sorting�key could be the sum of ratings per stimulus� or

an average rating� or some other quantity derived from the data set �for example� the

maximum rating� or median rating	� The particular type of sorting�key is determined by

the experimenter� depending on the purposes of the analysis� A wide variety of averages

may be used as sorting�keys� as is shown in Chapter ��

The 
rst step in the generalised algorithm is to calculate the sorting�key value for each

stimulus� The second step is to order the stimulus set according to sorting�key value� The

next step is to derive the sequence of event�labels associated with the ordered stimulus

set� If the sorting�key was the sum of ratings� for example� then the second column from

the right in Table ��� would be extracted along with the second column from the left� with

sorting�keys and event�labels paired together for each stimulus� The stimuli would then

be ordered according to sum�of�rating value� and the event�labels would be rearranged

according to this ordering� Assume the event�label sequence is written horizontally� like in

Table ���� with sorting�key value increasing from left to right� A GOC curve is derived by

setting cuto�s and counting the number of stimuli for each event that have sorting�keys

with values greater than or equal to the cuto�� As the cuto� is systematically moved from

the top of the sequence on the right�hand side� to the bottom of the sequence on the left�

hand side� cumulative tallies are kept of how many N �stimuli and SN �stimuli occur to the

right of� and including� the cuto�� The event�label sequence may have ties in it whenever

two or more stimuli have the same sorting�key value� For each set of ties� the cumulative

tally per event incorporates tallies for all of the tied stimuli of the same sorting�key value�

Cumulative proportions are obtained by dividing the two cumulative tallies by nSN

and nN �Table ���	� This gives the false alarm and hit rates that de
ne the GOC curve�

With the inclusion of the point �� �	� it can be seen that the GOC points in Table ��� are

the same as those given in Table ����c	�

GOC analysis based on the arithmetic mean rating� Metz and Shen �����	 per�

formed GOC analysis based on the arithmetic mean rating per stimulus� In order to do

this they must have used something like the generalised algorithm to compute what they

called mean�rating ROC curves� The curve based on the arithmetic mean rating is iden�
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sorting�key � � � � � � � �� �� �� �� �� �� �� �� ��

event�label N N SN N � � � N SN SN N SN SN N SN SN

Table ���� Table for calculating a GOC curve using the generalised GOC algorithm� for the

same example data in Tables 
�� and 
�
� The sorting�key is the sum of ratings� which increases

systematically from left to right� Entries have been grouped where there are ties�

sorting�key � � � � � � � � �� �� �� �� 

cuto� index �� �� �� � � � � � � � �

event� SN ���
���

���
���




��� � � � �

���
�
���

�
���

�
���

�
���

labels N ��
��

�	
��

��
�� � � � �

��
�
��

�
��

�
��

�
��

Table ���� Cumulative proportions of stimuli for each event having a sorting�key greater than or

equal to successive cuto� values� derived from Table 
��� The cumulative proportions paired

across events according to the same sorting�key cuto�s form the �FAR�HR� pairs that are the

coordinates of the GOC curve� The proportions �

��
and �

���
are included by convention� There

were only �� di�erent sorting�keys values in this example�

tical to that based on the sum of ratings� because the arithmetic mean rating and the

sum of ratings are strictly monotonic increasing transforms of each other� This does not

change the event�label sequence� If the arithmetic mean rating is used as the sorting�key�

then each of the sum of ratings in Tables ��� and ��� would be divided by the number

of replications �which is seven in the example	� but the rest of Tables ��� and ��� remain

unchanged�

A comparison of the conventional and generalised GOC algorithms

There are clear similarities in the two GOC algorithms� If sums of integer�valued ratings

are used as the sorting�key in the generalised algorithm� like in Tables ��� and ���� then the

two algorithms produce the same GOC curve� Integer�valued rating scales are convenient�

but are not mandatory� The generalised algorithm is necessary in order to perform GOC

analysis based on other types of scalings �e�g� square�roots of integers	� examples of which

are given in Chapter ��

The generalised algorithm is more e�cient than the conventional algorithm whenever

Table ��� in the conventional algorithmis a sparse matrix� This can occur whenever rating

values are irregularly spaced on a rating scale� It can also occur whenever the number

of replications or the number of rating categories are large compared to the number of

stimuli per replication�
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There is no fundamental di�erence between the two GOC algorithms� Either of can be

used to calculate a GOC curve or� for that matter� a single�replication ROC curve� The

reason why a distinction has been made between them here is that they re�ect di�erent

approaches to ROC analysis� Rating scales �especially two�point scales	 may not always

be seen as the basis for ordering a stimulus set� However� ordering �with ties	 is exactly

what occurs when an event�decision matrix such as Table ��� is collated�

Summary of GOC analysis

GOC analysis is a form of empirical ROC analysis that combines data across replications

on a per stimulus basis� Conventionally� this involves calculating the sum of ratings per

stimulus� and collating sums across stimuli� A generalisation of the GOC algorithm was

described� in which a GOC curve is based on the ordering a stimulus set according to a

sorting�key� such as a mean rating or a sum of ratings� Using a data set from Taylor et al�

�����	� it was shown that GOC analysis can remove unique noise� and improve performance

in a discrimination task� even when an experimental data set is heavily a�ected by unique

noise� GOC analysis almost recovered the known theoretical ROC curve� whereas mean

ROC analysis did not� A comparison of the mean ROC curve and the GOC curve showed

that unique noise e�ects not only depress performance� but can also alter the form of

an inferred theoretical curve� Much of experimental psychophysics uses single�replication

analyses� which are very likely to incorporate unique noise e�ects� In spite of its potential�

GOC analysis has been underutilised in psychophysics for several decades now�

��� Historical development of GOC analysis

In a seminal monograph in aural psychophysics� Smith andWilson �����	 ran several SIFC�

tone�in�noise detection experiments� They investigated the e�ects of signal�to�noise ratio�

criterion and size of rating scale on detectability in a study that involved over ��� observers�

Smith and Wilson investigated how group performance from multiple observers could be

used to improve performance over that of individual observers� Groups of 
ve observers

ran simultaneously� and the number of observers �n	 that said �yes� they had heard

the tone was recorded on each trial� Smith and Wilson presented a family of classical

psychometric functions� but based on group performance� with n held as a parameter�

The functions showed the proportion of trials in which n out of 
ve observers had said

yes� as a function of signal�to�noise ratio� On any trial� a group decision could be taken as

a yes decision if n�or�more observers individually reported yes� Smith and Wilson�s results

showed how� at each given signal�to�noise ratio� the lower the number n� the more likely it

was that the group would decide yes� Conversely� the higher the number n� the less likely

it was that the group would decide yes��� Reinterpreted in the context of GOC analysis�

��For example� if n � �� only one observer would need to decide yes and the group decision would be
yes	 If n � �� all �ve observers would have to say yes in order for the group decision to be yes	
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each observer used a binary�decision scale� where a yes and no decisions may be coded

as one and zero respectively� The number of observers saying yes then becomes a sum of

ratings� and the value n is a cuto� on the sum�of�ratings decision axis� Framed in modern

terms� Smith and Wilson�s results showed how� at each given signal�to�noise ratio� GOC

hit rate increased as the sum�of�ratings cuto� �n	 decreased� Smith and Wilson also ran

catch�trials �noise�alone trials	� and it is possible that some of their data points could be

re�analysed and converted into GOC curves� Smith and Wilson �����	 anticipated TSD

with their experimental and theoretical analysis� They also anticipated GOC analysis�

Swets et al� �����	 presented the 
rst major theory of multiple observations within the

context of TSD� The theory was based on additive� Gaussian internal and external noise�

where the e�ect of the internal noise was a decrease in detectability� measured in d�� They

ran several multiple�presentation experiments in order to test their theory� and showed

that performance increased substantially with repeated stimulus observation� Although

Swets et al��s methodology was not the same as for GOC analysis��� their theory is relevant

to GOC analysis� because the mechanisms for the removal of extra noise are presumably

similar� Swets et al� assumed that internal noise is removed internally as the observer

averages over multiple observations� each of which is a�ected by internal noise� In GOC

analysis� the averaging of ratings occurs externally to any observer� Swets et al��s �����	

study set the scene for subsequent experimentation and theories relating to internal noise

and unique noise� �Watson� ����# Green " Swets� ����# Boven� ����# Siegel� ����# Taylor�

����# Berg� ����� ����� ����# Taylor et al�� ����	�

The 
rst publication describing GOC analysis within the context of TSD was Watson

�����	� who used it in his doctoral thesis as a way of deriving a detection statistic for a

group of observers� �He also coined the term group operating characteristic analysis�	 In

combining four�point rating scale data from three observers� Watson found that the ds

value from the GOC curve he presented was ����� whereas the mean value of ds� averaged

over the three individual observers� was only ����� This was further evidence that sums

of ratings� and GOC analysis in particular� could improve the detectability of a group of

observers compared to that for just an average single observer� He also derived a model

of an observer based on unique noise that was additive with common noise on a decision

axis� Although the result was the same as in Swets et al� �����	� the derivation was more

general� Watson derived his model by considering the e�ect of additive noise in terms of

variances of noise components� The theory was derived without assuming any particular

distributional form� although some form was needed to tie the theory to data� Gaussian

distributions were assumed� since ds was used as a sensitivity measure� Watson �����	

presented a dice game analogy to GOC analysis� which is described further in Chapter ��

��In a multiple�presentation experiment �p	 ��
� a stimulus is presented multiple times per trial� prior
to a single decision� whereas in a multiple�replication experiment� used for GOC analysis� a stimulus is
presented over multiple trials� with a separate decision per trial	
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The second study to use GOC analysis was by Ahumada �����	� In his doctoral

thesis� he derived GOC curves based on SIFC binary�decision data in order to estimate

the critical bandwidth� Four observers ran � replications each of a tone�in�noise detection

experiment� He found that an individual�s GOC performance was better than their pooled�

or average� single�replication performance for all observers� GOC performance based on all

�� replications �across both observers and replications	 was much better than the group�s

single�replication performance# ds � ���� for the GOC curve compared to only ���� for

pooled� single�replication data� He does not say where the idea of using sums of ratings

in experimental ROC analysis came from� but it is quite likely to have come from Watson

�����	� because Ahumada followed up Watson�s �����	 work on energy detectors�

Ahumada and Lovell �����	 and Ahumada et al� �����	 also ran SIFC tone�in�noise

detection experiments� Both studies involved multiple�replication� ��point rating scale

experiments with reproducible stimuli� They used the sums of ratings in order to reduce

unique noise� and compared the sum per stimulus waveform with the results of a 
lter�bank

model based on waveform measurements� The purpose of these studies was to investigate

the frequency characteristics of human hearing� rather than GOC analysis� and no GOC

curves were presented� Summation of ratings was done only across replications within

observers� but not across observers� Ahumada et al� �����	 reported d� values that were

equivalent to results based on the pooled �or arithmetic mean	 ROC curve� and on the ��

replication GOC curve for each observer� The rating scale was partitioned into two halves

�for yes and no decisions	 in order to calculate d� values� By going from � to � replications�

d� values increased appreciably for all observersthe average d� across observers improved

from ���� for ROC performance to ���� for average ��replication GOC performance�

Bell and Nixon �����	 used arithmetic mean ratings in an attempt to decrease observer

inconsistency in a multiple�replication tone�in�noise signal detection experiment� Their

use of average rating stemmed from Ahumada�s �����	 comparison of averaged �summed	

ratings for each observer with the output of an electronic detector� Bell and Nixon were

mainly concerned with inter�rater and intra�rater reliability� however� and did not present

any GOC curves�

After Bell and Nixon �����	� Ahumada and Lovell �����	 and Ahumada et al� �����	�

the use GOC analysis in psychoacoustics essentially stopped in the United States� There

was a series of quasi�molecular studies�� that developed independently of GOC analysis

itself� but which shared some in�uences such as Swets et al� �����	 and Watson �����	�

and also shared some aspects of experimental design� GOC analysis was developed in�

dependently in the medical literature� stemming from practical problems in diagnostics

�Yerushalmy� ����# Metz " Shen� ����	� GOC analysis also continued in psychoacoustics

in New Zealand��� Each topic area is described separately�

���Green� ���� Pfa�in � Mathews� ��� Pfa�in� ���� Siegel� ����� Gilkey� ����� Gilkey et al	� �����
Siegel � Colburn� ����� Isabelle � Colburn� ����


���Boven� ���� McAulay� ����� Taylor� ����� Galvin et al	� ����� Lapsley Miller et al	� ����� Laps�
ley Miller� ����
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Quasi�molecular studies

The idea of collating decisions over multiple presentations of the same individual stimulus

was discussed in a study on observer inconsistency by Green �����	� Green acknowledged

Watson�s �����	 thesis and GOC analysis� but did not develop the topic��� Green�s �����	

focus was on the problem of trial�by�trial prediction of an observer�s decisions� based on

the characteristics of individual stimuli� He suggested a type of experiment in which each

stimulus from a small set of reproducible stimuli is repeatedly presented over the course

of many trials� Some stimuli have a reproducible signal added� and observers are asked

to perform in a conventional discrimination task� Decisions vary from trial�to�trial for

identical stimuli� presumably due to internal noise� so the  most�common! response per

stimulus could be calculated as a means of reducing the e�ects of inconsistency� Green

�����	 suggested that the  most�common! response for each stimulus could be related

back to the characteristics of individual stimuli� Green �����	 described this approach as

quasi�molecular� to incorporate the idea that analysis would be done on a per�stimulus

basis� but that multiple trials were still required�

A number of studies have followed up on Green�s �����	 quasi�molecular approach

�Siegel� ����# Gilkey� ����# Gilkey et al�� ����# Siegel " Colburn� ����# Isabelle " Colburn�

����	� These studies involved �mostly SIFC	 detection task experiments in which sets of

�� to �� reproducible maskers were each presented to an observer from �� to ��� times

each� both with and without a signal added� Stimuli were intermixed within experimental

sessions to minimise learning of particular waveforms� Results from these experiments may

be shown as points in the ROC space� where each point represents the hit and false alarm

rate pair associated with an individual masker �with and without a signal added	� The hit

rate� or false alarm rate� is the proportion of yes decisions per stimulus� If each decision

is coded as ratings� with zero for no� and one for yes� then the proportion of yes decisions

represents the average rating� per stimulus� Under this coding scheme� each stimulus�pair

ROC point is formally a GOC curve� albeit based on a stimulus set consisting of a single

stimulus per event� If the handful of stimuli used in these experiments were analysed as

one larger stimulus set� the result would be conventional GOC analysis�

Single stimulus�pair ROC points mostly lie above the chance line� which re�ects the

contribution of the signal to detectability� The ROC points are usually spread throughout

the triangle above the chance line in the ROC space �e�g� Gilkey et al�� ����� Figure �	�

The variability across stimulus�pair ROC curves theoretically re�ects individual maskers

contributing di�erent evidence values on a decision axis� The fact that the hit and false

alarm rates are not either zero or one re�ects the in�uence of unique noise� If there was

no unique noise� then all decisions for a given stimulus would be the sameeither always

yes� or always no� Consequently� the proportion of yes decisions �i�e� hit or false alarm

��Probably because Watson�s thesis was quite new when Green�s paper was written	
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rate	 would either be zero or one� Single stimulus�pair ROC analysis is not used in this

thesis� but the topic is revisited in Chapter �� where quasi�molecular studies are discussed

with respect to the theory of GOC analysis�

GOC analysis in medical diagnostic tasks

Major growth in the development and application of TSD has occurred in the area of

medical diagnostics� ROC analysis has been applied to practical problems such as detection

of tuberculosis or tumours �Yerushalmy� ����# Metz " Shen� ����	� Problems of observer

inconsistency have also been encountered in diagnostic tasks� and similar solutions have

been proposed�

Yerushalmy �����	 reported results from a number of studies in which multiple readers

�observers	� who were professional radiologists� attempted to detect pulmonary lesions

based on x�ray 
lms� In some of the studies� readers would view the same set of x�rays

twice each� A high degree of inconsistency was found� both within and across readers� For

example� one study found that

In judging a pair of x�ray 
lms for evidence of progression� regression� or sta�

bility of disease� two readers are likely to disagree with each other in one third

of the cases� and a single reader is likely to disagree with himself in about one


fth of the 
lm pairs� �Yerushalmy� ����� p� ���	

Yerushalmy did not develop GOC analysis per se� but all of the elements were present in

the analyses of the studies� including hit and false alarm rates based on decisions that were

combined either across or within observers� Yerushalmy�s �����	 study showed that the

problem of observer inconsistency� found in sensory psychophysics� is also a substantial

problem in medical diagnostics�

Similar problems lead to similar solutions� GOC analysis was developed in full by

Metz and Shen �����	� semi�independently of its development in psychophysics��� They

described  mean�rating ROC analysis! in multiple replication tasks� which is the same as

GOC analysis based on the arithmetic mean rating per stimulus� Metz and Shen developed

a theory of observer inconsistency based on additive Gaussian unique and common noise�

The theory made a distinction between unique noise variability within readers and across

readers� For given parameters of each type of unique noise� the theory predicted how

the GOC curve would change� and how performance would improve� as a function of

replications added�

Like Yerushalmy �����	� Metz and Shen �����	 were interested in assessing the im�

provement in performance that was possible in a practical situation� Metz and Shen

analysed a multiple�replication data set for a mammographic diagnostic task� and found

��Metz and Shen �����
 were aware of the material on multiple�observations in Green and Swets �����
�
which included details of Swets et al	�s �����
 study� but not Watson�s ����
 development of GOC analysis	
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that performance could be improved appreciably by combining data both within readers�

and across readers� As part of their analysis� they calculated GOC curves and estimated

theoretical parameters based on all possible pairs of replications from a set of six repli�

cations� This is a step towards all combinations analysis� an extension of GOC analysis

which is fundamental to Part II of this thesis� Metz and Shen ������ Figure �	 presented

theoretical GOC curves based on their model� where the parameters were derived from

the mammographic data set� The improvement appears relatively small in the ROC space

compared to the gains from GOC analysis in psychoacoustical discrimination tasks� Nev�

ertheless� for a 
xed false alarm rate of ���� the hit rate improved in value from ���� to ����

just by combining data from four replications� one replication per reader� This shows the

promise of GOC analysis in medical diagnostics� because an improvement in detection of

even a few percentage points may have very signi
cant consequences for the treatment of

disease in individual cases�

GOC analysis in New Zealand

GOC analysis has been developed extensively at the Psychophysics Laboratory at Victoria

University of Wellington� in New Zealand� A series of theses �Boven� ����# McAulay�

����# Taylor� ����# Lapsley Miller� ����	� and experimental projects �Galvin et al�� ����#

Lapsley Miller et al�� ����	 were supervised by John Whitmore� GOC analysis was also

used in a number of postgraduate projects� which are not reported here� Whitmore was

introduced to GOC analysis in ���� at the University of Texas by Lloyd Je�ress and

Sandy Gaston��� who ran a number of unpublished GOC experiments on aural amplitude

discrimination� Je�ress and Gaston were originally introduced to GOC analysis through

Charles Watson��	

GOC analysis was a major focus of Boven�s �����	 and Taylor�s �����	 theses� which

together formed the basis of Taylor et al� �����	� The main aim of these studies was

to evaluate and demonstrate the e�ectiveness of GOC analysis� which was done through

a series of multiple�replication experiments involving aural frequency discrimination of

tonal transients� Boven �����	 ran experiments using groups of human observers� whereas

Taylor �����	 ran pigeons� and also applied GOC analysis to electronic and computer

simulations of unique�noise�a�ected observers�

A common idea in these studies was the use of known� discrete� underlying distribu�

tions of tonal frequency that were invented by the experimenters� One example of this was

Taylor et al��s �����	 continuous rating scale experiment� described in Section ���� Using

known distributions meant the theoretical ROC curve was known for each experiment�

��Gaston may have been the �rst to implement GOC analysis on a computer� which is an indispensible
tool for any sizable GOC analysis� especially all combinations analysis	

��Whitmore� ����� personal communication	
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Generally� a background masker was used in the experiments with human observers in

order to deliberately introduce extra unique noise� whereas criterion variability was intro�

duced into simulations� Having inconsistent observers and known theoretical performance

allowed unambiguous evaluation of the e�ectiveness of GOC analysis� because the theory

represented unique�noise�free performance� Boven �����	� Taylor �����	� and Taylor et al�

�����	 found that GOC curves generally showed better performance than single�replication

ROC curves� and that GOC analysis was e�ective in not just improving performance� but

also in recovering the theoretical ROC curve from data that was heavily a�ected by unique

noise �like the results shown in Figure ���	�

A variety of discrete theoretical distributions were used in di�erent experiments and

simulations by Boven �����	� Taylor �����	� and Taylor et al� �����	� including bell�shaped�

bimodal� trimodal� triangular� and uniform distributions� Many of these distributions were

sub�optimal� in that conversion to likelihood ratio would have improved performance�

However� the human and pigeon observers were trained to used tonal frequency as the

basis for decisions� rather than likelihood ratio� and GOC analysis generally recovered

whatever ROC curves were consistent with the distributions of tonal frequency� Later

experiments by Galvin et al� �����	 showed that GOC analysis could recover theoretical

curves based on likelihood ratio if observers were trained to use likelihood ratio�

Boven ���	�� Boven was the 
rst to describe the concepts of unique and common

noise� and to discuss the distinction between them and the concepts of internal and ex�

ternal noise��
 He also extended Swets et al� �����	 derivations of unique�noise�a�ected

performance� based on Gaussian common noise distributions of equal variance� to include

Gaussian distributions of unequal variance� Boven showed that Swets et al��s �����	 for�

mula for estimating k� the ratio of unique and common noise variances� was una�ected if

dz was used as a measure of sensitivity instead of d�� Boven �����	 ran multiple�observer

frequency discrimination experiments� some of which were also published in Taylor et al�

�����	�

McAulay ���	
� McAulay investigated frequency discrimination of tonal signals using

GOC analysis in a series of multiple�observer experiments� and compared the results with

electronic simulations� She made use of GOC analysis� based on Boven �����	� but it was

not the focus of her work� McAulay�s experimental design did not involve predetermined

distributions of frequency� Her experiments had two observation intervals per trial� A

tone with a 
xed standard frequency was always presented in the 
rst interval� while

a comparison tone of either the same or higher frequency was presented in the second

interval� The results were analysed in terms of an SIFC task� Five observers ran one

�	Earlier development of the concepts underpinning GOC analysis were in�uenced by analogies to signal�
averaging� which can recover a signal pattern that repeatedly occurs in the presence of independent samples
of noise �Whitmore� ����� personal communication
	 Signal�averaging is often used to study evoked�
potentials in sensory physiology �Regan� ����
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replication each� where decisions were indicated on an ��point rating scale� McAulay found

variability in the ROC curves across observers� with A ranging over as much as ��� for the

same experiment� In each experiment the area under the GOC curve was generally as good

as� or better than� the area under the best individual�s ROC curve� For two experimental

conditions� McAulay presented a graph showing how the logarithm of d�� based on a GOC

curve� increased with the logarithm of the number of replications contributing to the

GOC curve� These may be the 
rst examples in the literature of functions of replications

added �FORAs	 based on GOC analysis� McAulay partitioned her data set into blocks

of ��� trials per block� and combined successive blocks to calculate her FORAs� She

commented on the large amount of unique noise in her experimentation and concluded

 If it is necessary to remove all the unique noise from human frequency discrimination

data� many replications would be needed� or else a mathematical model of predicting the

asymptotic level must be developed�! �McAulay� ����� p� ��	� Such a model has now been

developed� and is presented in Part II�

Taylor ���
�� Taylor investigated the e�ects of unique noise on frequency discrimina�

tion in pigeons� He ran a series of multiple�replication� SIFC� binary�decision experiments�

in which pigeons were trained to discriminate between two sets of tonal frequencies� The

distribution of frequencies followed known� discrete distributions in some experiments�

whereas only two tonal frequencies were used in other experiments� Taylor generally

found the pigeon data very noisy� with estimates of the unique�to�common noise variance

ratio� k� ranging from ��� to possibly unbounded values� depending on the individual bird

and experiment� Detailed computer simulations were run for the pigeon experiments� in

which a simulated observer had several layers of possible unique noise sources� including

extra input noise� 
lter jitter� inattention and criterion variability� Taylor found that

the level of extra input noise and 
lter jitter required to account for the pigeon results

were unreasonably large� but that large but plausible levels of inattention and criterion

variability were consistent with the data�

One of the practical problems that Taylor addressed in the course of his investigation

was the variability inherent in combining successive replications in GOC analysis� GOC

performance improves as more replications are added� Given a data set of multiple repli�

cations� there are many possible sequences of replications that may be generated� each of

which results in a di�erent FORA� The set of all possible FORAs shows a high degree

of variability because of all the possible ways of combining the data� Taylor solved this

problem in his development of all combinations analysis �ACA	� where a GOC curve is

calculated for each possible combination of replications� and average performance is cal�

culated for each number of replications combined� This results in a FORA that is much

more stable than the type of FORA calculated by adding successive single replications in

GOC analysis� Taylor applied ACA and calculated FORAs for his pigeon experiments and
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simulations� The FORAs either indicated that the pigeons� unique�noise�free performance

was possibly unbounded� or if bounded� that many replications would be needed to remove

the bulk of the unique noise� The material on FORAs developed in Part II of this thesis

follows from Taylor�s �����	 development of ACA�

GOC analysis of Type II tasks� Galvin et al� �����	 developed a theory of Type II

ROC analysis� and ran a series of demonstration experiments involving GOC analysis� A

Type I task is an SIFC task where an observer makes a decision about whether the SN

or N event occurred during a trial� A Type II task requires an observer to decide whether

or not their Type I decision was correct or incorrect �Clarke� Birdsall� " Tanner� ����#

Podd� ����# Galvin� ����	� Galvin et al� �����	 showed that it is possible to use GOC

analysis to recover known theoretical Type II ROC curves from a unique�noise�a�ected

data set� The nature of the Type II task is such that ROC curves may lie well above the

chance line� cross through the chance line� or lie well under the chance line� depending on

an observer�s decision axis and criterion in the Type I task� The experiments covered a

range of possible Type II ROC curves� and covered both optimal and sub�optimal decision

axes� GOC analysis provided better indications of theoretical performance than mean

ROC analysis� even for conditions associated with very unusual ROC performance�

Whitmore et al� ������ Whitmore et al� is a previously unpublished study involving

��� replications of an SIFC amplitude discrimination experiment� with �� replications from

one observer and �� replications from another observer� As well as GOC� ACA� and FORA

analyses� such a large data set allowed sample statistics of asymptotic FORA performance

to be estimated� This is the topic of Chapter �� and further details of Whitmore et al��s

�����	 study are available there�

Lapsley Miller et al� ����
� A series of unpublished experiments were run by

Lapsley Miller et al� �����	� in a theoretical and experimental study of the relationship

ASIFC � P �C	�IFC� One set of SIFC and �IFC experiments involved frequency discrim�

ination� based on known discrete theoretical distributions� Another set of experiments

involved amplitude discrimination� for which the theory was not known� There was a

substantial amount of unique noise in the data� which made any empirical relationship

between ASIFC and P �C	�IFC ambiguous� GOC analysis was used to remove unique noise

and� in the discrete case� known theoretical performance could be recovered almost ex�

actly� Two of the experiments from Lapsley Miller et al� �����	 were analysed with ACA�

and the results are given in Chapter �� Further experimental details are available there�



�� Observer inconsistency in discrimination tasks ��

Lapsley Miller ������ In her doctoral thesis� Lapsley Miller �����	 investigated the

role of bandwidth and duration in aural amplitude discrimination� Evaluation of these

parameters of the auditory system is hampered by unique noise� where extraneous� pos�

sibly non�sensory processes a�ect performance in detection experiments� It was therefore

desirable to remove the in�uence of unique noise� to obtain unambiguous measurement

of performance� Lapsley Miller extensively used GOC� ACA and FORA analyses in ex�

periments based on a wide range of stimulus parameters� Asymptotic� unique�noise�free

performance was compared with a variety of simulations of amplitude discrimination� al�

lowing unique�noise�free estimates of temporal and spectral limitations in human hearing�

With the large number of experimental conditions and signal�to�noise ratios used in

the experiments� Lapsley Miller�s �����	 project calculated more FORAs than in all of

the other studies combined� One of the more remarkable results was that the observer

with the best average single�replication performance did not necessarily have the best

asymptotic performance� and that this pattern occurred almost one quarter of the time�

Further experimental details and a summary of FORA results from Lapsley Miller �����	

are given in Section ����



Chapter �

Transform�average GOC analysis

In the preceding chapter� GOC analysis was based on the sum of ratings� taken across

replications� where the ratings were integer�valued� In this chapter� GOC analysis is

generalised to encompass transform�average mean ratings de
ned on arbitrarily�scaled

ordinal rating scales�� The generalisation involves� ��	 the type of average that is used to

calculate mean ratings� and ��	 the scaling of a rating scale� While these are ostensibly

di�erent ideas� it is shown that there is no practical distinction between them in GOC

analysisany di�erence is one of interpretation� and not of form� The generalisation

developed here is called transform�average GOC analysis�

The preceding chapter showed that a GOC curve based on a sum of ratings is identical

to a GOC curve based on an arithmetic mean rating� The arithmetic mean is not the

only possible type of average� Other well known averages include the geometric mean and

the harmonic mean� These� and other means� can be described within the same general

framework� and are speci
c cases of a generalised mean� or transform�average� Given a

transform function� the transform�average mean rating per stimulus forms the basis of a

GOC curve�� It is shown in this chapter that transform�average GOC analysis is equivalent

to conventional �sum�of�ratings	 GOC analysis based on ratings that have been rescaled

by an order�preserving transform of the rating scale� The choice of transform�average is

synonymous with the choice of rating scale� A numerical example is given� which shows

that the choice of scaling �or transform	 in GOC analysis a�ects the ordering of stimuli

on a rating scale� and hence� the resulting GOC curve� This is very di�erent from single�

replication ROC analysis� which is una�ected by the ordinal rescaling of a rating scale�

�This includes binary�decision �two�point
 rating scales	
�It is assumed throughout this chapter that the generalised GOC algorithm is used to calculate GOC

curves	

��
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Overview of chapter

Section ��� describes transform�averages� and how they can be applied to GOC analysis�

Section ��� presents more than two dozen di�erent transform�average GOC curves for

Taylor et al��s �����	 continuous rating scale experiment� GOC analysis based on weighted

sums of ratings is also investigated� Each transform that is used produces a di�erent

GOC curve� and some transforms are more e�ective than others� Possible reasons for

discrepancies between transform�average GOC curves and the theoretical ROC curve are

discussed in Section ����

��� Generalised means in GOC analysis

A generalised� transform�average mean rating� calculated from a multiple�replication data

set� is of the form

rj � g��

�
�

m

mX
i��

g�rji	

	
����	

where g is a strictly monotonic transform� rji is the rating for the jth stimulus in the

ith replication� m is the number of replications and rj is the transform�average mean

rating for the jth stimulus� Special cases of the generalised mean� includes the arithmetic

mean �g�r	 � r%� the geometric mean �g�r	 � loga�r	 a � � a �� � r � �%� the family

of exponential means �g�r	 � br b � � r �� �%� and the family of power means �g�r	 �

rc c �� �% including the harmonic mean �c � ��� so g�r	 � �
r
	� For a given transform� g�

the transform�average GOC curve can be obtained from the ordering of the stimulus set

according to transform�average mean values� rj� using the generalised GOC algorithm

�Section �����	�

In describing transforms of ratings� it is useful to refer to the variety of possible scales

in terms of some initial or original rating scale� This scale is de
ned by the domain of rji�

and is typically a set positive integers� although it need not be� There is nothing special

about an original rating scale� since it only re�ects how an experimenter chose to initially

code ratings�

If g is a strictly monotonic decreasing function applied to a set of ratings using Equa�

tion ���� then g can be replaced by its strictly monotonic increasing counterpart� �g�
without changing the resulting mean value�� For reasons given in the next section� it is

�A comprehensive bibliography on generalised means is given by Norris ����
	 Discussions and devel�
opments on the topic are found in Cargo ����
� Cargo and Shisha ����
� and Mantel ����
	

�To show this� let R represent the entire domain of a rating scale �with speci�c values denoted r
�
and let g be any continuous strictly monotonic decreasing function de�ned over all of R	 Let � � �g be
the strictly monotonic increasing counterpart of g� also de�ned over all of R	 Since g and � are strictly
monotonic� they have unique inverse functions� g�� and ���� respectively	 For any speci�c r � R� let
s � g�r
� from which it follows that �s � ��r
	 If g maps R onto the range s � ��� ��� then � � �g
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convenient to only consider increasing transforms� Hence� any decreasing transform pre�

sented here will implicitly refer to its increasing counterpart� For example� the harmonic

mean would usually be de
ned in terms of the decreasing transform g�r	 � �
r
� but here it

will implicitly refer to the transform g�r	 � ��
r
� which is an increasing function�

	���� The three�way equivalence

Given an original rating scale� then g�rji	 in Equation ��� can be interpreted as a rating

on a transformed rating scale� The original ratings� rji� fall on one rating scale with one

particular scaling� and g�rji	 falls on a new rating scale with a new scaling� The quantityPm
i�� g�rji	 is the sum of ratings de
ned on the rescaled rating scale� and �

m

Pm
i�� g�rji	

is the arithmetic mean rating on the rescaled rating scale� The three quantities�

�A��
Pm

i�� g�rji	�

�B�� �
m

Pm
i�� g�rji	� and

�C�� g��
�
�
m

Pm
i�� g�rji	

�
�

are all strictly monotonic increasing �s�m�i�	 with each other� �B� is s�m�i� with �A� because

the function �
m
x is �linearly	 s�m�i� with x� �C� is s�m�i� with �B� because the inverse

transform� g��� is s�m�i� �since g is s�m�i�	� From these relationships� it follows that �C� is

s�m�i� with �A�� since strict monotonicity is transitive� If a stimulus set is ordered according

to any of these three quantities� the ordering is identical across quantities� This is called

the three�way equivalence�

Given a transform� g� the three�way equivalence implies that the GOC curves based

each of �A�� �B� or �C� are identical to each other� because GOC curves are based on the

ordering of a stimulus set� and the orderings are identical��

Just as any s�m�i� transform of a decision axis does not a�ect the resulting theoretical

ROC curve �Egan� ����	� then any s�m�i� transform of the sum of transformed ratings

does not a�ect the resulting GOC curve� What may seem like an unusual form of GOC

analysis �based on transform�average mean ratings	 can be interpreted in terms of sum�

of�ratings GOC analysis based on a rating scale with a di�erent scalingthe results of

maps R onto the range �s � �������	 For any s � ��� ��� s � g�r
 � g�g���s

� and so �s � �g�g���s

	
Furthermore� �s � ��r
 � �������s

� which implies that �g�g���s

 � �������s

	 Since the outer
functions of this equality ��g and �
 are identical and are one�to�one functions� then their arguments are
equal� which implies that g���s
 � �����s
	
Equation �	� can now be re�expressed entirely in terms of � and ���	 Substituting ���r
 for g�r
 and

�����s
 for g���s
� Equation �	� implies that rj � ���
�
� �

m

Pm
i������rji
�

�
	 The innermost negative sign

can be carried through the arithmetic mean and cancels with the outer negative sign �within the argument
of ���
 leaving rj � ���

�
�

m

Pm
i�����rji
�

�
	 Hence� since � � �g� then any decreasing function� g� in

Equation �	� can be replaced by the increasing function� �g �or vice versa
� and the same value of rj
would obtain	

�The three�way equivalence would not hold if g was a decreasing function� hence the earlier emphasis
on increasing transforms	 If g was decreasing� then g�� would also be decreasing� which implies that the
ordering based on �C� would be in the opposite direction to the ordering based on �A�� or �B�	
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the two forms are identical� only their interpretation is di�erent� Computationally� �A� is

the best quantity to use because it requires the least calculation� �B� is only needed if

the sorting�key in the generalised GOC algorithm �Section ���	 must lie within the range

of the transformed rating scale� �C� is only needed if the sorting�key must lie within the

range of the original rating scale�

The simplest� trivial example of a transform�average mean is when g�r	 � r� Under this

transform� quantity �A� is the sum of ratings per stimulus�
Pm

i�� rji� and quantities �B�

and �C� are both the arithmetic mean rating per stimulus� which is a linear s�m�i� transform

of the sum� GOC analysis based on sums of ratings �Watson� ����# Taylor et al�� ����	�

and GOC analysis based on arithmetic mean ratings �Metz " Shen� ����	� are special

cases of transform�average GOC analysis� They are formally equivalent to each other

under the three�way equivalence�

Although the GOC curves based on each of the quantities within the three�way equiva�

lence are identical for any single transform� GOC curves can di�er for di�erent transforms�

If g� and g� are two di�erent transforms� then the particular forms of g� and g� in Equa�

tion ��� can a�ect the ordering of stimuli in a stimulus set� and consequently� the resulting

GOC curves can di�er� Each transform results in its own three�way equivalence� which

necessarily holds for any single transform� but which may or may not be identical across

transforms� A consequence of this result is that the sum�of�ratings GOC curve on the

original scale is not necessarily identical to the sum�of�ratings GOC curve on a trans�

formed scale� because
Pm

i�� rji is not necessarily s�m�i� with
Pm

i�� g�rji	� This is shown in

a numerical example in the following section�

Some families of transforms always result in the same GOC curve for di�erent param�

eters� One example of this is the family of linear transforms �g�r	 � ar � b� for constants

a and b%� and the logarithmic transforms �g�r	 � loga�r	% which result in the geometric

mean� In general� the only situation where the order of means must be the same for all

s�m�i� transforms of a data set is the degenerate case where the number of replications

is m � ��

	���� E�ect of di�erent transforms

The purpose of this section is to show that the stimulus ordering� and hence GOC curve�

is not necessarily the same for all transforms or scalings� Di�erent transforms can result

in di�erent GOC curves� Assume four replications of data have been collected for a pair

of stimuli� where the ratings were initially coded as positive integers� Assume further

that the original ratings were ��� �� � and �� for the 
rst stimulus and were �� ��� ��

and � for the second stimulus� The three quantities for �A�� �B� and �C� of the three�way

equivalence are given in Table ��� for each of the three transforms g�r	 � r� g�r	 �
p
r

and g�r	 � r�� Table ��� shows that the stimulus ordering is the same for each of �A�� �B�

and �C� for any given transform� but the ordering changes across transforms�
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transform sorting�key Stimulus � Stimulus � order

A ����� ����� � � �

g�r	 �
p
r B ���� ���� � � �

C ���� ���� � � �

A �� �� � � �

g�r	 � r B ���� ���� � � �

C ���� ���� � � �

A ��� ��� � � �

g�r	 � r� B ����� ����� � � �

C ����� ����� � � �

Table ���� Example of order reversal in transform average GOC analysis� Values of dif�
ferent quantities in the three�way equivalence are listed for the rating scale example
given in text� The order of the two stimuli according to each quantity is also shown
�j � f�� 
g is the stimulus number� i is the replication number�� The quantities are�

A�
P�

i�� g�rji	� B� �
m

P�
i�� g�rji	� and C� g

��
�
�
m

Pm
i�� g�rji	

�
�

The example in Table ��� only deals with one pair of stimuli� Over an entire experi�

mental stimulus set� some pairwise orderings would change and others would remain the

same� depending on the ratings for each stimulus and the transforms that were used� The

example implies that the ordering of a stimulus set �including ties	 depends on the type

of transform chosen�

��� Transform�average GOC curves

Transform�average GOC analysis was applied to Taylor et al��s �����	 continuous rating

scale� frequency discrimination experiment� previously described in Chapter �� An exper�

iment such as this one is useful for evaluating transform�average GOC analysis because

the theoretical ROC curve is known� If the theory was unknown� or uncertain� evaluation

would be much more di�cult�

Figures ��� to ��� show the ���replication transform�average GOC curves based on

�� di�erent s�m�i� transforms �or equivalently scalings	 of a rating scale� Each graph

displays the speci
c transform� g�r	� applied in Equation ��� to the original set of ratings

�integers from � to ��	� The resulting GOC curves di�er across transforms� Some GOC

curves follow the theoretical ROC curve along all of its length� but other GOC curves only

follow the theoretical ROC curve along parts of its length� Interpretations of these results

are discussed in Section ����

Three GOC curves based on weighted averages� rather than transform�averages� are

presented in Figure ����b	� �d	 and �f	� and are discussed separately�
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Figure ���� Transform�average GOC curves �solid lines� and the theoretical ROC curve �solid
points and dashed lines�� Each GOC curve is based on Equation ���� using the displayed
transform� g�r�� where r � f�� 
 � � ��g� Panels �a�� �c� and �e� involve the arithmetic mean�
the arcsin�mean� and the sine�mean� respectively� Panels �b�� �d� and �f� involve geometric

means� which are based on g�r�� � log�r��� Here� r� is a linear transform of the original scale� r�
onto the ranges r� � ��� 
�� r� � ��� ��� and r� � ��� �� in panels �b�� �d� and �f�� respectively�
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Figure ���� Power�mean transform�average GOC curves �solid lines� and the theoretical ROC
curve �solid points and dashed lines�� Each GOC curve is based on Equation ���� using the
displayed transform� g�r�� where r � f�� 
 � � ��g� Panels �a�� �c� and �e� are based on forward�
direction power means� g�r� � rc� where c equals �
� �� and ���� respectively� Panels �b��
�d� and �f� are based on reverse�direction power means� g�r� � ���� r�c� where c equals �
�
�� and ���� respectively�
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Figure ���� Power�mean transform�average GOC curves �solid lines� and the theoretical ROC
curve �solid points and dashed lines�� Each GOC curve is based on Equation ���� using the
displayed transform� g�r�� where r � f�� 
 � � ��g� Panels �a�� �c� and �e� are based on forward�
direction power means� g�r� � rc� where c equals ���� 
 and � respectively� Panels �b�� �d�
and �f� are based on reverse�direction power means� g�r� � ��� � r�c� where c equals ���� 

and � respectively�
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Figure ���� Power�mean transform�average GOC curves �solid lines� and the theoretical ROC
curve �solid points and dashed lines�� Each GOC curve is based on Equation ���� using
the displayed transform� g�r�� where r � f�� 
 � � ��g� Panels �a�� �c� and �e� are based on
forward�direction power means� g�r� � rc� where c equals �� � and  respectively� Panels �b��
�d� and �f� are based on reverse�direction power means� g�r� � ���� r�c� where c equals �� �
and  respectively�
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Figure ���� Transform�average GOC curves �solid lines� and the theoretical ROC curve �solid
points and dashed lines�� Each GOC curve is based on Equation ���� using the displayed
transform� g�r�� where r � f�� 
 � � ��g� Panels �a�� �c� and �e� are based on exponential�

means� g�r� � br� with b � ��
� ��� and ��� respectively� Panels �b�� �d� and �f� are based on
weighted arithmetic�mean ratings �respectively weighted by single�replication values of A� d�

and D���
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Figures ����a	� �c	 and �e	 respectively show the arithmetic�mean GOC curve� �from

Figure ���	� the arcsin�mean GOC curve� and the sine�mean GOC curve� The arcsin�

mean is based on the transform g�r	 � �
�
arcsin

�
�
�
r��
��

���
�
� �

� � and the sine�mean is

based on g�r	 � �
�

�
sin

�
�
�
r��
��

�� �
�

�
� �

�
� The former transform involves a sigmoidal

inverse transform in Equation ���� and the latter transform involves a sigmoidal inner

transform� �Both transforms are described in further detail in Appendix A�	 Although

none of Figures ����a	� �c	 and �e	 are the same� all three GOC curves are very similar to

each other� and all are good approximations to the theoretical ROC curve�

Figures ����b	� �d	 and �f	 show geometric�mean GOC curves� based on g�r	 � log�r	�

What di�ers across curves is the range of the ratings prior to the logarithmic transform�

The transforms are of the form g�r	 � log
�
r��
�� c� d

�
� where d � � for all three graphs� and

c equals �� �� and �� for Figures ����b	� �d	 and �f	� respectively� For each GOC curve� the

original scale was linearly mapped onto a di�erent range prior to applying the logarithm�

The ranges were ����%� �����% and �����% for Figures ����b	� �d	 and �f	� respectively �where

the range �����% is the original scale	�

The 
gures show that GOC curves based on the geometric mean also follow the the�

oretical curve� although some scalings are better to use than others� The reason for this

has to do with the nature of the transform over the range of ratings being used� The

function g�r	 � log�r	 is almost linear in the range ����%� so the similarity of Figure ����b	

to Figure ����a	 is not surprising� It appears that the less linear the transform� the less the

agreement between the arithmetic�mean GOC curve and the geometric�mean GOC curve

�the function log�r	 is much more arced over the ranges �����% and �����% than over ����%	�

These results do not suggest that the geometric mean is inherently worse to use than

the arithmetic mean� although it was worse for this data set when the ratings were scaled

over �����%� The area under the curve in Figure ����b	 is ������� compared to ������ for

Figure ����a	� which shows that when the ratings were scaled over ����%� the geometric

mean GOC curve resulted in better overall performance than the arithmetic�mean GOC

curve� albeit slighty��

Figures ���� ��� and ��� all show power�mean transform�average GOC curves for di�er�

ent exponent values� Figure ��� shows power�mean GOC curves for negative exponents�

where as those in Figures ��� and ��� show power�mean GOC curves for positive expo�

nents� The range of the integer ratings is �����% for all of the curves� For each of Figures ���

to ���� the left�hand panels involve power means of the form g�r	 � rc c �� �� whereas

the right�hand panels all involve power means of the form g�r	 � ��� � r	c c �� �� To

distinguish between them� the former are called forward�direction power means and the

�For brevity� terms such as �arithmetic�mean GOC curve� or �geometric�mean GOC curve� refer to
GOC curves based on particular types of means applied to ratings	 They do not refer to any averaging of
GOC curves	

�This is a point of principle� rather than of practical bene�t	
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latter reverse�direction power means�	 The function ���r is a pre�transform which re�ects

any subsequent transform in the line r � ���� �i�e� the midpoint of the scale from �����%	�

A reverse�direction transform function is the mirror image �in r � ����	 of any forward�

direction transform function� The purpose of having both forward�direction and reverse�

direction transforms was to see what e�ect compressing one end of the rating scale� versus

the other end� may have had on GOC curves� Incorporating the function �� � r into the

power mean means that if the forward�direction transform stretches one end of the rating

scale and compresses the other end� then the reverse�direction transform do the same�

except to opposite ends of the scale�

From the top row to the bottom row in Figure ���� the power mean exponents in each

pair of graphs are ��� �� and ���� respectively� Figure ����c	 shows the harmonic�mean

GOC curve� g�r	 � rc c � ��� and Figure ����d	 shows its reverse�direction counterpart�

The GOC curves improve as the transform becomes less extreme� although of the six

curves presented� only the last one� the reverse�direction power�mean GOC curve with an

exponent of ����� is close to the theoretical curve along all of its length� The other 
ve

curves meet the theoretical curve along some parts of their lengths� but fall short along

other parts� This suggests that unique noise has been removed along some part of the

rescaled rating scale� but remains in e�ect along other parts of the scale� If GOC analysis

works for rating scales in general� then the results suggest that some transforms or scalings

require more replications than others in order to fully recover the theoretical ROC curve�

The power�mean GOC curves in Figures ��� and ��� are based on positive exponents�

whose values increase in progression from the top row of Figure ��� to the bottom row of

Figure ���� The GOC curves progessively worsen as the exponent increases� but neverthe�

less� all of the GOC curves are consistent with the theoretical curve over some portions

of their lengths� The reverse�direction GOC curves in the right�hand panels Figures ���

and ��� are approximate re�ections� in the negative�diagonal� of the forward�direction

GOC curves in the left�hand panels� This suggests that however the transforms may in�

�uence unique noise at one end of the scale� similar e�ects may be found at the other end

of the scale� if the direction of the transforms is reversed� This pattern� found in power�

mean GOC curves with positive exponents� does not extend to curves based on negative

exponents in Figure ����

Figures ����a	� �c	 and �e	 show exponential�mean GOC curves based on the very

convex transform g�r	 � br� with b � ���� ��� and ��� respectively� Although the range of

parameters is small� the e�ect on the resulting curves is large� The transformed ratings

range from � to ����� � ����� for b � ���� but range from � to ����� � ������� for b � ����

Even with such an extreme transform� the portions of the GOC curve in Figure ����e	

�All of the forward�direction power mean transforms with positive�valued power exponents are in�
creasing functions� while those having negative�valued power exponents �i	e	 hyperbolic transforms
 are
decreasing functions	 The converse holds true for the reverse�direction power mean transforms	 Also see
footnote �	
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which match the theoretical ROC curve �portions in the middle and along the axes	�

match it almost exactly�

Summary� A variety of di�erent transform�average GOC curves were calculated for Tay�

lor et al��s continuous rating scale experiment� All of the GOC curves were consistent with

the known theoretical ROC curve� to a certain degree� Although many of the GOC curves

fell short of the theoretical curve in some regions of the ROC space� none of the curves

were entirely inconsistent with the theoretical curve� By the progressive adjustment of pa�

rameters for a given type of transform� it was shown that GOC performance deteriorated

as the transforms became more extreme� Nevertheless� a wide range of transforms and

parameters resulted in GOC curves that were very similar to the theoretical ROC curve�

This suggests that there is no inherently�favoured scaling of a rating scale�

GOC curves based on weighted sum of ratings

GOC analysis typically weights data from each replication equally� Figures ����b	� �d	

and �f	 are di�erent from the other GOC curves presented in this chapter and in the

rest of this thesis� Each curve is based on the weighted sum of ratings �or weighted

arithmetic�mean ratings	� The weighting was done according to single�replication sensi�

tivity values� using A� d� and D� values as the weights for Figures ����b	� �d	 and �f	

respectively� For example� let di be the value of a performance measure derived from the

single�replication ROC curve for the ith replication� The weighted sum�
Pm

i���di g�rji		� re�

places the transform�average in Equation ��� as the basis of the GOC curve� The weighted

curves in Figures ����b	� �d	 and �f	 generally follow the theoretical ROC curve� although

all di�er in small detail�

The unweighted curve in Figure ����a	 was close to the theoretical curve� so any im�

provement from the unweighted curve could be only marginal� Weighted sums �or means	

were also applied for a variety of GOC curves that fell below the theoretical curve over

much of their lengths� to see if performance could be improved in cases where potential

improvement was substantial� These GOC curves included the ��replication curves from

each observer based on sums of integer�valued ratings �Taylor et al�� ����� Figure ��a	�

�b	 and �c		� and a survey of the ���replication transform�average GOC curves in Fig�

ures ��� to ���� including Figures ����a	 and ����e	� which had the poorest performance

�based on unweighted mean ratings	� Graphs of these various weighted GOC curves are

not presented here� but a summary of results is given instead�

Three weighted GOC curves were derived for each of the unweighted curves described

above� where the weightings used were single�replication values of A� d� or D�� In all cases�

each of the three weighted GOC curves were very similar in gross form to the unweighted

curve� and di�erences were only in the small details� Weighting sometimes resulted in a

small increase in performance� and sometimes in a small decrease� but there was no general
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improvement� In all cases� a single ROC curve 
tted to the unweighted GOC curve could

have described all three weighted GOC curves as well� The small scale changes were

similar in nature to the di�erences between the unweighted curve in Figure ����a	 and the

weighted curves in Figures ����b	� �d	 and �f	�

It intuitively seems that weighting each replication�s data according to single�replication

performance values should have enhanced GOC performance� but in fact it did not�

It could be the case that single�replication performance values were too homogeneous

to be e�ective as weightings� but the single�replication ROC curves �Figure ���	 and

their related measures were not homogeneous� Over �� replications� A ranged between

������ and ������� d� ranged between ������ and ������� and D� ranged between ������

and ������� Whereas A varied only by a small amount� d� varied by a factor of �� and

D� varied by a factor of �� If gross improvement could be achieved by weighted summa�

tion� then weighting by d� or D� should have produced it� The conclusion is that weighting

ratings by single�replication performance has little overall e�ect on GOC performance�

��� Discussion

The main result shown in this chapter is that transform�average GOC analysis reduces

unique noise for a variety of ordinal rating scales� Some implications of this are discussed

here�

Transform�average GOC curves compared to ROC curves

Unlike transform�average GOC curves� single�replication ROC curves are not a�ected by

the scaling of a rating scale� The set of ROC curves remains identical for all s�m�i� scalings�

and consequently the mean ROC curve is also identical across scalings� All of the GOC

curves in Figures ��� to ��� provide much better performance than the mean ROC curve

�Figure ���	� including those based on extreme transforms which would not normally be

considered in practice� such as g�r	 � r� and g�r	 � ���r �Figures ����e	 and ����e	

respectively	� Scalings of a rating scale do a�ect results� but in a way that is not obvious

from ROC analysis alone�

Interpretation of variation across transforms

Some of the transform�average GOC curves were very close to the known theoretical

ROC curve� while other GOC curves fell short of much of the theoretical curve� One

possible explanation for these results is that in some unknown way� the common noise

has changed� and that the common noise depends on the particular rating scale that is

used in GOC analysis� Since �� replications were enough to provide essentially unique�

noise�free performance under the original scaling� it may be that each GOC curve re�ected
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unique�noise�free patterns of common noise that di�ered for di�erent scalings� A second

explanation is that the unique�noise�free� asymptotic GOC curve �attained as the number

of replications tends to in
nity	 is the same for all scalings� but that some scalings were

more e�cient at removing unique noise than other scalings� The second explanation

suggests that �� replications were not enough to remove all of the unique noise� and

that more replications would see all of the GOC curves tend towards the corners of the

theoretical ROC curve�

The second interpretation is preferred over the 
rst� primarily because the 
rst inter�

pretation runs counter to the idea that s�m�i� transforms of �unique�noise�free	 scales result

in the same ROC curve� Transform�average GOC curves do in fact di�er across scales�

but this is because they are a�ected by unique noise� It is expected that unique�noise�

free performance re�ects theoretical performance� given that the predominant source of

common noise in Taylor et al��s �����	 experiment was the reproducible stimulus set� The

two interpretations of results could be tested using computer simulations of unique�noise�

a�ected data sets �Taylor� ����# Taylor et al�� ����	� which would allow investigation over

much larger numbers of replications than could be run experimentally�

Integer ratings as ranks

Although some scalings of an ordinal rating scale are more useful than others� ROC anal�

ysis and transform�average GOC analysis treat all scalings as equally valid� While ROC

analysis and mean ROC analysis are scale�invariant� transform�average GOC analysis is

not� One procedure to reduce the arbitrariness of scales in GOC analysis is to convert

ratings on any scale to ranks� This is equivalent to suggesting that equi�spaced positive

integers ����� � � � 	 should be used� which is conventionally what is done� In this case�

the interpretation of conventional GOC analysis is that it is based on the sum�of�ranked�

ratings� or on the arithmetic�mean�ranked�rating�

While using rankings is a general way of standardising ratings� the arbitrary nature of

rating scales is not removed� but merely hidden� With continuous rating scales� ranking

ratings does not remove arbitrary scaling because the boundaries of successive rating cat�

egories and the number of categories are still set arbitrarily by the experimenter� Even

if ranked ratings were used� any desired scaling �or s�m�i� transform	 may be closely ap�

proximated �apart from a constant shift and scalar change	 by judicious choice of the

rating boundaries and number of categories� The result is that an arbitrary scaling can

be introduced to a continuous rating scale� even if the resulting ratings are ranked� Al�

though observers are often given instructions about how they should use a rating scale�

experimenters do not control the way in which an observer does use a rating scale� This

is important in GOC analysis� because how an observer uses a rating scale determines the

e�ective scaling of a rating scale� For example� assume there are two theoretical observers

which have identical decision axes �including unique and common noise e�ects	� but which
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di�er in how evidence values on the decision axis map on to a rating scale� even if it is a

ranked rating scale� One observer could e�ectively compress one portion of the decision

axis onto the low end of the rating scale� while the other observer compresses the same

portion of the decision axis onto the high end of the rating scale� As shown experimen�

tally� �in Figures ����e	 and �f	� for example	 compression of di�erent parts of a scale leads

to di�erent GOC curves� so each observer e�ectively chooses a di�erent rescaling of the

decision axis� even if the ratings are coded using the same numbers� Chapter � shows how

relationships between decision axes and rating scales can be estimated from experimental

data�

The e�ect of equipment on scaling

A measurement apparatus may sometimes determine the scaling of a rating scale� The

manipulandum used by Taylor et al� �����	 was a resistive slider� for which the voltage in�

creased linearly with slider position� Since they partitioned the physical slider scale evenly

into discrete categories� then the resulting ratings from � to �� were a linear re�ection of

slider position� Another type of slider �such as a fader in a sound�mixing panel	 could

have voltage changing logarithmically with position� Had such a slider been used instead�

then the conventional sum�of�integer�ratings GOC curve would have been the GOC curve

shown in Figure ����f	 �i�e� the geometric�mean GOC curve based on linear�slider scal�

ing	� In that case� the smoother GOC curve shown in Figure ����a	 would have been an

exponential�mean GOC curve� rather than the arithmetic�mean GOC curve that it is�

Implications for a theory of GOC analysis

The above example illustrates the arbitrary nature of ordinal rating scales� It is not

necessary to know the scaling underlying a rating manipulandum in order to perform a

discrimination task� Furthermore� the partitioning of a continuous rating scale for data

analysis is up to the experimenter� and is beyond the control of an observer� GOC analysis

is applicable to any such scale� If the technique is to work on one arbitrary� ordinal scale� it

should work on any ordinal scale� which is to say that GOC analysis should be transform�

invariant� Evidence in this chapter suggests this may be so� albeit imperfectly� because all

of the GOC curves followed the theoretical ROC curve to some degree� A theory showing

how GOC analysis can work when there is arbitrary scaling of a rating scale is presented

in Chapter ��

Sorkin and Dai�s ����� weighted summation model

Sorkin and Dai �����	 presented a model of group detection in a fundamental detection

problem� where the group�s decision is based on weighted sums of Gaussian random vari�

ables� Their block diagram shows multiple detectors with separate common and unique
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noise inputs� There are multiple unique noise inputs to each detector� each of which con�

sists of a sample from an independent Gaussian random variable� Particular unique noise

inputs are shared only among a given subset of detectors� which provides a way to model

partial correlations within a group� Each detector has a common noise input also� which

is set to zero for the N event� and is a constant �or a mean shift	 for the SN event� The

mean shift may di�er for di�erent detectors� which is a mechanism for modelling a group

of observers each of whom may have a di�erent sensitivity or performance level in the

task� The output of the jth detector� Xj is weighted by aj and summed across detectors�

A criterion�based decision rule is applied to
P

j ajXj to produce a binary�decision for the

group� This is analogous to the weighted sum of ratings used to derive the GOC curves

in Figures ����b	� �d	 and �f	�

The model incorporates both unique and common noise� and is very �exible with

respect to individual sensitivity and correlation of unique noise within subsets of the group�

Sorkin and Dai showed that appreciable improvement in group d� is possible� depending

on the parameter values and number of detectors in the modelled group� In spite of the

similarities with weighted GOC analysis� Sorkin and Dai�s model is not generally suitable

as an analogy here because of two reasons� ��	 the model is based on weighted sums

of evidence values rather than ratings� and ��	 the model assumes distributions that are

Gaussian in form� Neither of these conditions apply to experimental data sets�

Sorkin and Dai�s theory is an example of a model where unique noise is incorporated

on the decision axis� and where the e�ects of unique noise are removed by averaging values

on that decision axis� Whereas evidence values can be summed within a theory� this is

a problem for an experimental data set� because only decisions or ratings are available

in practice� Models such as Sorkin and Dai�s need to be extended to incorporate rating

scales �including binary�decision scales	� It is possible to interpret Sorkin and Dai�s model

as a description of ratings on a rating scale� but this raises three further problems� ��	 if

a rating scale is discrete� with a relatively small number of categories� then the Gaussian

form no longer applies# ��	 even when a continuous rating scale is used and partitioned into

a relatively large number of categories� experimental rating distributions probably will not

be Gaussian#
 and ��	 ordered rating scales may be scaled arbitrarily by the experimenter�

Summary� GOC curves based on weighted sums of ratings di�er from GOC curves

based on unweighted sums� but the di�erences are reasonably small in the ROC space�

Weighted sums of ratings did not change the overall form of a GOC curve� and did not

result in much improvement in performance� Sorkin and Dai �����	 presented a model

based on weighted sums of outputs of detectors� but the model in its current form needs

modi
cation to make the relationship between a decision axis and a rating scale explicit�

	The rating distributions on the original scale used in Taylor et al	�s �����
 experiment were almost
bi�modal or multi�modal in form� depending on how each observer used the rating scale	 Observers showed
that they had favoured positions on the slider continuum	
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Summary of chapter

Transform�average GOC analysis� based on di�erent rating scales� can recover a theo�

retical ROC curve reasonably well� but extreme transforms may result in relatively poor

GOC curves� Experimental results were consistent with the notion that� given enough

replications� GOC analysis should be invariant with respect to the choice of rating scale

or transform of that scale� The results suggested that �� replications were enough to

su�ciently recover the underlying theoretical curve for some scalings of Taylor et al��s

�����	 data set� but that more replications would be needed for other scalings� Compared

to a mean ROC curve� transform�average GOC curves gave much better indications of

the location� if not the shape� of the underlying theoretical curve� and did so over a wide

variety of scalings� In experiments where the theoretical ROC curve is unknown� GOC

estimates of the theoretical curve will depend on the number of replications combined and

the scaling of the rating scale�

The main results presented in this chapter are that�

	 Ratings can be averaged in a variety of di�erent ways in order to derive a GOC curve

�transform�average GOC analysis	�

	 A GOC curve based on sums�of�ratings from a rescaled rating scale is identical to a

GOC curve based on transform�average mean ratings calculated on the original rat�

ing scale� because the processes involved in calculating the GOC curves are formally

equivalent �the three�way equivalence	�

	 GOC analysis works in removing unique noise over a broad range of rating scales �or

transform�averages	� although some scalings �transforms	 are better than others�

	 A GOC curve depends on the scaling of a rating scale� whereas any single�replication

ROC curve or mean ROC curve does not�

	 Conventional GOC analysis based on sums of integer�valued ratings� or on arithmetic�

means of integer�valued ratings� is a special case of transform�average GOC analysis�

	 GOC analysis based on sums of ratings weighted by single�replication performance

measures did not provide a substantial improvement over GOC analysis based on

unweighted sums of ratings for Taylor et al��s �����	 data set�



Chapter �

Psychophysical transfer functions

Modelling observers in discrimination tasks is hampered by the fact that a decision axis

is a hypothetical and unknown quantity� and that a there are an unlimited number of

decision axes that result in the same theoretical ROC curve �Egan� ����# Hanley� ����	�

Furthermore� modelling the statistics of an observer�s ratings depends not only on the

form of a decision axis� but also on how evidence values translate into ratings� As Metz

and Shen �����	 stated�

Readers� �i�e� observers�% decision�variable outcomes cannot be measured� � � �

Ratings are related to the underlying decision variables in arbitrary �though

ordinal	 ways that vary from reader to reader� depending on how each reader

uses his or her con
dence�rating scale� �Metz " Shen� ����� p� ��	

The relationship between a decision axis and a rating scale is called a psychophysical

transfer function� It is implicit in models that partition a decision axis into sucessive

intervals in order to derive or explain rating categories �McNicol� ����# Hanley� ����#

Metz " Shen� ����	� Metz and Shen are correct in recognising that there is an arbitrary

nature to transfer functions� However� given a decision axis� it is then possible to estimate

a transfer function from a set of experimental data� Transfer functions are not arbitrary

once a particular decision axis is assumed�

Section ��� shows how to estimate transfer functions from experimental results� by

equating hit and false alarm rates on a GOC curve or ROC curve with theoretical hit and

false alarm rates based on a model of performance on a decision axis� Transfer functions are

estimated in Section ��� from Taylor et al��s �����	 frequency discrimination experiment�

based on assumed continuous decision axes� It is shown that functions can be estimated

separately from both the GOC curve and the mean ROC curve� but that interpretation

of the results is much easier for the former function than the latter function� The transfer

function based on the GOC curve is used in Section ��� to estimate parameters of unique

noise from the set of original ratings� Section ��� shows what happens to estimated trans�

fer functions when inappropriate theoretical models are assumed� Section ��� shows an
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alternative way of estimating transfer functions� by equating empirical and theoretical cu�

mulative distribution functions� and discusses the problems and potential error associated

with estimation� Finally� Section ��� deals with estimation when the assumed decision

axis is discrete rather than continuous�

�� Estimation of a transfer function

A theoretical ROC curve results from a theoretical observer that makes decisions based

on values on a decision axis� X� An empirical ROC curve results from the decisions of a

real observer expressed on a rating scale� R� If a theoretical observer is used to explain

the results of a real observer� then the real observer can be modelled� in part� as an input�

output system that maps an evidence value� x� on the decision axis X to a rating value� r�

on the rating scale R� Let this mapping or transfer function be denoted as R � h�X	�

A transfer function is hypothetical in that any decision axis X is hypothetical� but once

a particular decision axis is assumed� it is possible to estimate a transfer function from

a set of empirical results on R� An estimated transfer function� bh provides information

about how an observer may make decisions� and can be used to build a better model or

simulation of an observer�

The term theoretical may be used somewhat loosely in the context of transfer functions�

Preferably� the theoretical ROC curve and decision axis for a given experiment would

derive from a statistical theory� or ideal observer� or simulated observer� In the absence of

such a theory� however� the theoretical ROC curve could just be a curve that 
ts a given

empirical ROC or GOC curve� Any decision axis that gives rise to the 
tted curve can

then be used to estimate a transfer function� If a 
tted ROC curve is the only basis for

assuming X� then the interpretation of X� and of the resulting transfer function� are less

certain than if an ideal observer or substantive theory is involved�

A general assumption underlying the theoretical interpretation of empirical ROC anal�

ysis is the pairing of successive decision criteria on X with successive criteria or cuto�s

on R �e�g� Wickelgren� ����� Figure �# McNicol� ����� pp� �������# Hanley� ����� Figure ��	

Criteria on X and on R are equivalent if the hit and false alarm rates on X match those

on R� which can only happen if the criteria on X maintain the same relative order as on R�

This requires the mapping h to be a s�m�i� function or a monotonic increasing step func�

tion when dealing with a discrete rating scale �Bamber� ����	� Although bh is discrete in

practice� it is assumed� for convenience� that the underlying transfer function� h� is s�m�i�

and continuous� and that X could be mapped continuously onto R if only the resolution

of R could be 
ne enough� If a transfer function is based on an ROC curve or mean ROC

curve� then the resolution of R depends on the set of possible ratings� If a GOC curve is

involved� however� then R refers to the set of possible average ratings �or sums of ratings�

if preferred	� As more replications are added in GOC analysis� the number of possible
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average ratings increases� and the e�ective resolution of R increases substantially�

If a theoretical ROC curve matches a given empirical ROC or GOC curve� then em�

pirical hit and false alarm rates can be equated with theoretical hit and false alarm rates�

according to equivalent criteria� which gives the basis for estimating a transfer function�

Let HRX�x	 and FARX�x	 respectively denote theoretical hit and false alarm rates based

on a criterion� x� and on a decision axis� X� Let HRR�r	 and FARR�r	 respectively denote

empirical hit and false alarm rates based on a criterion� r� applied to a rating scale� R�

Equating theoretical with empirical hit rates requires 
nding a value� x� such that

HRX�x	 � HRR�r	

holds for a given value of r and its related hit rate� HRR�r	� If HRX�x	 has a unique

inverse over the domain of X� then x is found from

x � HR��
X �HRR�r		 ����	

As r changes� HRR�r	 changes� and so too does the estimated x� All such pairings of r

and x de
ne an estimated transfer function� r � bhSN�x	� A similar process may be applied

using false alarm rates� so that

x � FAR ��
X �FARR�r		 ����	

de
nes a separate estimated transfer function� r � bhN�x	� Equations ��� and ��� imply

that each separate point on an empirical ROC or GOC curve �i�e� a change in empirical

hit or false alarm rate	 corresponds to a point on bhSN�x	� or a point on bhN�x	� or both�
The functions bhSN and bhN presumably estimate the same underlying transfer func�

tion� h� so bhSN and bhN should be the same over any domain in X that is common to both

events� Egan �����	 stated that  an observer cannot apply one transformation for x�values

from N �trials and a di�erent transformation for x�values from SN �trials�! �Egan� �����

p� ��	� In the context of transfer functions� this implies that the same x�value should map

on to the same r�value regardless of which event is associated with any particular stimulus�

If bhSN�x	 and bhN�x	 are di�erent� then two di�erent stimuli with the same x�value could

result in di�erent decisions on R� depending on the event that occurred� This implies that

discrimination between the SN and N events is possible based on identical evidence� x�

which would imply that the nominal decision axis is not the basis for decisions� A substan�

tive discrepancy between bhSN�x	 and bhN�x	 would be grounds for rejecting the assumed

conditional distributions on X and trying another pair of distributions� or another theory�
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Strictly monotonic increasing transforms of the assumed decision axis

There are any number of related transfer functions that may be estimated from the same

cumulated empirical data� This is because any s�m�i� transform of an assumed decision axis

results in the same theoretical ROC curve �Egan� ����	� and transfer function estimation

allows any of these theoretical decision axes to be associated with the rating scale for

a given experiment� This holds true regardless of whether or not the theoretical curve

matches the empirical curve� and comes about because the scaling of both the rating scale

and the decision axis may well be arbitrary�

Let X� be a decision axis that is assumed in order to estimate a transfer function� Let

X� be the decision axis resulting from a s�m�i� transform of X�� The estimated x�values

based on X� are s�m�i� transforms of the estimated x�values based on X� and vice versa�

This implies that the estimated transfer function based on X� results from a �horizontal	

s�m�i� transform of the transfer function based onX�� If the two event�conditional functions

on X� are consistent with each other� then the event�conditional functions on X� are also

consistent because both functions are transformed together� If they are not consistent

on X�� then they are not consistent on X�� and no s�m�i� transform of X� would make it

consistent�

The assumed decision axis used to estimate a transfer function may be the result of a

theory involving an ideal observer for the particular discrimination task� or the assumed

decision axis could be the result of curve�
tting to empirical ROC or GOC curves� In

the former case� the theory should predict a particular decision axis having a particular

scaling� and X is set in the context of the theory �along with any units of measurement

that may apply	� In the latter case� any s�m�i� transform of an assumed decision axis is

as valid as the original axis because there is no further information with which to justify

the choice� In that case� the decision axis that is chosen is an arbitrary choice out of the

set of ordinally related decision axes�

�� Experimental transfer functions

Transfer functions were estimated for Taylor et al��s �����	 continuous rating scale ex�

periment� which was described in Chapter �� The ���replication GOC curve based on

arithmetic mean ratings and the arcsin�averaged mean ROC curve �Figure ���	 are each

used to estimate transfer functions� The pair of theoretical distributions assumed for each

curve is di�erent� because the curves themselves are di�erent� Overlapping continuous

uniform distributions are assumed for the GOC data� and Gaussian unequal distributions

are assumed for the mean ROC data� Results are compared once both sets of transfer

functions are presented�
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Transfer functions from the GOC curve� assuming a continuous uniform model

The decision axis in the experiment involved discrete overlapping uniform distributions

�Figure ���	� For computational convenience� the transfer functions presented here are

based on assumed continuous uniform distributions which provide good approximations

to the discrete distributions� Transfer functions based on a discrete uniform distributions

are given in Section ���� along with a description of problems that arise when dealing with

discrete decision axes� From a practical point of view� if the theory was not known for

this experiment� then the continuous uniform model is a reasonable assumption� given the

form of the GOC curve� The assumed probability density functions are

f�xjN	 �
�

��
 ��� � x � ��� ����	

and

f�xjSN	 �
�

��
 ��� � x � ��� ����	

where units of Hertz may be assigned to this decision axis� The bounds have been chosen so

the hit and false alarm rates for the continuous distributions match the hit and false alarm

rates for the discrete distributions at the frequencies at which probability was massed�

This results in the same theoretical ROC curve as shown in Figure ���� �Note that the

�� distinct frequencies of each discrete uniform distribution ranged over �� Hz� The range

of each continuous distribution must be �� � � Hz � �� Hz� however� in order for the

discrete and continuous hit or false alarm rates to match each other�	

Figure ��� shows the estimated event�conditional transfer functions�� which are pre�

sented separately in Figures ����a	 and ����b	� The two functions are relatively consistent

with each other� as can be seen in Figure ����c	� The function estimated in Figure ����c	

is reasonably linear� but with kinks corresponding to the ends of the event�conditional do�

main boundaries around ��� Hz and ��� Hz� The entire function could be approximately


tted by one straight line� or more precisely by three joined line segments �as is done in

Section ���	� The graphs show that frequency in Hz was mapped on to the rating scale by

an approximately linear transform�

Transfer functions from the mean ROC curve� assuming a Gaussian unequal

variance model

A transfer function can be estimated from a single�replication ROC curve or a mean ROC

curve as well as a GOC curve� The ROC curves for the experiment vary considerably

�Strictly speaking� x should be plotted as a function of r� because x�values are estimated from r�values�
rather vice versa	 However� R is seen as a function of X in a theoretical context� so transfer functions are
presented with x as the independent variable and r as the dependent variable	
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(a)  N event
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(c)  both events

Figure ���� Transfer functions estimated from the GOC curve� assuming continuous uniform
distributions� �a� Based on the N event only� �b� Based on the SN event only� �c� Both the
N and SN functions together �shown as thin lines� for clarity��
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Figure ���� Transfer functions estimated from the mean ROC curve� assuming Gaussian unequal
variance distributions� �a� Based on the N event only� �b� Based on the SN event only�
�c� Both the N and SN functions together�
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across replications �Figure ���	� and although a di�erent theoretical ROC curve could be


tted to each one� it would be di�cult to reconcile the variety of estimated decision axes

and transfer functions across replications� A transfer function is estimated here from the

���repln mean ROC curve shown in Figure ���� since it represents typical single�replication

ROC performance�

As was noted in Section ������ the mean ROC curve for this experiment can be 
tted

well by a theoretical ROC curve based on a Gaussian unequal variance model� with means

and standard deviations of �N � ���� �N � ���� �SN � ����� and �SN � ����� giving

dz � ������� The estimated event�conditional transfer functions based on the mean ROC

curve� and assuming these distributions� are presented in Figure ���� The functions are

reasonably linear� and are essentially consistent across events� except at the highest x�

value�

The apparently large discrepancy between estimates at the highest x�value is only a

re�ection of the sensitivity of the speci
c �Gaussian	 model to very small di�erences at

extreme probability values� The discrepancy relates to the highest rating category� and

stems from tiny di�erences between the mean ROC curve and the 
tted ROC curve in

the region of the ROC space closest to the origin� The curves di�ered in hit and false

alarm rate by less than ������ which corresponded to z�scores of about ���� This shows

that when evaluating the agreement between event�conditional transfer functions� values

that relate to the tails of assumed distributions are not as important as values that relate

central regions of the distributions� In Figure ���� this corresponds to estimated x�values

between about �� and � �or �N minus one standard deviation to �SN plus one standard

deviation	� over which the agreement is excellent�

Comparison and interpretation

The pairs of event�conditional transfer functions estimated from the GOC curve and from

the mean ROC curve are each self�consistent across events� and all of the functions are

generally linear� Apart from these properties� the functions based on the GOC curve and

on the mean ROC curve are not comparable to each other� Figure ��� was based on the

assumption of uniform distributions� whereas Figure ��� was based on the assumption of

Gaussian distributions� How each of these axes relate to each other is not clear� The

apparent solution might be to adopt one common axis� and to use it to estimate transfer

functions from both the GOC curve and the ROC curve� This is no solution� however�

because the resulting event�conditional transfer functions cannot be consistent for both

the GOC and mean ROC data for this experiment� If a single common axis existed� then

the pair of theoretical distributions that de
ned the common axis would result in a curve

that is consistent with both the GOC curve and the mean ROC curve� Such a curve

is impossible because the GOC curve and mean ROC curve for this experiment are so

di�erent�
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The transfer functions shown in Figures ��� and ��� are the consequence of two di�erent

models that are tied to di�erent aspects of the same data� namely unique�noise�free and

unique�noise�a�ected decisions� Each model is appropriate within its own context� Since

the experiment involved a frequency discrimination task� it makes sense to interpret any

decision axis that is proposed in terms of aural frequency �in Hz	� or some s�m�i� transform

of it� Furthermore� the rating value on each trial was a linear function of the position of the

rating slider� with three rating categories per centimeter �approximately	� This implies

that units of measurement can be assigned to both axes in Figure ���� indicates how

frequency in Hz maps� on average� to slider position �in �(��centimeter steps	� Assigning

units of measurement to the decision axis de
ned by uniform distributions�� is reasonably

straightforward� because of the way in which the experiment was designed� In contrast� it

is not clear how to assign units of measurement to the decision axis in Figure ���� other

than interpreting it in terms of standard scores�

It is curious that the transfer functions are so linear� In principle� the only assumption

that needs to be satis
ed in order for ROC analysis to apply is that the rating scale is

an s�m�i� function of the decision axis� The functions could have been concave� convex� or

sigmoidal� without upsetting any fundamental theoretical assumptions� Transfer functions

of other shapes are shown in Section ���� although they result from inappropriate models

being used in the estimation procedure� The fact that the functions for Taylor et al��s

�����	 experiment were linear� should not be generalised� because they only derived from

a single experiment��

�� Use of transfer functions to quantify unique noise

Unique noise has been modelled as extra variability associated with each individual stim�

ulus �e�g� Siegel� ����# Siegel " Colburn� ����	� Under such models� each stimulus is

associated with a distribution across replications of unique�noise�a�ected evidence values

that lie on the decision axis� On the ith replication and for the jth stimulus� an evidence

value is sampled from the distribution for the jth stimulus� A decision rule is applied

to the unique�noise�a�ected evidence value� which results in the decision� or rating� for

the ith stimulus on the jth replication� The unique�noise�a�ected evidence values di�er

across replications for the same stimulus� and hence the decisions that are made di�er

across replications� Once a transfer function has been estimated� it is possible to work

backwards from an experimental data set of ratings to derive sample distributions and

statistics of unique noise de
ned on a supposed decision axis� This was done for Taylor

et al��s �����	 data set�

�Including continuous approximations to the discrete uniform distributions	
�Preliminary analysis of Whitmore et al	�s �����
 amplitude discrimination experiment suggested that

non�linear transfer functions apply in other experiments	
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In order to convert r�values into x�values� it is convenient to 
rst 
t a function to

the estimated transfer function� A function composed of three joined line segments was


tted by eye to the estimated transfer functions that are shown in Figure ����c	� The

line segments were de
ned by the coordinates ���� ���	� ���� �����	� ���� ����	� and

���� ����	� and provided a reasonable approximation� The transfer function based on

these points is de
ned as

r �

����
������x � ������ x � ���

������x � ������� ��� � x � ���

������x � ������� x � ���

where r is a value on the rating scale� and x is value of frequency in Hz� The transfer

function in Figure ����c	 was based on arithmetic mean ratings� and only ranged in value

between approximately ��� and ���� on the rating scale� The regression function may be

extrapolated� by linearly extending the outer two line segments to cover the full range of

the rating scale� According to the extrapolation� a rating of one equated to a frequency of

��� Hz� and a rating of �� equated to a frequency of ��� Hz� Both values lie well beyond

the frequency bounds that were used �������� Hz	�

In order to estimate an x�value for any given rating r� the inverse of the regression

function is required� namely

x �

����
������r � ������� r � �����

������r � ������� ����� � r � ����

������r � ������� r � �����

This inverse transfer function can be used to convert the entire data set of ratings into a set

of estimated x�values� There are several possible uses for a set of estimated x�values� For

example� assumptions about the form of unique noise distributions on X may be checked�

simulations of observers can be adjusted to better account for data� and parameters that

characterise the unique noise may estimated�

Estimated x�values from the experiment were used to estimate the unique noise vari�

ance on X� Since there were �� replications� each stimulus was associated with a set of

�� ratings� which were converted into a set of �� estimated x�values� The sample vari�

ance of estimated x�values was calculated for each stimulus� Table ��� gives the average

variance per stimulus� calculated for each event separately� and across both events� There

were ��� stimuli per event� so the average variances in Table ��� resulted from averaging

��� variances per event� and ��� variances across both events� Table ��� also gives the

square root of the average variance� This is the root�mean�square �r�m�s�	 of sample stan�

dard deviation values� given in units of Hz� It indicates the e�ective amount of spread of

unique noise on X� The average variances are estimates of the variance of unique noise� ��
u
�
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average variance �average variance	
�

� �Hz	 ��
u
���

c

N �event ������ ����� ����

SN �event ������� ����� ����

both events ������ ����� ����

Table ���� Sample statistics of estimated x�values for Taylor et al��s ��		�� experiment� and
estimates of k � ��

u
���

c
based on ��

c
� ��
��� Hz��

The variance of each of the continuous uniform distributions used to estimate the transfer

function was ��
c
� ������ Hz� �i�e� ����	���� where the range was �� Hz	�

The r�m�s� sample standard deviation was on the order of �� Hz� whereas the standard

deviation of each continuous uniform distribution was ���� Hz� by comparison� Clearly�

unique noise dominated common noise in this experiment� which re�ects the fact that extra

unique noise was deliberately introduced into this experiment �as explained in Section ���	�

The estimated value of k � ��
u
���

c
was approximately ���� when estimated across all stimuli

from both events� In light of the amount of unique noise� the fact that GOC analysis

removed most of its e�ects �Figure ���	 is impressive�

The estimated value of k was slightly larger for the SN event� than for the N event�

because the estimate of ��
u
was larger for the SN event� The ratio of estimated standard

deviations for the SN event relative to the N event was ����������� � ������ This is very

close to the ratio of standard deviations for the Gaussian unequal variance model that was


tted to the mean ROC curve� which was ������ Although this super
cially suggests that

unique noise characteristics were di�erent for each event� it is more likely that the unique

noise variance increased as a function of x� Such a result poses a problem for any model

based on the addition of a single unique noise random variable to common noise values

on X �e�g� Wickelgren� ����# McNicol� ����	� because the same random variable can not

account for di�erences across events�

��	�� Implications

Estimated transfer functions were used as part of a new method of quantifying unique

noise� The estimate of ��
u
� however� is only as 
rm as the assumptions on which the

estimation are based� and rests especially on the choice of assumed theoretical decision

axis� As noted in Section ���� the transfer function based on one assumed decision axis�

X�� may be converted into a transfer function based on a second decision axis� X�� that is

an s�m�i� transform of X�� Without a 
rm basis for choosing one axis over the other� either

is acceptable� Preferably� the basis for choice should be a priori rather than post hoc� If

the assumed axis is based solely on an ROC 
t to a GOC curve� then any axis that results

in the 
tted curve is as acceptable as any other� The data set examined here is unusual
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in that the theoretical distributions were known� and could be de
ned a priori based

on experimental design independently �for the most part	 of an observer� Even for this

experiment� however� there is no guarantee that aural frequency� X� was used� rather an

s�m�i� transform of it� such as log�X	�

The choice of possible decision axis has consequences for quantifying unique noise�

Quantities such as ��
u
and ��

c
must be a�ected by non�linear s�m�i� transforms of a decision

axis� and the estimated ratio� k� must depend on the assumed axis� If X� and X� are

non�linear s�m�i� transforms of each other� and if ��
u
is constant as a function of x on X��

then ��
u
is generally not constant as a function of x on X�� For example� let a single

unique noise variable� U�� be de
ned on the frequency decision axis� X�� where U� has a


xed variance for stimuli of all frequencies� Also� let the mean value of U� be the frequency

�in Hz	 of a given stimulus� If X� � log�X�	� then the variance of U� � log�U�	 on X�

will increase as the logarithm of the stimulus frequency increases� which is quite di�erent

from the pattern found on X�� This calls into question the concept of k� since k relies on

the assumption that ��
u
is a 
xed value with respect to a decision axis� Although this is

the case on X�� it is not the case on X�� For a given data set� there is no guarantee that

a decision axis exists which has unique noise of a 
xed variance� nor is there a guarantee

that such a decision axis could be found� even if it did exist�

� Transfer functions based on inappropriate models

The transfer function based on GOC results assumed theoretical overlapping uniform

distributions whereas that based on the mean ROC curve assumed theoretical overlapping

normal distributions� In both cases� the assumed theoretical ROC curve matched the

empirical curve� The purpose of this section is to show what happens to the estimated

transfer function when the assumed theoretical ROC curve does not match the empirical

curve�

Transfer functions from the mean ROC curve� assuming uniform distributions

Transfer functions were estimated from the mean ROC curve� assuming overlapping con�

tinuous uniform distributionsa deliberately inappropriate combination� Two pairs of

uniform distributions were used in turn� The 
rst pair is that of the earlier GOC model

given by Equations ��� and ���� which result in a theoretical ROC curve that is well above

the mean ROC curve� The second pair of uniform distributions had the same standard

deviations as the 
rst pair� but with a smaller separation between the means� chosen so

the area under the theoretical ROC curve was equal to the area under the mean ROC

curve� Under this assumed model� the probability density function for the N event was
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still as given in Equation ���� but the density function for the SN event was

f�xjSN	 �
�

��
 ������ � x � ������� ����	

The theoretical ROC curve in this case is a straight line parallel to the chance line that

intersects the curved mean ROC curve twice� and is a very poor 
t to the mean ROC

curve�

Figure ����a	 shows the estimated transfer functions based on the mean ROC curve

and assuming the continuous overlapping uniform distributions of Equations ��� and ����

while Figure ����b	 shows those for the distributions of Equations ��� and ���� The two

event�conditional transfer functions are quite di�erent from each other in both cases� This

clearly indicates that there is something wrong with the assumed decision axes�

Given that the transfer functions in Figure ����a	 and �b	 are all based on overlapping

uniform distributions �with di�erent parameters	� it is not surprising that the functions

are so similar to each other� The N event function is the same for both pairs because

the N distributions are the same� The two SN event functions are just shifted versions

of each other� because the e�ect of changing the location of the assumed SN distribution

is to change the location of the estimated SN transfer function� However� there is no

possible horizontal shift of the SN distribution such that the N and SN transfer functions

will match each other� The overlap between the functions shown in Figure ����b	 is

approximately the best that can be achieved based on the mean ROC curve and assuming

uniform distributions of equal variance�

Transfer functions from the GOC curve� assuming normal distributions

Transfer functions were estimated from the GOC curve assuming overlapping Gaussian

distributions� These are deliberately inappropriate assumptions because any Gaussian

theoretical ROC curve is curved in the ROC space whereas the GOC curve is reasonably

straight� Two pairs of Gaussian distributions were used� The 
rst pair were random

variables of equal variance� with d� � ������ �with �N � �SN � ���� �N � �� and �SN �

������	� These parameters were set so that area under the theoretical curve was the same

as the area under the GOC curve� The second pair of distributions were the speci
c

unequal variance random variables� described in Section ���� that provided a good 
t to

the mean ROC curve and resulted in dz � �������

Figure ����a	 shows the estimated transfer functions based on the GOC curve assuming

the Gaussian equal variance model with d� � ������� Figure ����b	 shows the estimated

transfer functions based on the GOC curve and assuming the Gaussian unequal variance

model with dz � ������� In both cases� the event�conditional functions are not consistent�

The functions in Figure ����a	 only meet at two points� These correspond to the points

where the theoretical ROC curve intersects the GOC curve �i�e� where theoretical hit
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Figure ���� Transfer functions estimated from the mean ROC curve� assuming inappropriate
uniform models� The N event function �solid line� is the same in both panels� and assumes
XN ranges from �	� Hz to � Hz �Equation ����� �a� Assuming XSN ranges from 
� Hz to
	� Hz �Equation ����� �b� Assuming XSN ranges from �� Hz to �� Hz �Equation �����
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Figure ���� Transfer functions estimated from the GOC curve� assuming inappropriate Gaussian
models� �a� Assuming a Gaussian equal variance model with d� � ������� �b� Assuming a
Gaussian unequal variance model with dz � ��	���� The N event function �lower curve in
each panel� is the same in both panels�
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and false alarm rates match theoretical hit and false alarm rates	� The two functions in

Figure ����b	 do not intersect� re�ecting the fact that the theoretical 
t to the mean ROC

curve does not intersect with the GOC curve� Although the N and SN functions are

similar in form in both cases�� no possible horizontal shift would make the two functions

match each other� A horizontal and vertical shift might match up the two functions�

but a vertical shift implies selectively changing the rating distribution for one event while

leaving the other untouched� Any transform applied to R could not do this selectively for

one event only and not the other� The transfer functions show that the Gaussian models

are not appropriate to the GOC curve �which is� of course� already apparent in the ROC

space	�

In summary� the two event�conditional transfer functions that can be estimated from

a data set are not consistent when the theoretical ROC curve resulting from an assumed

model does not match an empirical ROC curve or GOC curve� The converse was already

shown in Section ���� When the theoretical ROC curve used to estimate a transfer func�

tion was a good 
t to the empirical curve� the event�conditional transfer functions were

consistent with each other� for this particular data set�

�� Transfer functions estimated from cumulative distribu�

tion functions

Another way of estimating a transfer function is by equating the empirical and theoret�

ical cumulative distribution functions �c�d�f��s	 of R and X� This requires cumulating

probability and proportions from below� whereas using hit and false alarm rates requires

cumulating from above� If the distributions on both R and X are continuous� then the

transfer functions are the same using either direction of cumulation� If the distributions

on R are discrete �while still assuming that X is continuous	� then the transfer functions

estimated by cumulating from above and from below are systematically di�erent from each

other� The estimated function provided by each approach is as valid as the other� which

implies that there must be some error in estimation� since the same function is supposed

to be estimated by each approach� Equations are presented that show how the di�erences

arise� and that they can be minimised by increasing the number of rating categories� or

by increasing the number of replications when using GOC analysis� Transfer functions

calculated by cumulating from below are estimated for Taylor et al��s �����	 experiment�

and are compared with the functions calculated by cumulating from above �Figures ���

�The N distribution is the same for both Figures �	��a
 and �	��b
	 Compared to the transfer function
for the SN function in Figure �	��a
� the SN function in Figure �	��b
 is shifted to the left �so that
�SN � ���� rather than �	�
 and is horizontally stretched by the factor �	�� �which is the standard
deviation of the assumed SN distribution
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and ���	� The di�erences between the two estimated functions are small to negligible for

this experiment� but could be much larger for other experiments�

If it is the case that the distributions on both the decision axis and the rating scale

are continuous then P �X � x	 � �� P �X � x	 and P �R � r	 � �� P �R � r	� since

P �X � x	 � � and P �R � r	 � �� This implies that the same transfer function is esti�

mated by cumulating from above as by cumulating from below�� A rating scale is truly

continuous only in a theory or in a model� In practice� however� rating data are discrete�

even if based on a continuous rating scale� Consequently�

P �R � r	 �� �� P �R � r	

holds in practice� since P �R � r	 may be non�zero�

For a given rating value r� let x� be the x�value estimated by equating theoretical and

empirical hit rate and false alarm rate values �Equations ��� and ���	� For the same rating

value r� let x� be the x�value estimated by equating the c�d�f��s of R and X� FR�r	 and

FX�x	 respectively� Here� x� is found via the equality

FX�x�	 � P �X � x�	

� P �R � r	

� FR�r	� ����	

Applying the inverse c�d�f� to both sides of Equation ���� and considering the event�

conditional forms� then

x� � F ��
X �FR�rjN	 jN	 ����	

and also

x� � F ��
X �FR�rjSN	 jSN	 � ����	

In practice� x� �� x�� because P �R � r	 �� � � P �R � r	� and R is discrete� Hence the

transfer function estimated using cumulation from above is di�erent from the function

estimated using cumulation from below �Equations ��� and ���� and ��� and ���� respec�

tively	�

When estimating transfer functions by cumulating either from above or from below�

cumulative probability values of � or � should not be used� This is because their associated

x�values are always the bounds of the domain of each of the assumed event�conditional

distributions on X� and these bounds are independent of the observer and the observer�s

decisions�

Figures ��� and ��� both show transfer functions estimated by cumulation from above

compared to transfer functions estimated by cumulation from below� Figure ��� derives

�For convenience� the event�conditional transfer functions are assumed to be consistent� and event�
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Figure ���� Transfer functions estimated from the mean ROC curve� assuming Gaussian unequal
variance distributions� The functions were estimated from hit and false alarm rates �upper
series in each panel� and from cumulative distribution functions �lower series in each panel��
�a� Based on the N event only� �b� Based on the SN event only�
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(b)  SN event

Figure ��	� Transfer functions estimated from the GOC curve� assuming continuous uniform
distributions� The functions were estimated from hit and false alarm rates �upper series in
each panel� and from cumulative distribution functions �lower series in each panel�� �a� Based
on the N event only� �b� Based on the SN event only� �There are two data series in each
panel� but the di�erence between them is negligible��
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from the mean ROC curve� under the assumption of the Gaussian unequal variance model

with dz � ������� whereas Figure ��� derives from the GOC curve under the assumption

of the continuous uniform model 
t to the GOC curve� In both 
gures� the functions

estimated via c�d�f��s are vertically shifted down from the functions estimated via hit

and false alarm rates� The shift is small� but constant� for the mean ROC functions

in Figure ���� but hardly visible for the GOC functions in Figure ���� The upper and

lower functions in Figures ��� and ��� place bounds on where the underlying transfer

function may lie �assuming that it exists	� If the gap between functions is large� then many

possible functions may be supposed� whereas if the gap is small� then the constraints on

the hypothesised function are much greater�

The vertical shift re�ects the size of rating increments� or resolution of the rating

scale� It is much smaller for a GOC curve� which is based on average ratings� than for a

mean ROC curve� which is based on the original ratings� The vertical shift depends on

which rating categories are used�� and how the rating scale is scaled� Not all categories

are necessarily used� particularly in GOC analysis or when a rating scale contains a large

number of possible points�

Let rk and rk�� be the values of the kth and �k � �	th rating categories that are used�

Since R is discrete� then

P �R � rk	 � �� P �R � rk��	� ����	

Assume that a transfer function has been estimated via c�d�f��s and that X is continuous�

For a given rating value� rk� let xk be such that

P �R � rk	 � P �X � xk	� �����	

Since X is continuous� then

P �X � xk	 � �� P �X � xk	

which� together with Equation ��� implies that

P �R � rk��	 � P �X � xk	� �����	

Equation ���� states that xk is the estimated x�value for rk when using cumulation from

below� but Equation ���� shows that xk is also the estimated x�value for rk�� when using

cumulation from above� Hence two di�erent r�values result in the same estimated x�value

when R is discrete and X is continuous�

For the kth rating� the di�erence between the upper and lower estimated transfer

conditional notation is omitted where possible	
�This refers to categories on the original rating scale� if dealing with an ROC or mean ROC curve� and

to mean�rating �or sum�of�ratings
 categories� if dealing with a GOC curve	
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functions is rk��� rk� This di�erence does not depend on the assumed distributions on X�

nor on the cumulative probabilities on R� but it does depend on the scaling of the rating

scale and the how an observer uses a rating scale� particularly which ratings �or mean�

ratings	 are not used�

For the mean ROC curve� or even just a single ROC curve� there are relatively few

potential categories� but most if not all of them are typically used� The rating categories

for the data set were coded as successive integers� This implies that for ROC and mean

ROC data� rk���rk � � for all k� and hence the functions in Figure ��� appear shifted by a

constant� If the ratings were coded using squares of integers� for example� the discrepancy

between the pairs of transfer functions in Figure ��� would diverge as a function of x �since

rk�� � rk would diverges as a function of r	�

With GOC curves� there are many potential mean�rating categories� and not all of

them are usually used� However� the di�erence between successive mean�ratings that are

used is typically much smaller than the di�erence between successive categories on the

original rating scale� In contrast to Figure ���� the transfer functions estimated from

GOC data in Figure ��� are very much closer together� and a very close inspection of

Figure ��� reveals that the vertical shift does in fact vary over the length of the function�

Potential problems arise in estimating a transfer function when the number of cate�

gories is small� because the vertical shift can be relatively large� For example� if the ratings

are coded as integers� from � to q� and a transfer function is estimated based on an ROC

curve or a mean ROC curve� then the vertical shift is a minimum of ��q of the range of the

rating scale� If q is small �less than ��� say	� as is most often the case in psychophysics�

then the vertical gap between estimated transfer functions is large� Hence� there may be

much uncertainty about the location� and possible shape� of any the underlying transfer

function� In Figure ���� the gap is reasonably small because q � �� in Taylor et al��s �����	

experiment� As Figure ��� shows� the gap can be made virtually non�existent if multiple

replications are run�

Summary� Four transfer functions can be estimated by equating any of four cumulative

proportions on the rating scale with cumulative probabilities on the decision axis� The

quantities are the hit rate� the false alarm rate# the c�d�f� conditional on SN� and the c�d�f�

conditional on N� The 
rst two quantities involve cumulation of probability from above�

whereas the last two quantities involve cumulation from below� Ideally� the estimated

transfer functions based on all four quantities would be identical� since� they presumably

estimate the same underlying function� In practice� a set of ratings is discrete� and the

functions estimated by cumulation from above must be di�erent from the functions esti�

mated by cumulation from below� The amount of discrepancy depends on the resolution

and scaling of the rating scale and� for GOC data� also on the number of replications

run� This provides a means of determining the number of categories required to achieve a

desired resolution�
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�� Transfer functions based on discrete decision axes

The estimation of a transfer function is more complicated when the decision axis is discrete

because there may not be any x�values and r�values for which cumulative probabilities and

proportions are exactly equal on the two axes� As well as that� the cumulative probability

functions on X that are needed for the estimation �Equations ���� ���� ��� and ���	 do not

have unique inverses� which implies that there are potentially many ratings that result in

the same estimated x�value�

Transfer functions from GOC data were estimated based on the assumption of discrete

theoretical uniform distributions that were shown in Figure ���� The discrete distributions

are the appropriate model for Taylor et al��s �����	 experiment� rather than the continuous

uniform approximation used to this point� The transfer functions based on discrete X� and

using cumulation from above� are presented in Figure ���� along with the functions based

on the continuous uniform model from Figure ���� The hit and false alarm rates of the

continuous model were equal to those of the discrete model at the points where probability

in the discrete model is massed� This is re�ected in each panel of Figure ��� at the points

where the two functions meet� If the continuous approximation were based on equal c�d�f�

values �instead of hit and false alarm rates	� the function based on continuous X �dashed

lines in Figure ���	 would be shifted to the left by � Hz� and would match the top of

each vertical step� rather than the bottom� A continuous approximation to any discrete X

provides a means to interpolate the transfer function based on the discrete decision axis�

The stairstep functions in Figure ��� re�ects that the transform from R to X was

many�to�one� In such a case� some convention must be adopted� The convention adopted

for Figure ��� was that for a given empirical hit rate� HRR�r	� the associated x�value that

is paired with r is the largest value of �discrete	 X such that

HRX�x� �	 � HRR�r	 � HRX�x	� �����	

Similarly� for a given empirical false alarm rate� FARR�r	� x is such that

FARX�x� �	 � FARR�r	 � FARX�x	� �����	

For example� for the SN event� HRX����	 � �
�� � ������ and HRX����	 � �

�� � ������

For any r such that ����� � HRR�r	 � ������ the estimated x�value is equal to ��� Hz� If

HRR�r	 is equal to ������ then the estimated x�value is ��� Hz�

The theoretical distributions were known to be discrete for Taylor et al��s �����	 ex�

periment� In more substantive experiments� the appropriate theoretical distributions are

usually unknown� Continuous models would probably be assumed for such experiments�

unless there is good reason or evidence to assume a discrete model �for example� if a neural

counting model is used �e�g� McGill " Teich� ����	� or if a GOC curve shows distinct clus�



� Psychophysical transfer functions ���

0

6

12

18

24

30

36

590 610 630 650 670 690

G
O

C
 M

ea
n-

R
at

in
g

Estimated x-value (Hz)

(a)  N event
discrete X

continuous X

0

6

12

18

24

30

36

590 610 630 650 670 690

G
O

C
 M

ea
n-

R
at

in
g

Estimated x-value (Hz)

(b)  SN event
discrete X

continuous X

Figure ��
� Estimated transfer functions based on the GOC curve� assuming discrete and
continuous uniform models� Stairstep functions are based on discrete theoretical uniform
distributions� whereas the smoother increasing functions are based on the continuous uniform
model �from Figure ����� �a� Based on the N event only� �b� Based on the SN event only�

terings of points in the ROC space	� Continuous models are more convenient than discrete

models because the inverse cumulative functions for continuous can provide a one�to�one

function� Discrete models result in many�to�one inverse cumulative functions and are not

as simple to deal with�
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�� Summary

A psychophysical transfer function is the s�m�i� relationship between a theoretical decision

axis� X� and an empirical rating scale� R� Transfer functions can be estimated by 
tting

a theoretical ROC curve to an empirical GOC or ROC curve� and equating the criteria

on X and on R that result in the same hit rate� or in the same false alarm rate� Transfer

functions can also be estimated by equating theoretical and empirical c�d�f��s�

Transfer functions have event�conditional forms� If the theoretical ROC curve used to

estimate transfer functions provides a good 
t to an empirical GOC or ROC curve� then

the event�conditional functions are consistent with each other� otherwise they are not�

Systematic discrepancies occur between estimated transfer functions based on hit and

false alarm rates� and those based on c�d�f��s� The discrepancies are a practical consequence

of analysing discrete rating data� The discrepancies are large when the resolution on the

rating scale is low� The discrepancies are small when the resolution on the rating scale is

high� and when GOC analysis is applied to an already high�resolution rating scale� then

the discrepancies are negligible�

Transfer functions were estimated for Taylor et al��s �����	 continuous rating scale

experiment� based on the ���replication GOC curve� assuming continuous uniform distri�

butions� and based on the mean ROC curve� assuming Gaussian distributions� In both

cases� ratings were reasonably linear with decision axis values� The transfer function based

on the GOC curve showed that the rating slider position was� on average� a linear function

of frequency� Interpretation of the Gaussian decision axis for the mean ROC curve was

uncertain� because it was not clear how the decision axis related to frequency�

If a decision axis is discrete� then there are unavoidable problems in the estimating

a transfer function� because the inverse function may be many�to�one� A continuous

approximation to the discrete distributions is a practical solution� although exactly how

the approximation is de
ned determines the resulting transfer function�

Transfer functions can be used to estimate unique noise parameters� A set of ratings

may be converted into a set of estimated x�values lying on a unique�noise�a�ected decision

axis� and statistics of the x�values may be calculated� For Taylor et al��s �����	 experiment�

the unique�to�common noise variance ratio was estimated to be approximately ���� which

indicated that a relatively high amount of unique noise was present�

Since any arbitrary� order�preserving� s�m�i� rescaling of a given decision axis� X� pro�

duces the same theoretical ROC curve� any and all s�m�i��related axes could be used as the

basis for estimating a transfer function �if the nature of the decision axis is not known	�

Any such rescaling of X would also transform unique noise as well as common noise� If

the unique noise on one decision axis is of the same form and 
xed variance� ��
u
� for all

values of the decision axis prior to such a transform� the unique noise is unlikely to have

these properties after the transform� This calls into question the concept of the ratio of

unique to common noise� k� if the unique noise variance changes as a function of x�



Chapter �

The theory of GOC analysis

Group operating characteristic analysis is e�ective in improving performance in discrimi�

nation tasks by removing the e�ects of unique noise �Watson� ����# Metz " Shen� ����	

and in recovering known theoretical ROC curves �Taylor et al�� ����# Lapsley Miller et al��

����	� Given enough replications� even very complicated ROC curves can be recovered

�Taylor� ����# Taylor et al�� ����	� This chapter presents a theory of GOC analysis that

explains the statistical properties that are necessary in order for GOC analysis to work�

��� Models of unique�noise�a�ected observers as analogies

for GOC analysis

Unique noise may a�ect a discrimination task at any stage of the decision process� It

may be pre�observer input such as extra environmental noise �Ronken� ����# Tanner "

Sorkin� ����	� it may be internal noise� for example� criterion variability �Wickelgren� ����#

McNicol� ����	� or it might even be post�observer error� such as error due to partitioning

a continuous rating scale for data analysis� Models of inconsistent observers incorporate

unique noise at many di�erent stages in the decision process �Taylor� ����# Durlach et al��

����	� The simplest and most common type of theory or model involves additive Gaussian

unique noise on a decision axis �Swets et al�� ����# Siegel� ����# Metz " Shen� ����#

Richards " Zhu� ����# Sorkin " Dai� ����	� The mathematical bene
t of such models

is that the decision process can be expressed in terms of operations on random variables

�Section �����	� If both the unique and common noise are assumed to be Gaussian� then

their additive mixture is also Gaussian� and performance can be described in terms of

familiar and well�established theory� There are a wide variety of models of unique�noise�

a�ected observers that could be used to simulate unique�noise�a�ected data� While GOC

analysis can be applied to such data� the models themselves do not explain how GOC

analysis works� There is no existing theory of GOC analysis�

���
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The 
rst attempt to model GOC analysis was made by Watson �����	� following a

suggestion by Egan� Watson �����	 extended Tanner�s dice game �Swets et al�� ����#

Green " Swets� ����	 to show how GOC analysis may work� The original dice game

involved a fundamental detection problem in which evidence values were generated on each

trial by throwing dice and summing the results� One of two events �say SN or N	 occurs

during a trial� If the SN event occurs� a constant is added to the dice sum� The resulting

sum forms an evidence value� and an observer must decide which event occurred� based

on the evidence� Two overlapping event�conditional evidence distributions are generated�

In the original dice game� these are of the same form but have di�erent means for each

event�

Watson�s �����	 extension of the dice game involved multiple observers� in which each

observer is associated with an additional� separate unique noise die� On each trial� a value

is generated like in the original dice game� which represents common noise in the extended

dice game� For each observer� the unique noise die for the observer is also thrown� and

the result added to the common noise value� The evidence presented to each observer is

the sum of the common noise value� which is the same for all observers� plus the unique

noise value� which is individual to each observer� The observers� task is still the same� to

discriminate between events� but the evidence is not necessarily the same across observers

�although it may be if two observers happen to get the same unique noise value	�

After describing the dice game� Watson �����	 discussed summing �or averaging	

unique�and�common�noise�mixed values across observers� Consequently� unique noise is

averaged out and removed by this analysis� while common noise remains� Although the

extended dice game provides an easily understood analogy for how unique noise can in�

�uence decisions� by adding noise to evidence values� Watson�s analysis is not equivalent

to GOC analysis� The extended dice game� and many similar models� operate by aver�

aging evidence values on a decision axis� whereas GOC analysis operates by averaging

ratings on a rating scale� These are not equivalent� because unless an experiment is highly

transparent� such as a dice game� experimenters do not have free access to an observer�s

evidence values� Instead� experimenters can only deal with rating scale data �including

binary�decision data	�
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Two recent statistical models of unique�noise�a�ected observers have been proposed

by Metz and Shen �����	 and by Sorkin and Dai �����	� Although the models are more

detailed than in the dice game� they both share the same fundamental emphasis as Wat�

son�s �����	 analogythe models remove unique noise on a decision axis rather than on a

rating scale� Neither model deals with the problem of how individual observers transform

input to produce ratings� and the consequences for the removal of unique noise�

The questions raised by existing models of observer inconsistency� plus the material

presented in earlier chapters here� suggest that there are three interrelated topics that

should be incorporated within any theory of GOC analysis� These are�

�� the relationship between unique�noise�a�ected evidence values and unique�noise�

a�ected ratings� that is� the role of the transfer function in models of observer

inconsistency �Chapter �	�

�� the potentially arbitrary scaling of a rating scale �Chapter �	� and how that a�ects

the removal of unique noise� and

�� how the removal of unique noise on a rating scale relates to removal of unique noise

on a decision axis�

All of these points were implied in the following passage by Metz and Shen �����	� who

said that�

Con
dence ratings obtained in an image�reading experiment represent a reader�s

decision�variable outcomes after they have been categorized on a discrete� or�

dered scale in some unknown way� If we think of the con
dence rating from

each reading of a case as a crude approximation �original emphasis% to the con�

tinuous decision�variable outcome� an obvious scheme for combining ratings

is simply to average them and then use the result as a decision variable for


nal image interpretation� The gains in accuracy that are obtained in this way

clearly depend on two things� however� the number of categories in the rating

scale �which determines the  
neness! or  coarseness! of the categorization

process	� and the way in which the category boundaries are distributed over

the continuous decision�variable scale �which both determines the breadth of

each category and e�ects a generally non�linear transformation of the decision�

variable scale	� �Metz " Shen� ����� p� ��	

This passage shows that Metz and Shen �����	 recognised the role of the transfer func�

tion in discrimination tasks� the arbitrary scaling of a rating scale �in their case� a discrete

�Metz and Shen �����
 were interested in GOC analysis �or� in their terms� mean�rating ROC analysis

in the context of medical diagnostic tasks	 In their context� an observer was a reader �of x�ray images
�
and the reading of a case was equivalent to the observation of a stimulus	
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Figure ���� Transform�average GOC curves re�presented from Chapter �� Each GOC curve
was based on a transform of ratings g�r�� where r � f�� 
 � � ��g� Panels �a�� �b� and �c� were
originally presented in Figures ����a� ����e�� and ����f�� respectively�

scale	� and the question of how unique noise is removed under the circumstances� Metz

and Shen noted that there is a  generally non�linear transformation! from the decision

axis onto a rating scale� and that the production of ratings on an ordered scale is achieved

 in some unknown way�! implying that the transfer function� and consequent scaling of a

rating scale� are somewhat arbitrary� but ordinal�

Arbitrary but ordinal scaling of a rating scale can in fact be induced by transform�

average GOC analysis� which was applied to Taylor et al��s �����	 continuous rating scale

data in Chapter �� There� two rather contradictory patterns of results were apparent�

��	 order�preserving strictly monotonic increasing �s�m�i�	 transforms of rating scales def�

initely a�ected the resulting GOC curves� but ��	 all of the GOC curves were consistent

with the theoretical ROC curve over part of their lengths� The 
rst result demonstrated

that GOC results depended on the scaling of a rating scale� The second result indicated

that GOC analysis was transform�invariant to some degree�

The last of the three points �noted on the preceding page	 was that the theory of GOC

analysis should explain how removing unique noise from rating data relates to removing

unique noise on a decision axis� Metz and Shen �����	 did not have a solution to this�

They recognised the problem though� and attempted to address it by suggesting that a

con
dence rating could be thought of as a  crude approximation! to a value on a decision

axis� A problem with this is that decision axis values and random variables are not known�

and possibly cannot be known� so experimenters cannot know when an approximation is

appropriate or not�

It can be shown by example that a crude approximation of ratings to evidence values

is not necessary in order for GOC analysis to work� This can be seen in transform�average

GOC analysis of Taylor et al��s �����	 data set� where each GOC curve is interpreted

as based on a rescaling of a rating scale� Three of the ���replication transform�average
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GOC curves from Chapter � are reproduced in Figure ���� for ease of comparison� �Here�

the original ratings were integers from � to ��� and g�r	 represents the rating transform�	

Figure ����a	 is based on g�r	 � r� and Figures ����b	 and �c	 were based on g�r	 � r�

and g�r	 � ���� � r	�� respectively�� All three GOC curves are very similar� especially

in contrast to the single�replication ROC curves �Figure ���	� which remain una�ected by

di�erent order�preserving rescalings of the rating scale� The rating distributions under�

lying each of the GOC curves are very di�erent� however� The transform g�r	 � r� is

very convex when applied to the original rating scale �illustrated by the values� g��	 � ��

g��	 � ���� g��	 � ���� g���	 � ����� and g���	 � �����	� Similarly� the transform

g�r	 � ����� r	� is very concave� If the rating data on the original scale was an approxi�

mation to distributions on the decision axis� as Metz and Shen �����	 suggest it could be�

then the rating distributions on either of the transformed scales would certainly not be�

because the new distributions would be very distorted� These examples in Figure ����a	

illustrate that if an approximation held for one scale� it would disappear under some other

scale� yet very similar GOC curves can result� This demonstrates that rating distributions

need not even be crude approximations to theoretical distributions of evidence values in

order for GOC analysis to work� Many similar examples could also be drawn from the

results in Chapter ��

The potential distortion of distributions by transform averaging may or may not mat�

ter� A GOC curve is based on the order of a stimulus set according to the mean rating per

stimulus� calculated for all stimuli in a stimulus set� This ordering is not a�ected by actual

values of mean ratings� only their relative placement on the rating scale of interest� The

transformations used in Figure ��� clearly do a�ect the ordering of the means� because the

GOC curves are di�erent� The ordering may not have changed by much� however� because

the GOC curves are quite similar�

��� The equivalent statistical observer

A broad outline of an ESO was 
rst introduced in Section ����� �Figure ���	� as part of

the de
nition of unique and common noise� The way in which unique and common noise

contributed to decision making was left unspeci
ed� This section presents an ESO that

provides speci
c details omitted in Section ������

Figure ��� outlines the key features of an ESO which consists of a common noise source�

a unique noise source� a mixer� a transfer function and an optional quantising function�

In a concrete application of the model� reproducible stimuli may contribute to most� if

not all� of the common noise� The common noise source could be some type of black box

�The third transform listed here� g�r
 � ���� � r
�� is strictly monotonic increasing� whereas the
transform originally presented in Figure �	��f
 in Chapter �� g�r
 � ��� � r
�� was strictly monotonic
decreasing	 The two are equivalent with regards to transform�average GOC analysis� for reasons described
in Section �	�� and Figures �	��a
 and �	��f
 are identical	
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discriminator or detector� like an ideal observer in models of unique�noise�free detectors

�e�g� Je�ress� ����# Green " Swets� ����# Gilkey " Robinson� ����	� Sources of unique

noise could involve both internal and external noise �Section �����	�

Say the jth stimulus is presented to an observer on a given trial in the ith replication�

Figure ��� represents the details of the ith branch of Figure ���� for the jth stimulus� The

stimulus may in�uence either the common noise only� or the unique noise only� or both

the common noise and unique noise� In the model� the jth stimulus is associated with

a single common noise value� xj� and a particular unique noise random variable� Uj � A

unique noise value� uji� is sampled from Uj on the ith replication� The values xj and

uji are then combined in the mixer to provide a unique�noise�a�ected evidence value�

yji � xj � uji� where  �! denotes some form of mixing� such as additive or multiplicative

mixing� Formally� the mixer is a function� that takes on two arguments� xj and uji�

and produces one value� yji� The value yji is transformed by a continuous s�m�i� transfer

function� h� that maps the decision axis onto a rating scale� This produces a rating

value� rji� on a continuous rating scale� When modelling a discrete rating scale� rji is

converted by a monotonic increasing step function� �� into a value� qji� which lies on

the discrete rating scale� The quantising function is optional� and is not required when

modelling a continuous rating scale� In terms of random variables� Yj � xj � Uj� then

Rj � h�Yj	� and Qj � ��Rj	� In terms of sample values� yji � xj � uji� then rji � h�yji	�

and qji � ��rji	� These random variables are de
ned for the jth stimulus only� and are

distributed across replications �not stimuli	� The value xj may be viewed as a sample

value from some random variable� X� which has event�conditional forms XSN and XN�

The value of xj is constant across replications �hence the single subscript	� although it

could �and generally would	 di�er for di�erent stimuli� The random variable Uj describes

the distribution of unique noise values� across replications� for the jth stimulus� All of

the U �variables may be identically distributed for all stimuli� or each U �variable may take

on a di�erent form for each stimulus� In the ESO� unique noise may be independent

of common noise� although it need not be� The set of U �variables may or may not be

identically distributed for all stimuli� and Uj may depend on the value of xj �e�g� xj could

be a parameter in the distribution of Uj	�

In general� X refers to a common noise decision axis �i�e� a unique�noise�free decision

axis	� Y refers to a unique�noise�a�ected decision axis� R refers to a continuous rating scale�

and Q refers to a discrete rating scale� U �variables do not need to be de
ned on a separate

axis� although they could be� At each stage in Figure ���� there is one random variable per

stimulus� and an experimental stimulus set is associated with a family of random variables

lying on each particular axis� Apart from X� the other random variables in the ESO are

not event�conditional�

�The mixer is only characterised as an operator rather than a function� by analogy with the operators
for addition and multiplication	
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Unique
Noise

Common
Noise

Quantiser
Function,   Λ

Mixer

Function, h
Transfer

xj uji  Uj

xj � uji

yji  Yj

rji  Rj

qji  Qj

Figure ���� General model of a unique�noise�a�ected equivalent statistical observer� presented
with the jth stimulus on the ith replication� showing the model components� sample values
and random variables that are involved in the decision process� The sample values� yji� rji�
and qji� are sampled from ��� random variables� Uj � Rj � and Qj � respectively� The value� xj �
represents common noise� and is a constant across replications� Yj falls on a unique�noise�
a�ected decision axis� Rj falls on a continuous rating scale� and Qj falls on a discrete rating
scale� The quantising function� �� is optional� and is only needed if modelling a discrete �rather
than continuous� rating scale� Further details and interpretation are given in the text�
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Discrete rating scales� Discrete rating scales are viewed as the result of a partition

of a decision axis into adjacent intervals by applying a set of criteria on a decision axis

�McNicol� ����# Green " Swets� ����	� In Figure ���� the quantising function partitions R

into separate intervals� and assigns a value in the domain of Q to each interval on R

in a manner that is monotonic increasing with R� This is equivalent to transforming

R�variables into Q�variables by applying a monotonic increasing step function� �� to the

domain of R� Q�variables are always discrete� regardless of the nature of the Y�variables

or R�variables� A formal de
nition of � is given in Section ������

In principle� the quantising function is optional� and is required only if modelling a

discrete rating scale� rather than a continuous rating scale� In practice� all rating scales are

analysed as discrete scales �Section �����	� partly because a continuous data set cannot be

generated in practice� However� a rating scale may be modelled either as a continuous scale

on R� without the need for a quantising function� or as a discrete scale on Q� depending

on the details of the observer and experiment being modelled� Since the transfer function

is continuous� then whether the random R�variables are continuous or discrete depends

only on the nature of the Y�variables� regardless of whether there is a quantising function

or not�

Together� � and h act like a single monotonic increasing step function� ���y	 �

��h�y		� so that Qj � ���Yj	 is the same random variable as achieved by separately

transforming Yj to Rj � and then Rj to Qj� Any rescaling of Y by h can be subsumed

within ��� obviating the need for a separate intermediate transform� h� or rating scale� R�

Keeping h separate from � may be useful� If a continuous rating scale is used� the scaling

of R� and the ultimate form of h� are determined jointly by the observer and by the exper�

imenter� For example� h may represent the mapping from an observer�s decision axis� Y�

onto the position of a rating slider� represented by R� � may then represent the partition

of the slider scale and coding into a data set� represented by Q� Slider partitioning and

coding �i�e� the mapping from R to Q	 is determined by an experimenter or experimen�

tal equipment� rather than an observer� For convenience� both h and � are treated as

properties of the observer in Figure ����

If modelling a discrete rating scale experiment� the quantising function could be posi�

tioned before the transfer function instead of after it� so that � represents a step function

transform of Y onto Q� and h represents an s�m�i� rescaling of Q� This does not a�ect the

results that follow�

Whether the rating scale is continuous or discrete does not fundamentally a�ect the

theory of GOC analysis� and so the theory is initially presented without regard to the role

of a quantising function� Discrete ratings in the theory of GOC analysis are covered in

Section ������
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Assumptions in the theory of GOC analysis

The assumptions underlying the theory of GOC analysis are represented by Figure ����

The theory assumes an ESO of the particular form in Figure ���� with particular com�

ponents� functions� samples and random variables� Other assumptions are given where

needed �primarily about the existence of expected values	� Otherwise� the theory of GOC

analysis requires few assumptions� and it is easier to point out what is not required� The

theory makes no assumptions about�

�� the type of random variables that describe either unique or common noise �i�e� dis�

crete� continuous or mixed	�

�� the distributional forms involved �e�g� normal� chi�squared� uniform� or unimodal or

multimodal	�

�� how the common noise mixes with unique noise �e�g� additively� multiplicatively� or

otherwise	�

�� whether unique noise and common noise �Uj and xj	 are dependent or independent

of each other�

�� whether or not the U �variables are independent across stimuli�

�� whether or not the Y�variables are independent across stimuli� and

�� whether or not the common noise decision axis� X �from which xj derives	� is either

a likelihood ratio axis� or is s�m�i� with likelihood ratio��

��� The theory of GOC analysis

GOC analysis operates by ordering a stimulus set according to mean rating per stimulus��

As more replications are added� the variance of the mean rating tends to zero� and the

sample mean ratings tend towards expected values of their associated random variables�

The order of a stimulus set therefore tends toward some asymptotic ordering� and the

GOC curve based on the mean rating tends toward an asymptotic GOC curve� For the

jth stimulus� the expected unique�noise�a�ected evidence value is E�Yj	� the expected

rating on R is E�Rj	� and the expected rating on Q is E�Qj	� In order for unique noise

removal from rating data to be equivalent to unique noise removal on a decision axis� the

ordering of stimuli according to expected value must be the same if based on E�Yj	� E�Rj	�

or E�Qj	� What is required is a statistical property that guarantees that the ordering

�GOC analysis works equally well with optimal and sub�optimal decision axes �Boven� ���� Taylor�
����� Taylor et al	� ����� Galvin et al	� ����
	

�It is assumed throughout this chapter that the generalised GOC algorithm in Section �	�	� is used to
calculate GOC curves� either based on sample mean values� or expected values of random variables	
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of stimuli according to expected values is invariant with respect to the order�preserving

transform of the decision axis onto the rating scale� and to the particular scaling of a

rating scale� The key property that achieves this result is called stochastic ordering� also

known as stochastic dominance �Findlay " Whitmore� ����# Kroll " Levy� ����# Whitt�

����	� It is important to note that stochastic ordering is a property of a set of random

variables� rather than a property of any single random variable �in the same way that

numerical ordering is a property of a set of numbers rather than any single number	�

Mathematical results about stochastic ordering are developed in Appendix C� A num�

ber of de
nitions� theorems� and corollaries are presented there� along with their proofs�

and commentary� The key results from Appendix C are restated here without proof�� and

are applied to the ESO given in Figure ���� Within the context of the ESO� these results

form the theory of GOC analysis�

Stochastic ordering may or may not hold for any given set of random variables� In

Figure ���� stochastic ordering �if it occurs	 is 
rst encountered among the Y�variables

on the unique�noise�a�ected decision axis� rather than among the x�values or U �variables�

There are two types of stochastic ordering that are important for GOC analysis� strict

and non�strict stochastic ordering� Strict ordering is relevant to s�m�i� transformations

�e�g� from Y to R	� and non�strict ordering is relevant to step function transformations

�e�g� from R to Q	�

Although the theory of GOC analysis is primarily concerned with sets of random

variables� stochastic ordering also may apply to sets of sampled values� Ratings obtained

in an experiment are viewed as values sampled from the random variable appropriate

to each stimulus� such as rji from Rj � or qji from Qj � on the ith replication� Whether

two sample sets of values are stochastically ordered or not is determined by their sample

cumulative distribution functions �c�d�f��s	� which would replace the c�d�f��s of random

variables in the de
nitions given in the following section�

The theory of GOC analysis does not make sense without an understanding of stochas�

tic ordering� Prior to stating the theory� stochastic ordering is formally de
ned in Sec�

tion ������ along with a description of patterns in the ROC space that correspond to

stochastic ordering� This is followed by the central theorem of GOC analysis in Sec�

tion ������ Section ��� then provides theorems and corollaries of stochastic ordering nec�

essary for the theory of GOC analysis�

�	�� De�nitions of stochastic ordering

The properties of strict and non�strict stochastic ordering are formally de
ned in De
ni�

tions � and �� respectively� followed by a description of patterns in the ROC space that

correspond to stochastic ordering�

�In the same order� and using the same numbering� as in the appendix	
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De�nition � Consider any two random variables	 Y� and Y�	 which are either continuous	

or discrete	 or mixed	 and which have respective cumulative distribution functions FY�

and FY�� Y� is stochastically less than Y� �denoted Y�
st
� Y�� if and only if FY��t	 �

FY��t	 � t � R and if FY��t	 � FY��t	 for some non�zero interval on the real number line R�

The converse is Y�
st

� Y�	 which means that Y�
st
� Y� is not true�

De�nition � For two random variables	 Y� and Y�	 Y� is stochastically less than or equal

to Y� �denoted Y�
st
� Y�� if and only if FY��t	 � FY��t	 � t � R� The converse is Y�

st

� Y�	

which means that Y�
st
� Y� is not true�

If Y� and Y� represent the Y�variables for any two stimuli� then De
nition � states

that Y� is strictly stochastically less than Y� �Y�
st
� Y�	 if the c�d�f� of Y� is greater than

or equal to the c�d�f� of Y�� for all values of their argument� and if a strict inequality

occurs over some portion of the real number line� An example showing the c�d�f��s of two

strictly ordered random variables is given in Figure C�� in Appendix C� Y� and Y� are

stochastically ordered� but not strictly ordered �Y�
st
� Y�	 if the condition is dropped that

FY��t	 � FY��t	 necessarily holds over a range of t � R� For any particular pair of random

variables� non�strict ordering implies that either Y� � Y�� or Y�
st
� Y�� but not both�

Even though De
nitions � and � are stated using the notation of Y�variables� the

property is not restricted to Y�variables� and may apply �or not	 to pairs of random

variables either on X� Y� R� or Q�

For any two stimuli� stochastic ordering of their Y�variables� say Y� and Y�� can be

checked using a stimulus�pair ROC curve�� in which Y� takes the place of the XN distri�

bution� and Y� takes the place of the XSN distribution� �Note that a stimulus�pair ROC

curve is de
ned for only two individual stimuli out of a stimulus set� It is di�erent from an

experimental ROC curve� which is based on an entire stimulus set�	 If Y�
st

� Y�� then the

stimulus�pair ROC curve never lies below the chance line at any point� If Y�
st
� Y�� then

the ROC curve never lies below the chance line� and it must lie above it at some point�

Similarly� if Y�
st
� Y�� then the ROC curve never lies above the chance line� and if Y�

st
� Y��

then it must lie below the chance line at some point� Y� and Y� do not have to be s�m�i�

with their likelihood ratio in order to be stochastically ordered� so there is no restriction

about any monotonic decreasing slope of the stimulus�pair ROC curve�	 If some portion

of the stimulus�pair ROC curve lies above the chance line� and another portion lies below�

�Or� equivalently� an ordinal dominance graph �Bamber� ����
	 Ordinal dominance graphs could also
be called stochastic dominance curves� or stochastic ordering curves	 Bamber �����
 showed how ordinal
dominance graphs and ROC curves relate to one another one is the rotation of the other by ���� in
the ROC space around the central point� ��	���	�
	 An ordinal dominance graph may be converted into
an ROC curve� and vice versa� without loss of information	 ROC curves are preferred here� because of
familiarity	

�If Y� and Y� were s	m	i	 with their pairwise likelihood ratio� then the slope of the stimulus�pair ROC
curve would have monotonic decreasing slope �Green � Swets� ����� Egan� ����
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then the random variables are not stochastically ordered� For example� if Y� and Y� are

both Gaussian with equal variances� where the means� �� and ��� are such that �� � ���

then the stimulus�pair ROC curve lies entirely above the chance line� which implies that

Y�
st
� Y�� If �� � ��� then the stimulus�pair ROC curve lies entirely below the chance line�

which implies that Y�
st
� Y�� If� on the other hand� Y� and Y� are both Gaussian with

unequal variances �regardless of �� and ��	� then the stimulus�pair ROC curve crosses the

chance line at some point �McNicol� ����	� in which case Y�
st

� Y�� Y�
st

� Y� and Y� �� Y��

Stochastic ordering of random variables sometimes follows the same form as the nu�

merical ordering of quantities� but not always� If Y�
st
� Y�� then Y�

st
� Y�� for example� and

if Y� � Y� then Y�
st
� Y�� However� Y�

st

� Y� does not imply that Y�
st
� Y�� It is possible

that Y� and Y� are such that Y� �� Y�� Y�
st

� Y� and Y�
st

� Y� all hold simultaneously�

Further details of this and other rules of stochastic ordering are in Appendix C �following

De
nition �	�

Stochastic ordering is a transitive property that may apply to more than two random

variables� Stochastically ordered sets of random variables are possible�

Corollary � �Transitivity� Let Y�	 Y� and Y� be any three random variables� If Y�
st
� Y�

and Y�
st
� Y�	 then Y�

st
� Y�� If Y�	 Y� and Y� are such that either Y�

st
� Y�

st
� Y� or

Y�
st
� Y�

st
� Y�	 then Y�

st
� Y�� If Y�

st
� Y�

st
� Y�	 then Y�

st
� Y��

�	�� The central theorem of GOC analysis

The theory of GOC analysis is a statement about the ESO outlined in Figure ���� and the

random variables associated with it� The central theorem of GOC analysis is that

If the Y�variables on a unique�noise�a�ected decision axis� Y� are stochastically

ordered such that Y�
st
� Y�

st
� Y�

st
� � � � � then the continuous rating scale distri�

butions are such that R�
st
� R�

st
� R�

st
� � � � and the discrete rating scale distri�

butions are such that Q�

st
� Q�

st
� Q�

st
� � � � Furthermore� if Y�

st
� Y�

st
� Y�

st
� � � � �

then E�Y�	 � E�Y�	 � E�Y�	 � � � � � E�R�	 � E�R�	 � E�R�	 � � � � � and

E�Q�	 � E�Q�	 � E�Q�	 � � � �

The theorem implies that the ordering of a stimulus set according to expected rat�

ing value� E�Rj	 �for a continuous rating scale	� or E�Qj	 �for a discrete rating scale	

are the same as the ordering according to expected values on Y� E�Yj	� and that all

of these orderings are determined by the stochastic ordering of the Y�variables� At

the very least� there must be non�strict stochastic ordering between any successive pair

of Q�variables �Qj and Qj��	� and non�strict numerical ordering between their means

�E�Qj	 and E�Qj��		� The ordering between successive pairs could be strict rather than

non�strict for any particular instance� depending on how ��r	 partitions and transforms R�
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that is� how ��h�y		 partitions and transforms Y� The central theorem holds for all possi�

ble s�m�i� transfer functions	 h	 and all possible increasing step functions	 �� such that the

expected values of the R�variables and Q�variables exist and are 
nite� The relationships

among the Y� R and Q�variables and their expectations may be summarised as

Y�
st
� Y�

st
� � � � � R�

st
� R�

st
� � � � � Q�

st
� Q�

st
� � � �

� � �
E�Y�	 � E�Y�	 � � � � E�R�	 � E�R�	 � � � � E�Q�	 � E�Q�	 � � � �

�where arrows show the direction of implication	�

The theoretical results that justify the central theorem of GOC analysis are given in the

following sections� Note that the theorem is entirely predicated on the stochastic ordering

of the Y�variables �i�e� if Y�
st
� Y�

st
� Y�

st
� � � � 	 Stochastic ordering of Y�variables may or

may not hold for any particular observer� The central theorem describes the consequences

if it does hold� The implications when it does not hold are described in Section �����

and ����

No mention has been made of the x�values or U �variables which are part of the ESO

in Figure ���� This is deliberate� because the theory of GOC analysis can only recover

the orderingand hence ROC curvebased on a set of Y�variables� The consequences of

this for existing models of unique noise are discussed in Section ���� Until then x�values

and U �variables are not treated separately� but are explicitly incorporated within the set

of Y�variables�

�� Stochastic ordering

There are three theorems in statistics about stochastic ordering that apply outside of the

GOC context� These theorems �numbered � to �	� and their corollaries� contribute to the

central theorem of GOC analysis� Proofs of the statistical theorems and corollaries are

given in Appendix C�

Theorem � and its corollaries underlie the relationship between the Y�variables and the

R�variables� and the link between strict stochastic ordering of a set of random variables

and strict numerical ordering of their expected values� Theorem � shows that if two

Y�variables are not stochastically ordered� then the expected values of the corresponding

R�variables depend on the transfer function� h� and on the particular scaling of a rating

scale� Theorem � shows that stochastic ordering is a su�cient condition for GOC analysis

to be transform�invariant �for any transfer function� and any ordinal rescaling of a rating

scale	� whereas Theorem � shows that stochastic ordering is also a necessary condition�

Theorem � and its corollaries describe the relationship between the R�variables and the

Q�variables� and implications for discrete rating scales� The conditions under which the

Q�variables are strictly ordered� or non�strictly ordered� are given in Section ������
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���� Stochastic ordering and continuous rating scales

A useful concept in the theory of GOC analysis is the mutual domain�

De�nition � The domain of a random variable is the set of values of R for which the

probability mass or density is non�zero� The mutual domain of a set of random variables

is the smallest continuous interval on R containing all values of the union of the domains

of the random variables�

The mutual domain is not a standard mathematical concept� It is introduced for conve�

nience� for situations when the same transform is applied to each of a large set of random

variables �such as the set of Y�variables for an entire stimulus set	� Rather than being

concerned about bounds of the domain over which a transform must be de
ned �which

could potentially consist of many disjoint intervals	� it is simpler to de
ne transforms over

the smallest single continuous interval on which any of the random variables are de
ned�

The mutual domain may be the entire real number line� R� or only a small subset of R�

Theorem � If Y� and Y� are any two continuous	 mixed or discrete random variables

whose expectations exist and are �nite	 then Y�
st
� Y� implies that E �Y�	 � E �Y�	� Fur�

thermore	 for any strictly monotonic increasing transform	 h	 de�ned over the mutual

domain of Y� and Y�	 then Y�
st
� Y� implies that h�Y�	

st
� h�Y�	 and	 consequently	 that

E �h �Y�		 � E �h �Y�			 if the expectations exist and are �nite�

The condition that the expectations exist and are 
nite is an important one� because there

are random variables �e�g� Cauchy	 for which no expectation exists� in which case� results

involving expected values do not apply� Further details about the existence conditions

of expectations are available in Appendix C �De
nition �	� Note that although Y�
st
� Y�

implies E �Y�	 � E �Y�	� the converse is not true� One counterexample is if Y� and Y�

are Gaussian with unequal variances �from an illustration given in Section �����	� In this

counterexample� E �Y�	 � E �Y�	� but Y�
st

� Y��

Theorem � can be extended to cover multiple� nested transforms� which is shown in

Corollary �� and to a set of more than two random variables� which is shown in Corollaries �

and ��

Corollary � Let Y� and Y� be any two random variables whose expectations exist and are

�nite� Let h�	 h�	 h� � � � be continuous	 strictly monotonic increasing functions	 where

h� is de�ned on the mutual domain of Y� and Y�	 h� is de�ned on the mutual domain of

h��Y�	 and h��Y�		 h� is de�ned on the mutual domain of h��h��Y�		 and h��h��Y�			 and

so on� If Y�
st
� Y�	 then

E�� � � h��h��h��Y�			% � E�� � � h��h��h��Y�			%

if the expectations exist and are �nite�
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Corollary � If there is a stochastically ordered set of random variables	 fY� Y� Y� � � � g
such that Y�

st
� Y�

st
� Y�

st
� � � � 	 then h�Y�	

st
� h�Y�	

st
� h�Y�	

st
� � � � holds for any continuous

s�m�i� transform h de�ned over the mutual domain of all of the Yj�

Corollary � For any fY� Y� Y� � � � g	 de�ned and stochastically ordered as in Corollary �	

and for any continuous s�m�i� transform h de�ned over the mutual domain of all the Yj	

E�Y�	 � E�Y�	 � E�Y�	 � � � and E�h�Y�		 � E�h�Y�		 � E�h�Y�		 � � � The ordering of the

expected values of both the untransformed and the transformed random variables follows

the stochastic ordering of the Y�variables	 if the expectations exist and are �nite�

Corollary � Corollaries � and  hold for any arbitrary combination of strict and non�

strict inequalities in the ordering sequence	 where the ordering is stochastic for the random

variables and numerical for their expected values� For example	 if Y�
st
� Y�

st
� Y�

st
� � � � 	

then h�Y�	
st
� h�Y�	

st
� h�Y�	

st
� � � � 	 and consequently	 E�Y�	 � E�Y�	 � E�Y�	 � � � � and

E�h�Y�		 � E�h�Y�		 � E�h�Y�		 � � � �

Corollary � shows that if the set of Y�variables is stochastically ordered� then the

resulting set of R�variables �Rj � h�Yj		 is also stochastically ordered� and the R�variables

follow the same ordering as the Y�variables�
 Corollary � shows that the same ordering

extends to the expected values of the Y�variables� E�Yj	� and to the expected values of

the R�variables� E�Rj	� This is particularly relevant in the theory of GOC analysis� since

GOC analysis is based on the ordering of a stimulus set based on mean ratings on R�

rather than mean evidence values on Y�

Corollary � shows that non�strict ordering between a pair of Y�variables implies non�

strict ordering between the expected values of the associated pair of R�variables� Non�strict

ordering of R�variables implies that two stimuli could be tied according to expected rating

value� but the fact of stochastic ordering �even if non�strict	 implies the order of means

on R could not be reversed from the order of means on Y� The consequences of non�strict

stochastic ordering are discussed in Section ����

If the Y�variables are strictly stochastically ordered� then the asymptotic GOC curve

based on E�Rj	� is identical to the theoretical curve based on E�Yj	� which represents

theoretical performance� once unique noise has been averaged out on Y� Other than the

stipulations that the transfer function� h� is s�m�i�� and that the expectations involved exist

and are 
nite� these results hold regardless of the form of h� The transfer function need

not be known in order for stochastic ordering to hold on R�

If the s�m�i� transfer function from Rj to Yj is Rj � h��Yj	 for all j� Corollary � shows

that any subsequent s�m�i� transform of Rj onto a new rating scale �de
ned by h��Rj	� for

all j	� still maintains the same stochastic ordering of the underlying Y�variables� Further

	The converse is also true� which can be shown by re�applying Corollary � to the R�variables� using the
inverse function h��	
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s�m�i� transforms of the rating scale �e�g� h��h��Rj		 � � � 	 also maintain the same stochastic

ordering� This implies that if the set of Y�variables is stochastically ordered� then �from

Corollary �	� the ordering of a stimulus set according to expected rating value is the same

regardless of the particular scaling of a rating scale� This implies that transform�average

GOC analysis results in the same asymptotic GOC curve�

Summary

With regards to the ESO in Figure ���� Theorem � and its corollaries showed that a strictly

stochastically ordered family of Y�variables implies a strictly ordered family of R�variables

�and vice versa	� Strict stochastic ordering of random variables implies strict numerical

ordering of expected values �but not vice versa	� This demonstrates the 
rst part of the

central theorem of GOC analysis� and is summarised by

Y�
st
� Y�

st
� � � � � R�

st
� R�

st
� � � �

� �
E�Y�	 � E�Y�	 � � � � E�R�	 � E�R�	 � � � �

These results hold true� regardless of the speci
c transfer function� h� as long as h is s�m�i�

and de
ned on the mutual domain of the Y�variables� and given that the expectations

involved exist and are 
nite� Furthermore� any number of s�m�i� rescalings of R� or of Y�

do not a�ect these results�

���� Consequences if stochastic ordering does not hold

A major result of Theorem � and its corollaries is that the stochastic ordering of Y�variables

is a su�cient condition for the numerical ordering of expected values� on Y or on R� to

follow the stochastic ordering under any s�m�i� transform� Theorem � shows that it is also

a necessary condition�

Theorem � Let h	 Y� and Y� be de�ned as for Theorem 
	 such that E�h�Y�		 and

E�h�Y�		 both exist and are �nite� If Y�
st

� Y�	 Y�
st

� Y� and Y� �� Y�	 then regardless

of the order of E �Y�	 and E �Y�		 it is always possible to choose a strictly monotonic

increasing transform	 h	 such that E�h�Y�		 is either less than	 greater than	 or equal to

E�h�Y�		�

Theorem � shows that if the Y�variables associated with two stimuli are not stochasti�

cally ordered� then the ordering of the stimuli according to mean rating� E�R�	 and E�R�	

�where Rj � h�Yj		� is not independent of h� Not only that� but by a judicious choice of

transform� it is always possible to order two stimuli as desired� or even to have them tied

equal� Although the theorem is framed in terms of a transfer function� h� that rescales a

decision axis� the same result also applies to the deliberate rescaling of a rating scale�
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Theorem � implies that if stochastic ordering does not hold on Y� then the unique�

noise�free� asymptotic GOC curve depends on the speci
c transfer function and scaling of

a rating scale� If one of the two stimuli in the example was associated with the SN event�

and the other stimulus was associated with the N event� then a reversal of means can

alter the asymptotic GOC curve� because the hit and false alarm rate pairings that the

stimuli contribute to can change��� Without stochastic ordering� expected unique�noise�

free performance �such as area under the asymptotic GOC curve	 could be manipulated

and changed� The scaling of a rating scale can be changed once data has been collected�

regardless of whether stochastic ordering applies or not� If stochastic ordering does not

hold� then asymptotic performance depends� to some extent� on the details of data analysis

rather than on the decisions that were made by the observer� In contrast� if stochastic

ordering does hold� Theorem � shows that there is no possible s�m�i� transfer function or

rescaling of a rating scale that could possibly change the order of expected values�

One example of the order reversal of means has already appeared �in Table ��� in

Section �����	� The numeric example showed that the order of two stimuli according to

mean rating depended on the scaling of the rating scale� �Sample means were involved�

and stochastic ordering did not hold between the sample c�d�f��s	� A more general example

appears in the proof of Theorem � in Appendix C� The proof gives a particular transform

that guarantees order�reversal for any pair of random variables that are not stochastically

ordered�

���	 Stochastic ordering and discrete rating scales

Section ����� provided key results that described a continuous s�m�i� transform of a unique�

noise�a�ected decision axis� Y� onto a continuous rating scale� R� but more development is

needed to understand GOC analysis of data on a discrete rating scale� Q �which includes

binary�decision data	� In the ESO sketched in Figure ���� discrete ratings are produced

by the quantising function� Q � ��R	� which is a monotonic increasing step function that

converts a set of R�variables into a set of Q�variables� The Q�variables are always discrete�

regardless of the nature of the R�variables� or the underlying Y�variables�

An emphasis is placed on the distinction between strict and non�strict stochastic or�

dering� when dealing with GOC curves based on discrete rating scales� This is because

non�strict stochastic ordering allows the expected values of two successive members of the

family Q�variables to be equal� that is� Qj

st
� Qj�� implies that E�Qj	 � E�Qj��	 is possi�

ble� �although not guaranteed	� If Qj

st
� Qj��� on the other hand� then E�Qj	 � E�Qj��	

�
Although whether or not hit and false alarm rates change for any speci�c pair of stimuli� and any
speci�c transform� depends on the e�ect that the transform has on the expected ratings for the rest of the
stimulus set	 The same ordering of event�labels in the generalised GOC algorithm �Section �	�	�
 could
occur based on a di�erent ordering of mean ratings� which would not change the asymptotic GOC curve	 It
seems much more likely� though� that a change of one or many pairs of stimuli would alter the asymptotic
GOC curve� because there are many more ways of disordering a particular event�label sequence than there
are ways of maintaining it	
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must hold �by Theorem �� applied to Qj and Qj��	� and so E�Qj	 � E�Qj��	 is not

possible� Preferably� tied expected values on Q should be avoided if possible� because they

lead to gaps between points in the GOC curve based on Q that are not present in the

GOC curve based on R or on Y� If that is the case� then the curve based on Q may only

be an approximation to the curve based on R or Y� On the other hand� if the Q�variables

are all strictly ordered� following the ordering of Y�variables� then the GOC curve based

on value of E�Qj	 is identical to the curve based on values of E�Yj	�

�An analogous e�ect to having tied expected values on Q occurs in a unique�noise�free

context based on a decision axis� X� A monotonic increasing step function transform

may be used to transform X� in order to arrive at discrete ratings on Q� Bamber ������

Figure �	� showed how an ROC curve based on a discrete rating scale is consistent with

the theoretical ROC curve based on X� but that portions of the theoretical ROC curve

may not be represented by the rating ROC curve� because the step function results in

pooling or massing of probability�	

It was noted previously in Section ��� that the composite step function� ���y	 �

��h�y		� could be applied directly to Y without needing to work through an intermediate

set of R�variables� Possible reasons for keeping R and Q separate were given in Section ����

mostly with regard to what is being modelled� The results that follow are based on a

transform from R to Q� If preferred� however� Y�variables can replace R�variables and

�� can replace � in the results that follow� without altering the relationship between

Y and Q�

The discrete rating scale� Q� may be achieved by partitioning R into successive inter�

vals� Let )R � f� � �  r� r� r� � � � g� r��� � r�� be the set of cuto�s that forms the partition

of R� and let *Q � f� � �  q� q� q� � � � g� q��� � q�� be the discrete domain of Q� where

where the number of values in *Q is one more than the number of cuto�s in )R� Formally�

the step function is de
ned as

��r	 � q� for r � r��� � r � r� ����	

For the jth stimulus� whereQj � ��Rj	� the e�ect of � is to mass the probability associated

with Rj within the �th interval� r��� � r � r�� and assign it to the probability mass value

of Qj at q�� that is� P �Qj � q�	� The values of *Q de
ne the scaling of the discrete rating

scale� Although *Q is typically a set of integers� values in *Q can be any real numbers� For

example� in transform�average GOC analysis of Taylor et al��s �����	 data set in Chapter ��

the values of *Q were determined by the general transform� g �Equation ���	� applied to

a set of integers� The transformed ratings that resulted were generally non�integer �e�g� if

g�r	 �
p
r	�

Statistical results associated with stochastic ordering and Q�variables are developed

and proved in Section C�� in Appendix C� The main theorem on the topic �Theorem �	

and its corollaries are reproduced here�
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Theorem � Let Rj and Rk be any two of the R�variables in a family of random variables

fR� R� R� � � � g� Let the step function �	 and its related partition )R	 be de�ned as

above	 for Equation ��
	 and let Qj � ��Rj	 and Qk � ��Rk	� If Rj

st
� Rk	 then Qj

st
� Qk�

Whether Qj

st
� Qk holds	 or Qj � Qk holds	 depends on how )R partitions the mutual

domain of Rj and Rk� If FRj�r�	 � FRk�r�	 for any r� � )R	 then Qj

st
� Qk	 otherwise

Qj � Qk�

Theorem � states that if a pair of R�variables follows a strict stochastic ordering� then

the resulting pair of Q�variables follows a stochastic ordering which is non�strict at the very

least� and which could be strict for any particular pair� depending on certain conditions�

Since Rj

st
� Rk� then FRj�r	 � FRk�r	 for all r� and FRj�r	 � FRk�r	 holds over some

interval of r�values� and possibly more than one such interval� If any of the cuto�s� r�� in

the partition of R� )R� fall within an interval over which the c�d�f��s of the R�variables are

di�erent� then the strict ordering Qj

st
� Qk holds� �The reason for this is covered in detail

in the proof of Theorem � given in in Appendix C�	 Conversely� if none of the cuto�s� r��

in )R fall within an interval over which the c�d�f��s of the R�variables are di�erent� then

Qj � Qk� In other words� if the partition� )R� is such that it only partitions the mutual

domain of Rj and Rk at places where their c�d�f��s are equal� then Qj � Qk�

Where the partition )R falls on the mutual domain of the R�variables is independent

of the intervals over which FRj�r	 � FRk�r	 holds true� This implies that it is possible to

judiciously choose )R such that Qj

st
� Qk results from the transform� �� or to choose )R

such that Qj � Qk�

In loose terms� the 
ner the partition of R� the less likely it is that Qj � Qk and the

more likely it is that Qj

st
� Qk� because the more likely it is that at least one cuto�� r��

will fall within an interval over which the c�d�f��s of Rj and Rk are di�erent� In practice�

the greater the number of points on a discrete rating scale� the more likely it is that strict

stochastic ordering is maintained on Q�

The conditions for the strict ordering of Qj and Qk are as general as possible� in that

no distributional assumptions about Rj and Rk were made� Under certain conditions

about the form of Rj and Rk� Qj and Qk will always be strictly ordered� regardless of how

)R partitions the mutual domain of Rj and Rk� Speci
cally� if the c�d�f��s of Rj and Rk

are always di�erent over their entire mutual domain on R� then as long as there is at least

one cuto� r� � )R that falls within that mutual domain� then Qj

st
� Qk holds� This is

always guaranteed if the mutual domain is the entire real number line� R� One example

is if Rj and Rk both Gaussian with equal variance but di�erent means�

It does not matter whether Rj

st
� Rk holds� or Rj

st
� Rk holds� in the premise of

Theorem �� Either way� the same conclusion can be drawn� Hence�
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Corollary �

Rj

st
� Rk � Qj

st
� Qk

� E�Qj	 � E�Qk	�

A discrete rating scale may be further partitioned into a second rating scale with fewer

categories� If so� Corollary � can be iteratively applied to the Q�variables themselves �in

place of the R�variables	� The corollary shows that further partitioning of a discrete rating

scale maintains non�strict stochastic ordering �if an ordering it is present to begin with	�

This type of repartitioning is used later� in Section ��� for example� in which a ���point

rating scale is converted into a binary�decision scale by applying a single cuto� on the

���point scale�

Corollary � shows that the converse of Theorem � is not true in that Qj

st
� Qk does

not imply Rj

st
� Rk� One counterexample is if Rj � Rk� because Qj

st
� Qk holds �by

Corollary �	� but Rj � Rk implies that Rj

st

� Rk� so the converse to Theorem � cannot

hold� Furthermore� although Qj

st
� Qk implies E�Qj	 � E�Qk	� the converse is not true�

A counterexample was described in the preceding section� in the examples of the order

reversal of means based on Table ��� in Section ������ The mean ratings �on a discrete

rating scale	 followed any given numerical ordering� but the random variables that describe

the distributions involved were not stochastically ordered�

Further corollaries that follow from Theorem � are�

Corollary 	 Let Rj and Rk be any two random variables whose expectations exist and are

�nite� Let ��	 ��	 �� � � � be left�continuous	 monotonic increasing step functions	 where

�� is de�ned on the mutual domain of Rj and Rk	 �� is de�ned on the mutual domain of

���Rj	 and ���Rk		 �� is de�ned on the mutual domain of ������Rj		 and ������Rk			

and so on� If either Rj

st
� Rk or Rj

st
� Rk	 then

E�� � ����������Rj			% � E�� � ����������Rk			%

if the expectations exist and are �nite�

Corollary 
 Assume there is a family of stochastically ordered R�variables	 R� R� R� � � � 	

in which any Rj may be either continuous	 discrete	 or mixed� Let �	 )R and *Q be

de�ned as for Theorem �	 and let Qj � ��Rj	 de�ne a family of discrete Q�variables	

Q� Q� Q� � � � If the R�variables are such that R�
st
� R�

st
� R�

st
� � � � 	 then the Q�variables

are such that Q�

st
� Q�

st
� Q�

st
� � � � Strict stochastic ordering of the Q�variables is possible	

but not guaranteed	 in accordance with the conditions given in Theorem ��
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Corollary � For a family of R�variables and Q�variables that are de�ned and stochas�

tically ordered as in Corollary �	 the ordering of the expected values of the Q�variables

follows the stochastic ordering of the R�variables	 if the expectations exist and are �nite	

so E�Q�	 � E�Q�	 � E�Q�	 � � � Strict numerical ordering of these expectations is possible	

but not guaranteed	 in accordance with the conditions given in Theorem ��

Theorem � and Corollaries �� � and �� about strict stochastic ordering following con�

tinuous s�m�i� transforms of Y�variables have their respective parallels in Theorem � and

Corollaries �� � and � about non�strict stochastic ordering following monotonic increasing

step function transforms of R�variables�

Corollaries �� � and � complete the central theorem of GOC analysis by showing that

if the Y�variables are stochastically ordered� then the expected values of the Q�variables

the expected mean rating values on the discrete rating scalehave a numerical ordering

that follows the stochastic ordering of the Y�variables� The conditions in the proof of

Theorem � that are referred to in Corollaries � and � are described following the statement

of Theorem �� namely that if any r� in the partition of R� )R� falls within any interval over

which the c�d�f��s of two R�variables are di�erent� then the resulting pair of Q�variables

are strictly ordered� otherwise the Q�variables are equal� and hence non�strictly ordered�

Corollary �� about nested step function transforms� is relevant to transform�average

GOC analysis� Each of the transforms� apart from the 
rst one� may be used to implement

an s�m�i� rescaling of prior s�m�i� rescalings of the initial discrete rating scale ���R	���

In all cases� stochastic ordering holds� although it is not necessarily strict� In general�

Corollary � implies that once strict ordering has been lost between a pair of random

variables� no further nesting of transforms �or rescalings	 can recover it�

In the ESO in Figure ���� a continuous rating scale� R� is intermediate between the

decision axis� Y� and the discrete rating scale� Q� but this is not necessary� It was stated

earlier �p� ���	 that ���y	 � ��h�y		 could be applied directly to Y without requiring

either h or R to be separate� This does not alter the results of Theorem � and its corollaries�

but only changes how they are applied �using a step function denoted �� rather than ��

and to random variables denoted  Y! rather than  R!	�

Summary

With regards to the ESO in Figure ���� Theorem � and its corollaries showed that a

strictly stochastically ordered family of R�variables implies a non�strictly ordered family of

Q�variables �but not vice versa	� Non�strict stochastic ordering of random variables implies

non�strict numerical ordering of expected values �but not vice versa	� This demonstrates

��This may be done by a careful choice of cuto�s� such that each successive transform does not pool
neighbouring categories from any previous transform	
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the second part of the central theorem of GOC analysis� which is summarised by

R�
st
� R�

st
� � � � � Q�

st
� Q�

st
� � � �

� �
E�R�	 � E�R�	 � � � � E�Q�	 � E�Q�	 � � � �

These results hold true� regardless of the speci
c quantising function function� �� as long

as � is monotonic increasing and de
ned on the mutual domain of the R�variables �given

that the expectations involved exist and are 
nite	� Furthermore� any number of monotonic

increasing step function transforms of Q� or of R� do not a�ect these results�

Strict stochastic ordering may occur between any particular pair of Q�variables� Qj

and Qk� if the partition of R� )R� contains any cuto� �r�	 that falls within an interval

where the c�d�f��s of Qj and Qk are di�erent� Qj and Qk are equal if and only if no such

cuto� exists� This must occur when the c�d�f��s of Rj and Rk are always di�erent over their

mutual domain� An entire family of Q�variables would be strictly ordered� for example�

if the c�d�f��s of all R�variables were di�erent over the mutual domain of all R�variables�

and assuming that at least one partition cuto� fell within the mutual domain� This is a

su�cient condition for strict ordering of Q�variables� but is not necessary� In the absence of

knowledge about the underlying R�variables� then the greater the number of categories on

a discrete rating scale� Q� the more likely it is that strict stochastic ordering is maintained

throughout Q�

��� Generalisation of the theory of GOC analysis

The theory of GOC analysis accounts for the removal of unique noise as long as the

statistical properties of unique and common noise remain constant across replications�

When applied to multiple observers� the theory requires a strong assumption about the

nature of the individuals in the group� namely that they can all be described by the same

equivalent statistical observer� This assumption is hard to justify because of well known

individual di�erences in performance� The central theorem of GOC analysis may account

for any single observer in an experiment� but what about a group of observers� each of

which has their own peculiar unique noise characteristics� common noise distributions�

mixture process� decision axis� transfer function� rating scale� and even rescaling of the

rating scale� What then�

Two generalisations of the theory of GOC analysis are developed here� which show

that under certain conditions� ��	 observers with di�erent individual statistical charac�

teristics may be combined without loss of stochastic ordering� and ��	 weighted sums of

ratings taken across observers also maintain stochastic ordering� Appendix D provides

proofs of a theorem �Theorem �	 and its corollaries� that show the circumstances under
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which stochastic ordering may extend to a group of observers� each of which can have

very di�erent unique noise characteristics� common noise distributions� mixture process�

decision axes� transfer functions� and rating scales� If all observers in a group share the

same statistical properties� the generalisation reduces to the central theorem of GOC

analysis� already described� Theorem � also extends the theory of GOC analysis to arbi�

trarily weighted sums of ratings� Conventional GOC analysis based on unweighted sums

of ratings� or on arithmetic mean ratings� are both special cases of weighted sums�

The key results proved in Appendix D� are restated here without proof��� The results in

Appendix D follow from the results in Appendix C� and require extending the underlying

model of the theory in order to cover multiple observers� Conceptually� individual observers

in a group each have their own ESO� which means they each have their own common

noise decision axis� X� sample set of x�values� unique noise U �variables� mixture process�

Y�variables� transfer function� R�variables� quantising function� and their own set of Q�

variables� In Appendix D� each set of variables and functions is collectively termed a

division �rather than an ESO or observer	 to keep mathematical results separate from their

interpretation� In its broadest form� a division represents a model of a set of replications

that share the same statistical details� At this point� assume each division represents an

individual observer� The interpretation of a division is broadened later� after the extensions

to the theory have been presented�

Notation� Let � � � � � � � � denote the observer number� and � � � � � � � � denote the

stimulus index number� For the �th stimulus and the �th observer� the common noise value

is x���# the random variables are U���� Y���� R���� and Q���# the mixture process is ��� the

transfer function is h� and the quantising function is ��� For the �
th observer� the random

variables are related by

Y��� � x��� �� U���

R��� � h��Y���	 

and

Q��� � ���R���	 �

In Section ���� the model for a single observer was free from assumptions about distribu�

tional forms and about the dependence or independence of variables� The same freedom

applies for each of the observers de
ned here� and also to any interactions across observers

��In the same order� and using the same numbering� as in the appendix	
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�e�g� Y��� may or may not be independent of Y���� etc�	� Furthermore� the mixture processes

������ � � � � transfer functions h� h� h� � � � � and quantising functions ������ � � � may

be either the same or di�erent� across observers� Also� let a� a� a� � � � be a series of posi�

tive constants� These are used as weights when calculating a weighted sum of ratings� or

weighted average rating�

Like the statistical theorems presented in Section ���� the statistical theorem about

weighted sums of ratings deals with a minimal situation� in this case involving only two

stimuli and two observers� Corollaries to the theorem extend the results to cover a group

containing any number of observers� and stimulus sets containing any number of stimuli�

The theorem and its corollaries are stated in terms of Y�variables� as if decision axes from

various observers could be combined �which is only a temporary measure� for convenience	�

The results are later applied to rating variables on R and on Q�

Theorem � Let a� and a� be any two positive constants� If Y��j
st
� Y��k and Y��j

st
� Y��k	

then �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	�

Theorem � is easy to state but hard to prove� It states that if the Y�variables for observers

� and � are stochastically ordered for two di�erent stimuli �numbers j and k	� where the

stochastic ordering is the same for each observer� then the weighted sum of the Y�variables

�summed across observers on a per�stimulus basis	 is also stochastically ordered� in the

same order as for each observer�

Corollary �� extends Theorem � to cover an arbitrary number of observers�

Corollary �� If Y��j
st
� Y��k for all � � � � � � � m	 then�� mX

���

a�Y��j

�A st
�

�� mX
���

a�Y��k

�A ����	

holds for any m � ��

Corollary �� further extends Theorem � to cover an an arbitrary number of stimuli� and

Corollary �� states the implication for the expected values of the weighted sums�

Corollary �� If the Y�variables for each of m observers form a strictly stochastically

ordered set	 and the same ordering holds within each set	 then the weighted sums across

observers follow the same ordering� Without loss of generality	 if Y���
st
� Y���

st
� � � � holds

for all observers	 � � � � � � � m	 then�� mX
���

a�Y���

�A st
�

�� mX
���

a�Y���

�A st
�

�� mX
���

a�Y���

�A st
� � � �
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Corollary �� Without loss of generality	 if Y���
st
� Y���

st
� � � � holds for all observers	

� � � � � � � m	 then

E

�� mX
���

a�Y���

�A � E

�� mX
���

a�Y���

�A � E

�� mX
���

a�Y���

�A � � � �

Corollary �� shows that if each observer has a strictly stochastically ordered decision

axis� Y� where all of the observers order an entire stimulus set in the same way �but

each based on their own Y�variables	� then the weighted sum of the Y�variables �summed

across observers on a per�stimulus basis	 will also be stochastically ordered� and will follow

the same order as for each observer� Consequently� the expected values of weighted sums

follow the same ordering �Corollary ��	� Given the condition of stochastic ordering for each

observer� then each individual�s particular scaling on Y does not matter� Furthermore�

the Y�axis for one observer does not have to be an s�m�i� transform of the Y�axis of another

observer in order for Corollaries �� and Corollary �� to hold� In contrast� if there is at

least one observer for whom stochastic ordering of Y�variables does not apply� then it is

not possible to state that the ordering of weighted sums in Corollaries �� and �� must

holdthe ordering of weighted sums may or may not hold for any speci
c case�

The next two corollaries are concerned with non�strict stochastic ordering between the

jth and the kth Y�variables for each of two observers�

Corollary �� If Y��j
st
� Y��k and Y��j

st
� Y��k	 then �a�Y��j � a�Y��j	

st
� �a�Y��k � a�Y��k	�

Corollary �� If either �a Y��j
st

� Y��k and Y��j
st
� Y��k	 or �b Y��j

st
� Y��k and Y��j

st

� Y��k	

then �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	�

Corollary �� shows that if the Y�variables for both observers are non�strictly ordered�

then the weighted sums is also non�strictly ordered� In contrast� Corollary �� shows that

if there is strict ordering for either observer� then the weighted sums must be strictly

ordered� Below� Corollary �� is the extension of Corollary �� to more than two observers�

and Corollary �� is the extension of Corollary �� to more than two observers�

Corollary �� Assume there are m � � observers	 and that non�strict ordering Y��j
st
� Y��k

holds for all � � � � � � � m� If Y��j
st
� Y��k also holds for at least one value � � f� � � � � mg

�i�e� there is strict ordering for at least one observer�	 then
�Pm

��� a�Y��j

�
st
�
�Pm

��� a�Y��k

�
�i�e� Equation ���� holds�

Corollary �� Assume there arem � � observers	 and Y��j
st

� Y��k holds for all � � � � � � � m�

The weighted sums	
�Pm

��� a�Y��j

�
and

�Pm
��� a�Y��k

�
	 in Equation ��� only follow a non�

strict stochastic ordering if the j�versus�k pairwise stochastic ordering is non�strict for all
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of the contributing observers� Since Y��j
st
� Y��k holds for all �	 then the weighted sums

follow the non�strict ordering�� mX
���

a�Y��j

�A st
�

�� mX
���

a�Y��k

�A
only if Y��j

st
� Y��k does not hold for any of the observers	 � � � � � � � m�

Corollaries �� and �� are complementary� Corollary �� states that the weighted sums are

strictly ordered if there is strict ordering for any of the observers� whereas Corollary ��

states that the weighted sums are only non�strictly ordered if each and every one of the

contributing observers have non�strict ordering�

Weighted sums of ratings

The results presented to this point deal with weighted sums of random variables de
ned

on each observer�s unique�noise�a�ected decision axis� Y� As they stand� the results are

not practically useful because an observer�s decision axis is not directly accessable� This

section presents extensions of the previous results to cover weighted sums of ratings� taken

across observers� It requires incorporating the s�m�i� transfer function of Y onto R for

each observer� prior to calculating the weighted sums� Monotonic increasing step function

transforms onto Q are also dealt with� Fortunately� the bulk of mathematics needed for

these extensions has already been presented in the preceding theorem and corollaries� The

following equations are derived in Section D�� in Appendix D� and the key results are

restated here�

Weighted sums of ratings on a continuous rating scale� R� Suppose that there

are m � � observers� each with an individual set of Y�variables� transfer function� and R�

variables for the same experimental stimulus set� where R��� � h��Y���	 for the �
th observer

and �th stimulus� Stochastic ordering of Y�variables may or may not exist for each observer�

and even if it does� it may or may not be the same across observers for the same stimulus

set� However� if such stochastic ordering does exist on Y� and it is the same across all

observers� then the results in Section ����� �applied separately to each observer	 show that

the stochastic ordering of the R�variables for each observer is also the same across all

observers� and follows the ordering of Y�variables� Assume that this is the case�

Theorem � and its corollaries were applied to weighted sums of Y�variables� but the

same results can also be applied to weighted sums of R�variablesnotation and inter�

pretation are di�erent �using  R! instead of  Y!� and interpreting random variables as

ratings instead of evidence variables	� but the results still hold �on R	� This works only

because the R�variables are stochastically ordered� and are in the same order for each
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observer� Explicitly� when there are m � � observers� and when Y���
st
� Y���

st
� � � � holds

for all observers� � � � � � � � m� then R���

st
� R���

st
� � � � also holds for all observers� which

implies that �� mX
���

a�R���

�A st
�

�� mX
���

a�R���

�A st
�

�� mX
���

a�R���

�A st
� � � � ����	

and

E

�� mX
���

a�R���

�A � E

�� mX
���

a�R���

�A � E

�� mX
���

a�R���

�A � � � � ����	

are guaranteed to hold� regardless of each observer�s Y�variables� and regardless of their

individual transfer functions�

Weighted sums of ratings on a discrete rating scale� Q� Following from the results

about R�variables� suppose each of the m � � observers has their own quantising function

and set of Q�variables� where Q��� � ���R���	 for the �th observer and �th stimulus �in

the same experimental stimulus set	� Since the R�variables all follow the same stochastic

ordering accross observers� then the results in Section ����� �applied separately to each

observer	 show that the stochastic ordering of the Q�variables for each observer is also

the same across all observers� and follows the ordering of the underlying Y�variables� The

ordering of Q�variables is not necessarily strict� but depends on how R is partitioned for

each observer �Section �����	� The stochastic ordering of Q�variables for a given pair of

stimuli could be strict for some observers� and be non�strict for other observers�

Corollaries �� and �� were applied to weighted sums of Y�variables� but the same

results can also be applied to weighted sums of Q�variables �like the R�variables� the

notation and interpretation are di�erent� but the results still hold on Q	� This works only

because the Q�variables are stochastically ordered� and are in the same order for each

observer� Explicitly� when there are m � � observers� and when Y���
st
� Y���

st
� � � � holds

for all observers� � � � � � � � m� then Q���

st
� Q���

st
� � � � also holds for all observers� which

implies that �� mX
���

a�Q���

�A st
�

�� mX
���

a�Q���

�A st
�

�� mX
���

a�Q���

�A st
� � � � ����	

and

E

�� mX
���

a�Q���

�A � E

�� mX
���

a�Q���

�A � E

�� mX
���

a�Q���

�A � � � � ����	
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are guaranteed to hold� regardless of each observer�s Y�variables� and regardless of their

individual transfer functions and quantising functions� Strict ordering may or may not

apply between each successive pair of weighted sums in Equations ��� and ���� Corollar�

ies �� and �� may be applied to sets of Q�variables instead of Y�variables� Under these

corollaries� the ordering of weighted sums in Equations ��� and ��� is strict �at a given po�

sition in the sequence	 if the ordering of Q�variables is strict �at that position	 for at least

one of the contributing observers� If the ordering is non�strict �at that position	 for all

observers� then the weighted sums in Equations ��� and ��� follow a non�strict ordering�

Whether the ordering is strict for each individual observer depends on their particular

characteristics� and especially their individual R�axis and how it is partitioned by their

quantising function �Section �����	� that is� where their cuto�s are set�

��� Summary and Discussion

The results shown in the preceding section generalise the theory of GOC analysis to cover

multiple observers with individual characteristics� The generalised theory is easier to

see in sketch form� For brevity� let +Y�j �
�Pm

��� a�Y��j

�
� +R�j �

�Pm
��� a�R��j

�
� and

+Q�j �
�Pm

��� a�Q��j

�
� The relationships among all of the variables in the generalised

theory may be summarised as

Y���
st
� Y��� � � � � R���

st
� R��� � � � � Q���

st
� Q��� � � �

Y���
st
� Y��� � � � � R���

st
� R��� � � � � Q���

st
� Q��� � � �

Y���
st
� Y��� � � � � R���

st
� R��� � � � � Q���

st
� Q��� � � �

���
���

���

� � �
+Y��

st
� +Y��

st
� � � � +R��

st
� +R��

st
� � � � +Q��

st
� +Q��

st
� � � �

� � �
E�+Y��	 � E�+Y��	 � � � � E�+R��	 � E�+R��	 � � � � E�+Q��	 � E�+Q��	 � � � �

where arrows show the direction of implication� In this sketch� each row of the upper

tier represents a di�erent observer� Weighted summation takes place down each column

of Y�variables that share the same second index �stimulus number	� If there is only one

observer� then the sketch reduces to the central theorem of GOC analysis�

The extended theory of GOC analysis shows that if stochastic ordering held among

the Y�variables for each observer� and if the ordering was the same for a given stimulus

set �i�e� the second subscripts all line up	� then the ordering of stimuli by the expected

value of a weighted sum of ratings� taken across individual observers� would be the same

as the ordering based on the expected values of underlying Y�variables� Consequently� the

asymptotic GOC curve based on any weighted sum across observers is the same as the
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asymptotic GOC curve of each of the individual observers� which is the same for each

observer�

Apart from the ordering property� very few assumptions are required� The Y�axes

�across observers	 may be the same� but need not be the same� The Y�axis for one ob�

server does not have to be an s�m�i� transform of the Y�axis for another observer� Each

observer may use a rating scale in di�erent ways� and have a di�erent transfer function and

quantising function� The distributions on R or on Q may di�er across observers� and they

do not need to be approximations of distributions on Y for each observer� as suggested

by Metz and Shen �����	� If the same stochastic ordering applies across observers� then

weighted sums of ratings� taken across observers on a per stimulus basis� are covered by

the central theorem of GOC analysis �Section �����	� However� if the stochastic order�

ing is di�erent for di�erent observers� then the asymptotic GOC curve for each observer

may be di�erent� There is no guarantee about what the asymptotic GOC curve based

on a weighted sum across observers would look like� because there is no guarantee that

stochastic ordering of weighted sums �Equations ��� and ���	 would hold�

Use of weightings� In the results on weighted sums of ratings� the positive constants�

a�� a�� a� � � � were left unspeci
ed so that arbitrary weightings could be applied in any

particular model of a given experiment� The weightings could be equal or unequal� If the

underlying assumptions hold �identical stochastic ordering on Y for each observers	� then

the theory of GOC analysis shows that it does not matter asymptotically what the weights

are� However� some weightings are more e�cient than others for recovering unique�noise�

free performance based on a 
xed number of replications �Sorkin " Dai� ����	�

In any particular model� if the weighting constants are all equal� a�� a�� a� � � � may all

be set to any constant without a�ecting results� If the constant is unity� the weighted sum

is a simple sum of ratings� and if the constant is �
m
� the weighted sum is an arithmetic

mean rating� When modelling a data set comprised of an unequal number of replications

per observer� the weightings in the model may be set to equal the number of replications

per observer� Weightings could also be used to re�ect individual contributions to a group

decision� in order to optimise group decision making �Sorkin " Dai� ����	� or to account

for individual levels of unique noise �which was attempted in Chapter � for Taylor et al��s�

����� frequency discrimination data	�

Other uses for divisions� The concept of a division was introduced on p� ��� to refer

to a separate set of random variables on X� U � Y� R and Q� all de
ned in the context of

the ESO in Figure ����� along with a mixing function� transfer function� and quantising

function� The concept of a division is used throughout Appendix D� rather than an

individual observer� to keep the mathematical results and their interpretation separate�

All of the results about weighted sums in the current section have been stated with the
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view of describing GOC analysis of a group of individuals� Although each division can be

used to represent an individual observer� under the broadest interpretation� each division

represents a statistical model for a given set of replications based on a given stimulus

set� It does not require each set of replications to originate from the same observer� or

di�erent sets to originate from di�erent observers� Each division could represent the same

observer associated with data collected under di�erent experimental conditions �but still

using the same stimuli	� For example� consider the case of one observer who runs a series

of replications in quick succession� takes a break for six months and then continues to

run more replications on the same stimulus set� It may be appropriate to model each set

of replications using the same ESO� Things may have changed over the break� however�

and the observer may use the rating scale di�erently at the two di�erent times� If so� the

transfer function in the model could be adjusted accordingly�

The partitioning of an experimental data set is up to the experimenter� A data set

may be partitioned along the lines of individual observers� or groups of observers or types

of observers� A data set may also be categorised in terms of time� such as time of day�

or whether or not there has been a break between replications� In general� a division

represents a partition of an experimental data set� and there is nothing in the theory

preventing each replication being described by a separate division� Theoretical results on

weighted sums show that stochastic ordering may still hold� even if an observer�s decision

axis changes from replication to replication�

��� Discussion

���� Summary of the theory

The theory of GOC analysis assumes an equivalent statistical observer� or ESO� which is a

general statistical model of an inconsistent observer� The ESO was outlined in Figure ����

and is comprised of a unique�noise�a�ected decision axis� Y� a continuous rating scale� R�

and an optional discrete rating scale� Q� Ratings on R derive from evidence values on Y�

through an s�m�i� transfer function� R � h�Y 	� Ratings on Q derive from ratings on R

through a monotonic increasing step function� Q � ��R	� Both continuous and discrete

rating scales are incorporated within the same model� The distinction between R and Q

re�ects the process of analysing a continuous rating scale by partitioning the rating con�

tinuum� The ESO also models discrete �e�g� push�button	 rating scales� in which case the

ESO is reformulated so that Q derives from Y without an intermediate R scale� For this

case� theoretical results between R and Q are reinterpreted in terms of Y and Q�

The theory of GOC analysis is based on stochastic ordering on a decision axis� and

on a rating scale� Each experimental stimulus is associated with a random variable on Y�

and� consequently� a random variable on R� and a random variable on Q� A stimulus set is
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associated with a family of random variables on each of Y� R� and Q� The main theoretical


ndings are that if the family on Y is stochastically ordered� then�

	 The families on R and on Q must also be stochastically ordered� in the same order as

the family on Y� If the ordering on Y is strict� then the ordering on R is strict� and

the ordering on Q may be a combination of strict and non�strict �between successive

pairs of Q�variables	�

	 Stochastic ordering holds on R� regardless of the speci
c s�m�i� transfer function

between Y and R� and holds on Q� regardless of the monotonic increasing step

function between R and Q�

	 The numerical ordering of expected values on each of Y� R and Q must follow

the stochastic ordering on Y� Numerical ties on Q are possible� whenever there is

non�strict stochastic ordering on Q� but this may be avoided if Q results from a

high�resolution partition of R�

As a result of stochastic ordering� the asymptotic GOC curve based on expected ratings

on R is identical to the ROC curve based on expected evidence values on Y� The asymptotic

GOC curve based on expected ratings on Q� is at the very least� consistent with the ROC

curve on Y� and the two curves may be identical� depending on possible tied values on Q�

The theory of GOC analysis is very general with respect to distributional forms� The

theory shows that rating distributions do not need to approximate distributions on a deci�

sion axis� Examples were given in Section ��� that showed that GOC analysis could work�

even if rating distributions were highly distorted� The theory is also very general with

respect to assumed transforms� The speci
c transfer function� and quantising function�

do not need to be known in order for stochastic ordering to hold on R or on Q�

The theory of GOC analysis was extended to multiple observers that have individual

characteristics� and places constraints on existing models of them �e�g� Metz and Shen�

����# Sorkin and Dai� ����	� Assume that� for the same set of stimuli� each observer in a

group has their own unique�noise�a�ected decision axis� Y� continuous rating scale� R� and

�optionally	 discrete rating scale� Q� all of which are based on individual transfer functions

and quantising functions� Furthermore� assume that stochastic ordering holds on Y for

each observer� and the stimulus set is ordered in the same way for each observer� based on

the family of random variables on Y� In this case� the weighted sum�of�ratings� taken across

observers and calculated on a per�stimulus basis� will also form a stochastically ordered

family of random variables� The ordering of the weighted sums is the same ordering as

for each individual observer� Consequently� the asymptotic GOC curve based on weighted

sums of ratings is identical to that for any individual observer� which is also the same

as the ROC curve based on expected values on Y for each individual observer� If each

observer shares the same statistical properties� then the extended theory of GOC analysis
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reduces to the central theorem of GOC analysis� If the weightings are all equal� then the

result is the same as for GOC analysis based on unweighted sums of ratings�

The theory of GOC analysis explains how GOC analysis can work� The theory does

not state that GOC analysis must work� GOC analysis may be applied to any multiple�

replication data set without any requirement of stochastic ordering� If stochastic ordering

does not hold� then arbitrary results are possible� to some extent� Without stochastic

ordering� the asymptotic GOC curve based on R or on Q depends on the scaling of

the rating scale� and may be di�erent from the ROC curve based on expected Y�values�

Without stochastic ordering� it is always possible to choose a rating scale which places the

mean ratings of a pair of stimuli in either order� as desired� or sets them to be tied equal�

Discrepancies in unique�noise�free performance between Y and R �or Q	 can arise because

of scaling in the data analysis� and not because of the decisions that were originally made

by the observer�

It is possible that stochastic ordering may apply to the Y�variables for some pairs of

stimuli and not for others� At best� all Y�variables are ordered� whereas at worst� none

are ordered� If there is a combination of both ordered and non�ordered Y�variables� then

the asymptotic GOC curve may still depend on the scaling of the rating scale� because

expected ratings for the non�ordered Y�variables can still be arbitrarily reordered�

Decomposing Y into common noise� X� and unique noise� U

Given an ordered set of R�variables or Q�variables� the theory of GOC analysis only

reveals information about the ordered nature of Y�variables� The theory does not retrieve�

and cannot retrieve stimulus ordering according to x�values without further assumptions

beyond those stated for the ESO� This is because� given a set of Y�variables� there are

an unlimited number of ways of decomposing of Y�variables into possible x�values and

possible U �variables� Further assumptions may allow separation of separate common and

unique noise from their combined mixture on Y� �For example� assuming that E�Uj	 � �

and that Yj � xj � Uj for all stimuli� in which case E�Yj	 � xj for all stimuli�	 In

general� however� unique�noise�a�ected observers may be comprised of multiple processing

stages� prior to the derivation of Y �e�g� Taylor� ����# Durlach et al�� ����	� where each

stage contributes to unique and common noise� In such cases� the derivation of xj and Uj

from Yj is not necessarily simple� and may not re�ect how Yj came about� Given a set

of random variables on R or Q� the theory of GOC analysis cannot demonstrate with

certainty how Y was derived� but by the same token� nor can any other theory� without

making extra assumptions�
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���� Models incorporated within the theory of GOC analysis

Two types of assumptions that are used in models of unique noise are about the form of

the unique noise and how it mixes with common noise� Simplifying assumptions are often

made� for example that unique noise may be characterised by a single random variable� and

that unique noise is additive with common noise �e�g� Tanner� ����	� This section shows

the consequences of assuming additive mixing� and multiplicative mixing� for stochastic

ordering in the theory of GOC analysis�

Identical additive unique noise

One of the simplest types of model of an inconsistent observer is where unique noise is

additive with common noise� and unique noise characteristics do not change as a function

of common noise value� In the theory� this translates into having the same unique noise

distribution for every stimulus� that is� Uj � Uk � U for all j and k� In this case�

Yj � xj � U and Yk � xk � U for all j and k� Stochastic ordering is guaranteed to hold

under this type of model� because the c�d�f� of Yj is the c�d�f� of U shifted left or right

along the decision axis by the amount xj� Speci
cally� the c�d�f��s of Yj and Yk are

FYj
�y	 � FU�y � xj	

and

FYk
�y	 � FU�y � xk	

respectively� If xj and xk are such that xj � xk� then FYj
�y	 � FYk

�y	 for all y� and

so Yj
st

� Yk� Furthermore� xj � U �� xk � U � since xj and xk are di�erent� which is to

say that Yj �� Yk� Since Yj
st
� Yk and Yj �� Yk� therefore Yj

st
� Yk holds for all j and k

such that xj � xk� This shows that if unique and common noise are additive� and unique

noise has the same form for all stimuli� then the resulting family of Y�variables is strictly

stochastically ordered according to the set of x�values� The result holds regardless of the

speci
c form of U � and regardless of the particular common noise distributions from which

the x�values are sampled�

Additive unique and common noise models with unique noise distributions of a 
xed

form are the most common type of model of unique�noise�a�ected observers��� Most of

these models explicitly assume that the unique noise random variable� U � is Gaussian�

���Swets et al	� ����� Tanner� ���� Watson� ���� Wickelgren� ���� Wilcox� ���� McNicol� �����
Green � Swets� ����� Boven� ���� Siegel� ����� Taylor� ����� Berg� ����� ����� ����� Siegel � Colburn�
����� Taylor et al	� ����� Metz � Shen� ����
	 Models of internal and external noise have been included
here also	
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and also that E�U	 � �� so that in e�ect E�Yj	 � xj for all stimuli� The theory of GOC

analysis shows that stochastic ordering holds for any additive and 
xed unique noise forms�

including the Gaussian form �with 
xed variance and zero mean	�

Non�identical additive unique noise without stochastic order

The stochastic ordering of a family of Y�variables does not generally depend on the ex�

pected values of distributions on X� U � Y� R� or Q� It can be the case that E�Yj	 � xj for

all j� and yet stochastic ordering does not hold� For example let Yj � xj � Uj for all j�

where the U �variables are all Gaussian with zero mean �E�Uj	 � �	� but all have di�erent

variances� For this case� none of the possible pairs of Y�variables will be stochastically

ordered� Each stimulus�pair ROC curve crosses the chance line� since it is based on a

pair of Gaussian distributions of unequal variance �Section �����	� The ordering of stimuli

according to E�Yj	 is the same as the ordering according to xj�values� since E�Uj	 � � and

so E�Yj	 � xj� The ordering according to E�Rj	 or E�Qj	 is not necessarily that based

on E�Yj	 or xj� Hence� it is possible to re�order stimuli by applying an s�m�i� transform

to such a decision axis� If Sorkin and Dai�s �����	 additive Gaussian model �described in

Chapter �	 is extended to incorporate transfer functions on to a rating scale� then speci
c

cases of their model would be a�ected by this result�

Identical multiplicative unique noise

Another type of model that is described in the theory of GOC analysis is where unique

noise is multiplicative with common noise� and unique noise characteristics are the same

across x�values� The following results hold if the set of x�values are either all positive� or

are all negative� The positive case is assumed below�

Let the unique noise distribution� U � be the same for every stimulus� so Uj � Uk � U

for all j and k� Under multiplicative mixing� the Y�variables are Yj � xj U and Yk � xk U �

The c�d�f� for the jth stimulus is

FYj
�y	 � P �xjU � y	

� P

�
U � y

xj

�
� FU

�
y

xj

�


and the c�d�f� for the kth stimulus is

FYk
�y	 � FU

�
y

xk

�
�
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If xj and xk are such that xj � xk� where xj  xk � �� then y
xj

� y
xk
� This implies that

FU

�
y

xj

�
� FU

�
y

xk

�
����	

holds for all y� that is�

FYj
�y	 � FYk

�y	�

holds for all y� and so Yj
st
� Yk� Furthermore� xj U �� xk U � since xj and xk are di�erent�

which is to say that Yj �� Yk� This implies that Yj
st
� Yk holds for all j and k such that

xj � xk� Like in the additive case� strict stochastic ordering holds� and it is determined

by the values of xj and xk�

Stochastic ordering also holds when the common noise is all negative �i�e� xj xk � �	�

If xj and xk are such that xj � xk� where xj xk � �� then y
xj

� y
xk
� and through a similar

argument to the development above� Yj
st
� Yk� The Y�variables are stochastically ordered

according to x�values� but the ordering of Y�variables is in the direction opposite to the

ordering of x�values�

If the common noise could be either positive or negative �e�g� sampled from Gaussian

distributions	� then a general conclusion about the stochastic ordering of Y�variables is

not possible� For a given pair of stimuli� the direction of the inequality in Equation ���

then depends on the absolute values of xj and xk� as well as on their signs� but not on

whether xj � xk�

In summary� if unique and common noise are multiplicative� where common noise is

entirely positive and where unique noise has the same distributional form for all stimuli�

then the resulting family of Y�variables is stochastically ordered according to the set of

x�values� If common noise is entirely negative� then the set of Y�variables is stochastically

ordered in a direction opposite to set of x�values� Like the earlier results for additive noise�

the result for multiplicative noise holds regardless of the distributional forms of unique

and common noise�

Additive unique noise compared to multiplicative unique noise

The results for additive and multiplicative mixing have implications for the special case

where the common noise is entirely positive in value��� This may occur� for example� if

common noise results from a recti
ed process� as is the case in models of aural amplitude

discrimination �Je�ress� ����# Green " McGill� ����	� If common noise is entirely positive

and unique noise is identical across stimuli �i�e� xj � �� and Uj � U � for all stimuli� j	�

��Examples of possible common noise distributions include �central or non�central
 gamma or F distri�
butions� including special cases such as chi� chi�squared� Rayleigh� Rayleigh�Rice� exponential� Maxwell�
and half�normal distributions	
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then the stochastic ordering based on additive mixing is identical to the stochastic ordering

based on multiplicative mixing� This is because the order of Y�variables is determined by

the order of xj and xk under both types of mixing� Consequently� the asymptotic GOC

curves based on the two types of mixing are identical� Furthermore� it is impossible to

determine� based on the rating distributions or on the asymptotic GOC curve� which type

of mixing occurred� If� on the other hand� the form of unique noise di�ers across stimuli

�e�g� Uj �� Uk for all j and k	� or the common noise is not all positive or all negative� then

additive and multiplicative mixing can result in families of distributions that either di�er

in their stochastic ordering� or may not be ordered at all�

���	 Transforms of decision axes when stochastic ordering does not

hold

The theory of GOC analysis is aimed at explaining the removal of unique noise by av�

eraging ratings on a rating scale� Results about stochastic ordering� and Theorem � in

particular� are also relevant to models in which unique noise is removed by averaging

values on a decision axis� This covers most existing models of unique�noise�a�ected ob�

servers� including models of multiple�presentation experiments �Swets et al�� ����# Berg�

����# McKinley " Weber� ����	� and models of multiple�replication experiments �Watson�

����# Taylor et al�� ����# Metz " Shen� ����# Sorkin " Dai� ����	�

In Theorem �� the function� h� was interpreted in terms of an s�m�i� transform of Y

onto R� Instead� let h represent an s�m�i� transform of one decision axis onto a second

decision axis� rather than onto a rating scale� In this case� Theorem � shows that if a family

of Y�variables is not stochastically ordered on one decision axis� then the corresponding

family of Y�variables on the second decision axis will not be stochastically ordered either�

This implies that the ordering of a stimulus set according to expected values on one Y�

axis is not necessarily the same as the ordering according to expected values on a second�

s�m�i��related Y�axis� In more general terms� when stochastic ordering does not hold�

then averaging out unique noise on one Y�axis is not necessarily the same as averaging out

unique noise on a second� s�m�i��related Y�axis� Since stimulus order may change according

to scaling� then the expected theoretical ROC curve �once unique noise has been averaged

out	 can di�er for di�erent s�m�i� transforms of a decision axis� This result runs contrary

to the notion� applied in a unique�noise�free context� that the theoretical ROC curve is

identical for all s�m�i� transforms of a decision axis� In contrast� Theorem � shows that

if stochastic ordering holds on one Y�axis� then it holds on all s�m�i��related Y�axes� and

averaging out unique noise on one Y�axis results in the same stimulus ordering� and ROC

curve� as averaging out unique noise some other s�m�i��related Y�axis�
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���� Quasi�molecular experiments

Quasi�molecular experiments are detection tasks that use a relatively small number of

reproducible stimuli� each of which is presented many dozens of times��� Observer incon�

sistency is usually present in these experiments� and decisions change from trial to trial for

the same stimulus� Often� the aim of these studies is to investigate the variability in signal

detectability associated with individual samples of masking noise �Pfa'in� ����# Gilkey�

����	� For example� a series of SIFC trials may be run using only a particular masker

waveform� to which a signal is added on some of the trials� If the detection task uses

binary�decision methodology� a hit and false alarm rate pair is calculated� which is plotted

as a point in the ROC space� Each di�erent masker results in a di�erent stimulus�pair

ROC point�

In the theory of GOC analysis� variability in decisions for the jth and kth stimuli are

associated with random variables� Yj and Yk� de
ned on Y� These are transformed by an

s�m�i� transfer function into Rj and Rk de
ned on R� and Qj and Qk de
ned on Q� For a

given masker waveform� say Yj is associated with the masker alone� that Yk is associated

with the masker plus signal� In theory� a stimulus�pair ROC point based on the jth and kth

stimuli �based on a 
nite number of presentations	 results from samples from Qj and Qk�

For convenience� assume that enough presentations have been run so that Qj and Qk

are known� In that case� the ROC point based on Qj and Qk is a single point on the

stimulus�pair ROC curve based on Rj and Rk� and the ROC curve based on Rj and Rk

is identical to that based on Yj and Yk� This is because the transfer function between Y

and R is s�m�i�� and between R and Q is a monotonic increasing step function�

Stimulus�pair ROC curves based on R can� in theory� demonstrate if a pair of Y�

variables� such as Yj and Yk� are stochastically ordered �as shown in Section �����	� If they

are ordered� then their associated stimulus�pair ROC curve on R lies either on or above

the chance line� but never below it� If the Y�variables are strictly ordered� then the curve

must lie above the chance line over some some portion of the ROC space� Quasi�molecular

SIFC experiments can be used to investigate stochastic ordering in a data set�

When binary�decision methodology is used� which is most often the case� then only a

single ROC point may be obtained� based on Qj and Qk� Most experimental stimulus�

pair ROC points lie on or above the chance line��� although some occasionally lie below

it� Without knowing where the rest of the curve is in the ROC space� it is not possible to

say with certainty that stochastic ordering holds� If a continuous rating scale� R� is used

instead of a binary�decision rating scale� Q� then a well de
ned stimulus�pair ROC curve

is possible� which re�ects the underlying curve based on Yj and Yk� This could be done

���Green� ���� Pfa�in � Mathews� ��� Pfa�in� ���� Siegel� ����� Gilkey� ����� Gilkey et al	� �����
Siegel � Colburn� ����� Isabelle � Colburn� ����
	 Quasi�molecular experiments were described in the
historical development of GOC analysis in Chapter �	

��Assuming that the hit rate is conditional on an masker�plus�signal stimulus� and false alarm rate is
conditional on a masker�alone stimulus	
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in practice� and only requires a change in rating methodology� not in basic experimental

design� Such experiments are still SIFC experiments� and would not take any longer to

complete than existing studies� Quasi�molecular analyses based on well de
ned rating

scales have not been reported to date� but such experiments are feasible�

For a set of n stimuli� there are n� possible pairings� and stimuli may be paired re�

gardless of which experimental event they are associated with� �If ordering holds over an

entire stimulus set� then two SN stimuli should be ordered� as well one N stimulus and

one SN stimulus�	 Any systematic and obvious crossing of the chance line in a pair�s ROC

curve would indicate that the Y�variables for the stimuli were not ordered� A compari�

son among n� possible ROC curves allows much scope for testing� and the possibility of

modelling the Y�variables for the entire stimulus set� Although it is not possible to work

back from R to uniquely derive Y� it is possible that analyses along these lines may help

to eliminate classes of distributions from consideration�

Given some assumptions about a particular decision axis� it is possible to model sample

sets associated with Y�variables� Chapter � described how transfer functions could be

derived from an ROC or GOC curve� A transfer function was used to estimate unique�

noise�a�ected evidence values on a decision axis� The estimated evidence value�� for the

jth stimulus and ith replication represents the sample value� yji� Assuming a decision axis�

it was theoretically possible to estimate properties of Yj and Yk� such as their variance�

using sets of yji values� taken across replications�

Siegel and Colburn�s model� A theoretical model was proposed in a series of quasi�

molecular studies by Siegel and Colburn �Siegel� ����# Siegel " Colburn� ����� ����	�

Their model is based on additive Gaussian unique noise that has a 
xed variance and zero

mean for all common noise values� The model is an example of a speci
c case of the ESO

in Figure ���� and it is possible to simply convert between the notation used in here and

the notation used by Siegel and Colburn��	 Their model describes a speci
c case of unique

and common noise interaction� but is not in itself a theory of GOC analysis�

��� Sampling variablity of common and unique noise

The theory of GOC analysis is mostly concerned with families of random variables� and

their properties in the context of the ESO� rather than with 
nite data sets� In practice�

the number of stimuli used in an experiment� and the number of replications that can be

run� are both 
nite� Finite data sets are associated with both common noise sampling

variability� and unique noise sampling variability� both of which a�ect GOC results�

��This was called an �x�value� in Chapter �� where similar notation was used di�erently from here	
��Equating notation across models� L� m�x
 and y�L� x
 in Siegel and Colburn�s model would take the
place of Y� xj and Uj in Figure �	�� respectively	 Siegel and Colburn framed their model in terms of internal
and external noise� rather than unique and common noise� respectively	
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Common noise sampling variability occurs because the number of stimuli is 
nite� so

only a 
nite number of xj values may be sampled from XSN and XN� The ROC curve

implied by a sample of x�values will vary from sample to sample� and is called the sample�

theoretical ROC curve �Lapsley Miller� ����	� to distinguish it from the �population	

theoretical ROC curve based on the random variables on X� In the case where the order

of the Y�variables re�ects the order of their associated x�values� then GOC curves tend

towards the sample�theoretical ROC curve� and not the �population	 theoretical ROC

curve�

Common noise sampling variability has been investigated by simulation �Pollack "

Hsieh� ����# Lapsley Miller� ����� ����	 and analytically �Bamber� ����	� A large part

of common noise variability would relate to the sampling of stimulus waveforms� where a

di�erent set of experimental stimuli would result in a di�erent value of A� even if there

was no unique noise� The smaller the stimulus set� the greater the possible variability

in common noise� and conversely� the larger the stimulus set� the smaller the variability�

To ensure that e�ects across experimental conditions� for instance� are not due to such

variability� the stimulus sample size should be as large as possible�

While stimulus sampling �or its statistical equivalent	 is a major source of potential

variability or error in psychophysical performance� unique noise may have at least as great

an e�ect� Unique noise sampling variability occurs because the number of replications

that may be run is only 
nite� in practice� Assume that m replications worth of data have

been collected� and rji is the rating made for the jth stimulus on the ith replication� The

GOC curve is then based on �
m

Pm
i�� rji� for each j� which tends to E�Rj	 as m � ��

Hence the ordering of the stimulus set according to sample mean rating tends toward the

ordering of the stimulus set according to expected mean rating� and so as m � �� the

empirical GOC curve will tend toward the asymptotic GOC curve�

Stochastic ordering of sets of random variables �e�g� R��R�� � � � on a rating scale	 does

not ensure stochastic ordering of sample sets based on the random variables� or vice versa�

Stochastic ordering of the sample sets of ratings for a pair of stimuli can be checked by

comparing the sample c�d�f��s across stimuli� By the de
nition of stochastic ordering� if

the sample c�d�f� for one stimulus is always greater than or equal to the sample c�d�f�

for another stimulus� then the two samples are stochastically ordered� otherwise not� In

practice� lack of sample stochastic ordering may often occur� even if the underlying random

variables are ordered�

Sampling variability of unique noise could account for the results of transform�average

GOC analysis shown in Chapter �� There� the series of transform�average GOC curves

showed two opposing e�ects� The results clearly depended on the scaling of the rating scale�

because GOC curves di�ered from transform to transform� At the same time� however�

the GOC curves seemed independent of the scaling� because many of the curves were very

similar across transforms� These results can be sensibly interpreted within the theory of
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GOC analysis� It may have been that the rating random variables for the stimulus set

were stochastically ordered� but that the sample sets of ratings were only partly ordered�

Residual unique noise e�ects would have been present because the number of replications�

although large� was still 
nite� The results in Chapter � suggest that although some

scalings may have been more e�cient at removing unique noise than other scalings� but

possibly all scalings would result in the same asymptotic GOC curve if enough replications

were run�

��� Conclusion

Stochastic ordering provides the key to GOC analysis of inconsistent observers� In a

unique�noise�free context� the particular ordinal scale that underlies decision making does

not matter� to the extent that an ROC curve remains unchanged by any s�m�i� transform

of a decision axis� In situations where unique noise is present� however� this type of ordinal

scale invariance no longer holds in general� either in the case of an s�m�i� transform from

one rating scale to another �transform�average GOC analysis	� or from a decision axis to

a rating scale �a transfer function	� or from one decision axis to another� Ordinal scale

invariance of a sort will only hold if stochastic ordering holds�

If a stimulus set is associated with a family of random variables that lie on a deci�

sion axis or a rating scale� then stochastic ordering was shown to be both necessary and

su�cient for the numerical order of their expected values to remain unchanged under ar�

bitrary ordinal scaling� When applied to the relationship between a decision axis and a

rating scale� stochastic ordering implies that averaging out unique noise on a rating scale

is equivalent to averaging out unique noise on a decision axis� which explains how GOC

analysis works�



Part II

Functions Of Replications Added

For a multiple�replication data set	 group operating

characteristic �GOC� analysis may be used to minimise

unique noise e�ects	 and improve performance in a

discrimination task� As more replications are combined	

performance improves as a function of replications added

�FORA�� Stable empirical FORAs result from all

combinations analysis �ACA�	 where average performance

is calculated over all possible GOC curves for a given

number of replications� A widely applicable FORA

regression function is introduced� Extrapolation of this

function to an in�nite number of replications makes it
possible to estimate asymptotic unique�noise�free

performance	 based on a �nite data set� Chapter �

introduces a FORA regression procedure	 which is able to

estimate known theoretical performance to better than two

decimal places� Chapter � applies FORA regression to an

amplitude discrimination experiment in which


�� replications were run� The very large data set makes it

possible to not only estimate asymptotic performance	 but

to estimate sample statistics and error bounds of the

asymptote� Chapter � shows FORA results for four sets of

experiments on frequency discrimination and amplitude
discrimination� FORA regression is shown to be very

robust across experimental paradigms	 observers	 types of

stimuli	 stimulus parameters	 performance levels and

measures of sensitivity�



Chapter �

Functions of replications added

Observer inconsistency in a discrimination task can substantially decrease performance�

Figure ���� for example� showed how typical single�replication performance was much

worse than theoretical performance� GOC analysis can remove the e�ects of observer

inconsistency� and substantially improve performance in the task� GOC analysis reduces

error by averaging out unique noise� As more replications are added� GOC performance

improves from the mean ROC level and may tend towards an asymptote� which may

re�ect theoretical performance� This chapter shows how to determine GOC performance

as a function of replications added� and how to estimate unique�noise�free performance

from a 
nite data set�

Let m be the number of replications in a discrimination task experiment� The greater

the number of replications combined in GOC analysis� the smaller the e�ect of any re�

maining unique noise until� in the limit as m��� all the unique noise is removed and

only common noise remains� Since m is always 
nite in practice� any estimate of unique�

noise�free performance involves an extrapolation to in
nity from performance based on a


nite data set� The term  performance! primarily refers to a measure of sensitivity� such

as area under the GOC curve� rather than the GOC curve itself�

Taylor �����	 pointed out that there are many ways of considering how performance

changes as more replications are combined in GOC analysis� One way could be to start

with just one replication and calculate its ROC curve� Then� combine the data from

the 
rst replication with that of a second replication and derive the two�replication GOC

curve� Next� add in a third replication� and so on� If a measure of task performance

is calculated for the GOC curve at each step� then sensitivity should improve as more

replications are added� The function of sensitivity versus number of replications is called

a sample function of replications added �sample�FORA	�

It may be possible� in principle� to work out how GOC performance changes in a

sample�FORA as each replication is added� If so� extrapolation to an in
nite number of

replications would provide a way of estimating unique�noise�free performance� There is a

���
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problem with this approach in practice� and that is the choice of what replication to add

at each step� There may or may not be an inherent order in the data set� for example a

temporal order� and even if there is� the order may not be important� The order in which

replications are added becomes a question of experimental design and experimental pur�

pose� Unless order e�ects are speci
cally under investigation� the ordering of replications

could be quite arbitrary �e�g� if m observers simultaneously run one replication each	�

Taylor �����	 noted that in the absence of a useful order of replications� there are

m� possible di�erent sequences of m replications� All m� sequences share the same� 
nal�

m�replication GOC curve� That aside� each sequence is di�erent from every other se�

quence� both in terms of the set of m GOC curves resulting from the sequence and of the

m performance measures derived from those curves� This makes overall interpolation and

extrapolation di�cult� even if all of the sequences themselves give well�behaved results

�which is extremely unlikely	�

All combinations analysis �ACA

Taylor �����	 proposed a solution to the problem of arbitrary sequences� Instead of cal�

culating multiple sequences of GOC curves� he estimated expected performance when a

given number of replications are combined� For an initial data set consisting of m repli�

cations� there are mC� possible subsets of � replications� � � � � m� where � is called the

combination�size� Combinations are appropriate rather than permutations because any

sum�of�ratings per stimulus� taken across replications� does not depend on the order of

replications� A GOC curve and its associated performance measures can be calculated for

each subset of size �� Performance measure values from all GOC curves based on the same

combination�size� �� are averaged to give an estimate of the expected GOC performance

for � replications� This procedure can be repeated for all combination�sizes from � to m�

giving a function of replications added �FORA	� The process of calculating all possible

GOC curves from a data set is called all combinations analysis �ACA	 �Taylor� ����	�

The type of FORA obtained by ACA is an average FORA �or just  FORA!	� It is equal

�pointwise	 to the average of the m� sample�FORAs described previously�

For a data set of m replications� there are
Pm

���
mC� � �m � � possible GOC curves�

and full ACA involves the calculation of all of them� or at least a measure of sensitivity for

all of them� Di�erent measures of sensitivity result in di�erent FORAs for the same set

of data� and any measure of sensitivity may be used� A computer program for performing

ACA is described in Appendix F� along with details of some computational e�ciencies

that can be implemented when calculating a FORA�

Resampling e�ects in ACA� ACA is somewhat like bootstrapping� which is used

to estimate sample statistics by resampling subsets from a set of values� The analogy is

incomplete because the values that are averaged in ACA are measures of performance that
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result from GOC analysis� The calculations involved are not as simple as those for the

sample mean or standard deviation that are often the focus of bootstrapping� The closest

procedure in form to ACA is bootstrapped ROC analysis �Moise� Clement� Ducimetiere�

" Bourassa� ����	� but these two analyses are not that similar� ACA involves repeated

GOC analysis of combinatorially generated sets of replications �systematically sampled

with replacement from the total set of replications	� whereas bootstrapped ROC analysis

involves repeated ROC analysis of sets of ratings �randomly sampled with replacement	

from the data for a single replication�

The e�ect of resampling in ACA is unknown� Ideally� each set of performance measure

values that are averaged at each combination�size would be independent� so that the

average FORA is an unbiased estimate of the expected FORA� It is not possible� however�

to run the very large number of replications that are needed to obtain independent sample

sets�� The only reasonable way to do this is by a statistical simulation using Monte Carlo

methods� which has not been done�

FORAs in the literature

Experimental FORAs have appeared in the literature for multiple�presentation tasks as

well as for multiple�replication tasks� FORAs� or FORA�like functions� may be obtained

using di�erent experimental methodologies� and measures of sensitivity� FORAs from

multiple�presentation experiments show how performance changes as a function of the

number of observation intervals per trial �Swets et al�� ����# Berg� ����# McKinley "

Weber� ����	� whereas FORAs from multiple�replication experiments show how perfor�

mance changes as a function of the number of replications added �Boven� ����# McAulay�

����# Taylor� ����# Lapsley Miller� ����	� In the former case� unique noise is averaged out

internally whereas in the latter case� unique noise is averaged out externally� Generally�

performance improves as the number of stimulus presentations increases� although the

rate of improvement depends very much on the parameters of unique and common noise�

Theoretical FORAs have been derived� primarily as a consequence of observer models that

incorporate additive Gaussian unique noise� and average out unique noise on a decision

axis �Swets et al�� ����# Berg� ����# Metz and Shen� ����# Sorkin and Dai� ����# Taylor�

����� personal communication	�

�For example� say that only �� sample values were needed per combination�size� �� in order to estimate
mean FORA points for combination�sizes from one to �ve	 Even for these modest numbers� independent
sampling would require ���� replications at each value of �� or �� � � � � � � � �
� �� � ��� independent
replications	 Each replication may consist of several hundred trials per event� implying hundreds of thou�
sands of trials in total	 For Taylor et al	�s �����
 experiment from earlier chapters� with a �� replication
and with �� trials per replication� the same reasoning implies that independent sampling would require
�	� million trials in total	
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Overview of the rest of the chapter

The FORAs presented in this chapter are not based on any previous theoretical FORA� or

any model of a unique�noise�a�ected observer� including the equivalent statistical observer

described in the previous chapter� Rather� the FORAs in this and the following chapters

demonstrate a distribution�free and measure�free data model that is applicable to many

di�erent FORAs from many di�erent experiments�

An empirical FORA for Taylor et al��s �����	 data set based on the measure A� is

presented in Section ���� The FORA shows how GOC performance tends toward known

theoretical performance as replications are added� and also shows the variability associated

with sample�FORAs� Exploratory data analysis in Section ��� results in non�parametric

regression of empirical FORAs� Two regression methods based on the same mathematical

form are compared and contrasted� and a non�linear FORA regression is shown to be

a good 
t to data� The regression�FORA can be extrapolated to an in
nite number of

replications to provide an estimate of unique�noise�free� asymptotic performance� which

can be a good approximation to theoretical performance� FORAs based on d�� D� and P �C	

are also presented� and are compared to known theoretical performance�

��� Experimental example

All combinations analysis was performed on data from Taylor et al��s �����	 continu�

ous rating scale experiment� and the resulting FORA based on the area under the GOC

curve� A� is shown in Figure ���� Since there were �� replications� the FORA is based

on about ��� �� �� million	 GOC curves� with ��C� GOC curves contributing to the

data point at each combination�size� �� The central point at each combination�size is the

arithmetic mean value of A for that combination�size� and the error bars indicate plus or

minus one standard deviation from the mean�

The mean value of A increases as a function of combination�size� Performance im�

proves as more replications are combined� re�ecting a removal of unique noise� As the

combination�size tends to in
nity� the mean value of A should tend towards the theoreti�

cal value of A� which was ������ for this experiment� The mean value of A tends toward

theoretical performance because the expected m�replication GOC curve tends toward the

theoretical ROC curve as m��� The initial FORA value� at a combination�size of ��

is just the mean value of A for all �� single�replication ROC curves� �Each ROC curve

can be seen as a ��replication GOC curve	� The 
rst point on the FORA in Figure ���

�A � ������	 was very close to the area under the arcsin�averaged mean ROC curve

�A � ������	� Not surprisingly� such a pattern is typically the case for most of the

FORAs presented in this thesis�

If the individual data points �values of A	 averaged at each combination�size were to
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Figure 	��� The function of replications added for Taylor et al��s ��		�� continuous rating scale
experiment� showing mean�A as a function of the number of replications combined� Error bars
show plus or minus one standard deviation from the mean� The horizontal line indicates the
theoretical value of A at �������

be plotted instead of the mean value� they would line up in columns at each value of ��

There would be ��C� points in each column� and the m� sample�FORAs result from all

possible connections between single points taken at successive combination�sizes� Since

the error bars in Figure ��� only indicate plus or minus one standard deviation� the points

would be spread over over a much larger range than is shown� The graph indicates that

the potential variability in sample�FORAs is huge� hence using an average FORA is a

practical solution for showing how performance improves with replications�

��� FORA regression

This section deals with 
tting a regression function to a FORA� The development is pre�

sented based on the measure A� with the understanding that similar regression procedures

can be applied to FORAs based on other measures of sensitivity�

The FORA in Figure ��� approaches the theoretical level asymptotically from below�

This suggests diminishing returns in GOC analysis� because the performance increment

gained by running each additional replication becomes smaller and smaller� Theoretical

performance in an experiment is generally unknown� but it can be estimated from a 
nite

data set� The asymptote of the FORA indicates how well an observer could perform if all

of the unique noise could be removed �i�e� if the observer made entirely consistent decisions
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across replications	�

Estimating an asymptote requires 
tting a regression function to a 
nite� empirical

FORA and extrapolating the function to in
nity� Hyperbolic and exponential functions

were initially examined� since they are asymptotic in form� but they did not prove useful�

A regression of FORA�increments was attempted instead� which led to a successful form

of FORA regression�

The FORA in Figure ��� is reproduced in Figure ����a	� without error bars� The FORA

increases rapidly initially� but then �attens out� The 
rst increment in performance is the

largest� the second increment is the next largest� and so on� Let yj denote
� the mean value

of A at combination�size j �� � j � m	� and let

�j � yj � yj�� � � j � m ����	

denote the �j��	th increment in mean value of A� Figure ����b	 shows the increment� �j � as

a function of j� which decreases to zero as a function of replications added� Figure ����c	

shows loge��j	 versus j� which is also a decreasing function� and Figure ����d	 shows

loge��j	 versus loge�j	� This plot of the log of the increment versus the log of the index

are referred to as a log�log plot�� A log�log plot can be presented using logarithms to any

arbitrary base� and natural logarithms �base e	 have been chosen as the convention here�

The log�log plot in Figure ����d	 was fairly linear� Pearson�s product�moment correla�

tion coe�cient� denoted r� was ������� for this data set� and its square was r� � �������

In the present context� r� can be interpreted as the proportion of the variability in the

logarithm of the increments that was dependent on the variability in the logarithm of the

combination�size� A linear function was used at this point as a 
rst approximation to the

data series� Although the function in Figure ����d	 curved slightly downwards� log�log

plots from other experiments� presented in Chapters � and � are even straighter�

Assume a linear approximation to the log�log plot� If the slope of the line is �� the

intercept is c� and 
 � exp�c	� then

loge��j	 � � loge�j	 � c

� loge�j
		 � loge�
	

� loge�
j
		 j � �� ����	

This implies that

�j � 
j	 ����	

�The notation used in this chapter is independent of the notation in the preceding chapter	
�Although there are �� points on the FORA in Figure 	��a
� there are only �� points on the log�log

plot in Figure 	��d
	 This is because the very last FORA increment for this data set is actually a very
small decrement� so no logarithm is calculated for it	
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Figure 	��� Transformation of the FORA presented in Figure ��� �a� mean value of A ver�
sus combination�size� �b� increments in mean A versus combination�size� �c� log�increments
in mean A versus combination�size� �d� log�increments in A versus the logarithm of the
combination�size�
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which forms the basis of a FORA regression function� Since the data series is of the form

yi � y� �
iX

j��

�j i � � ����	

then the regression�FORA is of the form

Ai � A� �
iX

j��


 j	

� A� � 


iX
j��

j	 i � � ����	

where A� is the 
rst predicted value of A� Equation ��� may be extrapolated to in
nity

to give an estimate of the asymptotic value of A� namely

A� � A� � 

�X
j��

j	 ����	

� A� � 
 �����	� �	 ����	

for � � �� �Gradshteyn " Ryzhik� ����� Equation ����� ��		� where ��x	 �

�X
j��

j �x is

the Riemann zeta function�

The purpose of the regression is to 
nd a function of best 
t to the empirical FORA

rather than to the log�log plot� so Equation ��� is the regression function of interest rather

than Equation ���� Equation ��� describes a three�parameter data model with parameters

A�� 
 and �� The log�log plot is useful nevertheless� because it gives a simple� graphical

way of checking goodness�of�
t� and its curvature can reveal subtle trends that are not

obvious in a FORA plot�

The derivation of Equations ��� and ��� from Equation ���� and the calculation of �

and 
� are invariant with respect to the base of the logarithm used in the plot� The

slope� �� is independent of an arbitrary logarithm base b� because both the abscissa and

ordinate are equally scaled in double�logarithmic coordinates� The intercept� c � b
� is

not independent of b� but since 
 is the FORA regression parameter of interest� rather

than c� then c may be de
ned in terms of 
 �c
def
� logb�
		� rather than vice versa�

FORA regression originates from a linear log�log plot� but can be achieved without

deriving any log�log plot �Section �����	� There should be an interpretation of each pa�

rameter with respect to a FORA which is independent of any log�log plot� A� denotes the

initial value of the regression�FORA �i�e� expected ROC performance	� and � determines

the relative curvature of a FORA �see below	� but what 
 by itself means is not clear�

It is clear that 
 and � jointly determine the total improvement of a FORA� which is
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equal to 

P
�

j�� j
	 �from Equation ���	� or 
�����	� �	 �from Equation ���	� The total

improvement is the absolute value of the di�erence between the 
rst point on the FORA

and the predicted asymptote� It could also be called the potential improvement from ROC

performance�

As well as being the slope of a log�log plot� � also solely determines the relative cur�

vature of a FORA �which is di�erent from the curvature of a log�log plot	� The relative

curvature of a FORA determines the rate at which a FORA approaches its asymptote�

relative to its total improvement� If � is close to �� �e�g� � � ����	� then the log�log plot is

very shallow� meaning that successive FORA increments only decrease slowly� and hence

the FORA only approaches its asymptote slowly� On the other hand� if � is more negative

�e�g� � � ����	� then the log�log plot is much steeper� so successive FORA increments

decrease more rapidly� In that case� the FORA increases rapidly at 
rst and then �attens

out� Relative curvature can be used to compare performance across observers� experimen�

tal conditions or signal�to�noise ratios� The larger the absolute value of �� the greater the

relative curvature and so the smaller the number of replications needed in order to attain

any given proportion of the potential improvement�

����� Factors a�ecting FORA regression

It di�cult to specify the best FORA regression procedure because of the complexity of

ACA calculation� In ACA� interrelated combinations of subsets of data are taken from a

single experimental data set and then GOC analysis is applied to each combination� These

steps make it hard to mathematically derive statistics that describe experimental FORAs�

including the variability associated with each FORA point�

There are at least three factors that should� in principle� be taken into account by

any FORA regression procedure� although it is di�cult to do so in practice� First� points

on an empirical FORA are highly interdependent rather than independent� because ACA

requires combinatorial subsampling of a data set� and because GOC analysis is done on

each subsample �combination	 of replications� Second� the variability of individual values

of A clearly changes with combination�size� as shown in Figure ���� so the points on the

sample�FORAs contributing to the average FORA are heteroscedastic� not homoscedastic�

Third� the number of combinations contributing to the mean value is di�erent for di�erent

combination�sizes� sometimes vastly so� The last two factors might possibly be taken into

account of by applying a weighting scheme to FORA regression� How �or even if	 the 
rst

factor can be accomodated is not known� Of the three factors� the last one may be the

easiest to deal with because it is the easiest to quantify�

Although there may be only a relatively small number of points on a FORA� this hides

the fact that the number of contributing GOC curves per point could be small or could be

huge� For example� with Figure ���� there are ��C� �
��C�� � �� GOC curves of size � or

of size ��� ��C� �
��C�� � ��� GOC curves of sizes � or ��� but ��C�� � ��� million GOC
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curves of size ��� This suggests that the most stable points on the FORA are those in the

middle and the least stable points are those at the ends� This is presumably because the

greater the number of GOC curves involved� the smaller the variability associated with the

mean value of A �as opposed to the variability of the raw values of A� shown by errorbars

in Figure ���	� The last data point on a FORA always consists of the value of A from just

the single m�replication GOC curve� Although the standard deviation associated with the

last data point is zero� the fact that only a single GOC curve contributed to the value

of A makes the last point on a FORA perhaps the least stable point of all�

In general� the middle points of a log�log plot are the most stable and the end points

are the least stable� The number of GOC curves contributing to a data point on a log�log

plot is complicated by the fact the data point is the di�erence between neighbouring points

on the FORA� The jth point on the log�log plot �� � j � m	 is based on mCj �
mCj��

GOC curves� a number which is smallest for the last point on the right� It is often the

case that the last point on the log�log plot appears to be the least stable� and may deviate

from the trend shown by the rest of the data points in a log�log plot�

The three factors� interdependence� heteroscedasticity and number of combinations

per FORA point� must a�ect the statistics associated with the mean performance value

at each combination�size� In spite of this� all three factors have been ignored in FORA

regression� because it is very di�cult to specify their in�uence and to know how to take

them into account� The basic datum of FORA regression is the mean performance value

at each combination�size� All data points have equal weight� and no correction is made

for variability or number of values contributing to the mean�

There are many potential ways to of 
tting Equation ��� to an empirical FORA� but

the essential di�erence among them is how they assign values to the parameter triplet

�A� 
 �	� Two methods are presented� The 
rst is described in Section ����� and uses a

linear least�squares 
t to the log�log plot � The second method is described in Section �����

and uses a non�linear least�squares 
t to the FORA� Each method arrives at a di�erent

result�

����� Linear regression of the log�log plot

Regression of a log�log plot can provide a quick and easy way of 
tting the three�parameter

data model to the FORA� A linear least�squares 
t to the log�log plot may be useful� but

it does not provide the most accurate regression of a FORA� The linear log�log plot

regression provides the parameters 
 and �� while the A� parameter is set to equal the

initial FORA value� y� �the mean value of A at a combination�size of �	� This regression

procedure applied to the data in Figure ��� provided a parameter triplet �A� 
 �	 of
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��������� �����������������	�� Figure ����a	 shows the empirical FORA� the regression�

FORA using these parameters and the estimated asymptote� while Figure ����a	 shows

the accompanying log�log plot� The sum of the squares of the �� residuals between the

regression�FORA of Equation ��� and the empirical FORA was ���� � ����� This was

a small total� but the function that 
tted to the data points in Figure ����a	 is clearly

not a function of best 
t to the FORA� even though the line through the data points

in Figure ����a	 is a line of best 
t to the log�log plot� Figure ����a	 suggests that the

asymptote would be over�estimated� and it was� The asymptotic value of A calculated via

Equation ��� using the above parameter triplet was ������� compared to the theoretical

value of A of �������

The correlation of the data points in Figure ����d	 was r � �������� and so a linear


t seems reasonable� If the empirical log�log plot is highly linear� with r at ������� or

better� then this method can provide a reasonable 
t to the FORA� because the regression

function would be very close to the data� If the empirical log�log plot is slightly curvilinear�

as it is for this data set� then a linear least�squares 
t to a log�log plot is not the best way

of 
tting the three�parameter data model to a FORA� Regression of a log�log plot provides

a quick and easy regression� but it should only be used as a 
rst approximation�

����	 Non�linear regression of the FORA

It is possible to apply a non�linear least�squares regression of the form of Equation ���

directly to an empirical FORA� The essential mathematics of the regression are provided

in Appendix E� Non�linear FORA regression requires the simultaneous solution of three

equations� Equations E��� E�� and E��� which are derived in Appendix E� Each equation is

a trivariate function of A�� 
 and �� in which the data points of a given empirical FORA are

treated as constants� When solved simultaneously� Equations E��� E�� and E�� minimise

the sum of squared residuals between the data points on a FORA and the regression

function given by Equation ���� The regression procedure assumes an equal weighting

of all data values �points on the empirical FORA	� Appendix F describes a computer

program that can numerically solve these equations and estimate asymptotic performance

for a given parameter triplet�

Non�linear regression to the empirical FORA in Figure ��� provided a parameter triplet

�A� 
 �	 of ���������� ��������� ���������	� The A� parameter calculated this way was

similar to that based on linear�log�log�plot regression� but 
 and � were not so simi�

lar� Figure ����b	 shows the regression�FORA based on non�linear FORA regression and

its estimated asymptote� while Figure ����b	 shows the accompanying log�log plot� The

straight line in Figure ����b	 represents the linear function implied by the parameters of

�Values of A�� 	 and � are given to  decimal places to make it easier to check calculated asymptotes
based on the values given	 Compiler�speci�c error� described in Appendix F� means that the parameter
values will depend �to a small extent
 on the data analysis program that is used	
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Figure 	��� Di�erent regression procedures applied to the 
��replication FORA presented in
Figure ��� The horizontal line represents the estimated asymptote for each procedure� �For
comparison� the theoretical value of A was �������� �a� Regression based on a linear �t to
the log�log plot �presented in Figure ���a��� �b� Non�linear regression using the procedure
described in Section �
�� and Appendix E� The data points are the same in both of panels
�a� and �b��
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Figure 	��� Log�log plots associated with the di�erent regression�FORAs presented in Fig�
ure ��� Straight lines indicate the log�log relationship based on parameters from each FORA
regression procedure� �a� From a linear least�squares �t to the log�log plot� �b� From a non�
linear FORA regression using the procedure described in Section �
�� and Appendix E� The
data points are the same in both of panels �a� and �b��
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the regression�FORA in Figure ����b	� The implied function in Figure ����b	 is not a line

of best 
t to the log�log plot �which is shown in Figure ����a		�

The non�linear regression�FORA in Figure ����b	 was a better 
t to the data points

than the regression�FORA in Figure ����a	� The sum of squared residuals for the non�

linear regression was ��������� which was more than ��� times smaller than the equivalent

sum for Figure ����a	� The asymptotic value of A calculated from non�linear regression

was ������� compared to the theoretical value of ������� The non�linear regression pro�

vided a better estimate of the asymptote than the previous regression estimate �������	

in Figure ����a	�

Another drawback of basing FORA regression on a linear 
t to the log�log plot is

that any decrements in the FORA do not provide a point on the log�log plot� and so

not all of the FORA points contribute to the regression� This happened� for example�

between the ��rd and the ��th points in Figure ���� resulting in a ���point log�log plot�

Omissions such as this a�ect any estimation based primarily on a log�log plot� and could

add to overestimation of the asymptote� because the FORA data could be �atter than the

regression procedure can admit� In contrast� the non�linear least�squares regression is not

a�ected by decrements in a FORA and uses all available FORA points�

The discrepancy between the data series and implied linear relationship in the log�log

plot in Figure ����b	 is due to the cumulative nature of the non�linear FORA regression

procedure� Consider Equation ���� yi � y� �
Pi

j�� �j  i � �� which describes the empiri�

cal FORA� Each point beyond the 
rst one is comprised of a starting value� y�� and a series

of increments� ��� �� � � � The 
rst increment� ��� contributes to all FORA points beyond

the 
rst point� The second increment� ��� contributes to all FORA points beyond the

second point� and so on� In terms of the FORA regression� it is generally more important

to get a good approximation to �j�� than it is to achieve a good approximation to �j � and

it is most important to achieve a good approximation to �� �and to the starting value� y�	�

The result is that the straight line� derived from the parameters that give the best 
t of

Equation ��� to a FORA� tends to be a good 
t to the 
rst few points of an empirical

log�log plot� but not necessarily to the last few points� This can be seen in Figure ����b	�

As well as that� the increments in a FORA tend to zero as more replications are added�

and so the logarithm of the increments becomes very small� What seems like a large dis�

crepancy in the log�log space� like that in Figure ����b	 between the straight line and the

empirical data� is in fact only a small discrepancy at the high end of the FORA� as seen

in Figure ����b	�

Only non�linear FORA regression based on Equation ��� is used in the rest of this

thesis� rather than the regression based on a linear 
t to the log�log plot� The straight lines

shown in all subsequent log�log plots derive from the parameters that best �t Equation ���

to the FORA	 and are not the line of best �t to the log�log plot�
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Curvature in a log�log plot� The curvature of an empirical log�log plot indicates where

the estimated asymptote may lie� relative to underlying� theoretical performance� The

data points in Figure ����b	 curved downwards relative to the straight line� A downwards

curving log�log plot indicates that as the number of replications increases� the increments in

the regression�FORA are slightly larger than those in the empirical FORA� Consequently�

the regression�FORA tends to a larger asymptote than suggested solely by the data and

so theoretical performance is overestimated� �The asymptotic value of A estimated in

Figure ����b	 was ������� compared to a theoretical value of A of �������	 In contrast�

an upwards curving log�log plot indicates that increments in the regression�FORA are

slightly smaller than those in the empirical FORA� meaning theoretical performance would

be underestimated� Exactly how the bias of an asymptote quantitatively relates to the

curvature of a log�log plot is unknown�

����� FORAs based on various measures of sensitivity

Most of the FORAs shown in this thesis are based on A as the measure of sensitivity or

performance� FORAs based on other measures �d�� D� and P �C		 were also calculated for

Taylor et al��s �����	 ���replication frequency discrimination experiment� Figures ���� ���

and ��� show FORAs and log�log plots for d�� D� and P �C	 respectively� along with the

regression�FORA and estimated asymptote for each measure� These results are sum�

marised in Table G�� in Appendix G� Asymptotes for various measures� including A�

generally overestimated theoretical performance� whereas the ���replication GOC curve

�i�e� the last point on each FORA	 generally underestimated theoretical performance�

Like in Figure ���� the central point at each combination�size in Figures ��� to ��� is

the arithmetic mean sensitivity value for that combination�size� and the error bars indicate

plus or minus one standard deviation from the mean� No account has been taken here of

the symmetry or skewness of the distribution of sensitivity values at each combination�

size� The error bars are presented symmetrically around the mean to indicate the amount

of variability rather than its nature�

The FORAs and log�log plots based on d� and D� were very similar to those based on A
�Figures ���� and ����a	 and �d		� The regression�FORAs tended to lie under the empirical

FORA for the middle combination�sizes and over at the higher combination�sizes� This

was also re�ected in the downwards curve of the log�log plots in Figures ��� and ����

The under�over pattern of the regression�FORAs and curve of the log�log plots were more

prominent for d� and D� than for A� The log�log plots suggested that the asymptotes

for d� and D� would also be overestimated� like for A� The estimated asymptotic d� was

������ compared to a theoretical value of ������� and the estimated asymptotic D� was

������ bits compared to a theoretical value of ������ bits� The overestimation was about

���, for d�� and about ���, for D��

Two FORAs based on two related measures of sensitivity� such as A and d�� are not
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Figure 	��� �a� Function of replications added� showing mean d� as a function of replications
combined� error bars of plus or minus one standard deviation� the �tted FORA for d� and the
estimated asymptote �horizontal line�� The theoretical value of d� was ���	� �b� The accom�
panying log�increment in d� versus log of replications combined� The straight line indicates
the log�log relationship based on parameters from the FORA regression function�
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Figure 	�	� �a� Function of replications added� showing mean D� as a function of replications
combined� error bars of plus or minus one standard deviation� the �tted FORA for D� and the
estimated asymptote �horizontal line�� The theoretical value of D� was ����
	 bits� �b� The
accompanying log�increment in D� versus log of replications combined� The straight line
indicates the log�log relationship based on parameters from the FORA regression function�
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�� Functions of replications added �FORAs� ���

simple transformations of one to the other via the function that relates the two measures�

Since points on a FORA are an average value� the situation is analogous to transform�

averaging�� Consider for example the relationship between d� and A� which is given by

d� �
p
�&���A	 �Equation ���	� If the n � mC� values of A for a given combination�

size� �� are indexed as Aj� then the mean value of A is A � �
n

P
j Aj� Similarly� the

mean d� value is d� � �
n

P
j d

�

j
� �

n

P
j

�p
�&���Aj	

�
� but d� is not necessarily equal top

�&���A	� although they could be similar� For example� in Taylor et al��s �����	 data

set� A � ������ and d� � ������ at � � �� but
p
�&���A	 � ������� This result is typical

of most of the FORAs presented in this chapter and the next� in that related measures

are similar� in this sense� to � decimal places at � � �� and become more so �to � decimal

places	 as � increases to the number of replications in a data set�

The FORA based on P �C	 is shown in Figure ���� The FORA generally increased

with added replications� but not as smoothly as the FORAs based on other measures�

Consequently� the FORA regression function for P �C	 only provided a fair to middling


t to the data when compared to the regression 
ts for A� d� or D� �Figures ����b	� ���

and ��� respectively	� The variability in Figure ����a	 was re�ected in the data points

of the log�log plot in Figure ����b	� which were highly scattered �r� � ������	 compared

to the log�log plots based on other measures� Ironically� the value of P �C	 for the ���

replication GOC curve was identical to the theoretical P �C	 value of ������� because the

���replication GOC curve happened to intersect the negative diagonal at exactly the same

point as the theoretical ROC curve� The FORA was also unusual because the 
nal point

in Figure ����a	 stood out from the FORA trend�

Figures ���� ����a	 and ����a	 show that the standard deviation decreased as the num�

ber of replications increased� In the FORAs based on A� d� and D�� the standard deviation

decreased sytematically towards zero at the larger combination�sizes� which re�ected in�

terdependence of GOC curves at larger combination�sizes� From a ���replication data

set� all GOC curves based on �� replications are very similar because they are based on

much the same data �subsets of �� out of �� replications	� Hence the standard deviation

of A� d� or D�� is small� The same is true� to a lesser extent� of GOC curves based on

�� replications� or �� replications� and so on�

Variability in the FORA based on P �C	

The FORA based on P �C	 in Figure ��� is notable because the standard deviation of

P �C	 did not decrease as sharply as the FORAs based on A� d� and D�� The variability

of P �C	 has to do with the way in which the measure is calculated� P �C	 is based on

only a single point on an ROC or GOC curve� whereas A is calculated by using the entire

GOC curve and� by extension� so are d� and D�� As a result� P �C	 is more vunerable to

�Like the transform�averaging described in Chapter �� except the quantity being averaged here is dif�
ferent	
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the e�ects of sampling variability of both common and unique noise� Small �uctuations

in a GOC curve may have minimal e�ect on the area under the entire curve� A� but have

a much larger e�ect on P �C	� If d� were calculated from a single point in the ROC space�

instead of from A� it too would su�er the same type of extra variability that is associated

with P �C	�

Implications for P �C	�IFC� Although the data in Figure ��� is from an SIFC experi�

ment� the same point holds true for �IFC experiments� The proportion of correct decisions

in a �IFC experiment� P �C	�IFC� can be derived from a single point on a �IFC ROC curve�

and because of that� it su�ers from the same drawbacks as P �C	 derived from a single

point on an SIFC ROC curve� In any �IFC experiment a�ected by observer inconsistency�

P �C	�IFC is a much more variable measure than A�IFC�

Possible solutions� Two solutions to this problem are suggested� although neither has

been implemented �since FORAs based on P �C	 are not often used in this thesis	� One

solution would be to run more replications� so that the number of combinations per

combination�size becomes much larger� This would decrease the variability associated

with each mean�P �C	 value and lead to a smoother average�FORA� mainly in the middle

points of the FORA� Although running more replications is 
ne in principle� it may not be

so useful in practice� Increasing the number of replications much beyond �� replications

will lead to computation�time limitations� because the number of GOC curves increases

exponentially with the number of replications�

A second solution would be to 
t an ROC curve to each of the GOC curves calculated

in ACA� and to calculate measures and parameters from the 
tted curve �Taylor� ����	�

including P �C	� or A� This solution may complicate and slow down FORA calculation�

depending on the 
tting procedure� form of the 
tted curve� and the number of points

on each GOC curve� Fitting ROC curves could potentially bias results if the form of the


tted curve is not similar to that of the GOC curves� At a given combination�size� GOC

curves are often as variable in shape and location as single�replication ROC curves� Any

particular form of ROC curve may successfully 
t some GOC curves but not others� Since

ACA may involve many thousands of GOC curves� the assessment of bias and error due

to ROC regression would be di�cult� to say the least�

FORA patterns based on various measures

Many of the patterns shown in the FORA results for Taylor et al��s �����	 experiment

also hold throughout the various experiments presented in the next two chapters� The

similarity in form between the FORAs and log�log plots based on A and those based on d�

and on D� is very robust across experiments� This is not surprising since both d� �as used
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here	 and D� are functions of A� Any curvature in a log�log plot based on A is usually

accentuated slightly in the log�log plots based on d� and on D��

The patterns of ACA standard deviations found in Taylor et al��s �����	 data are

also very robust across experiments� Standard deviations based on A� d� and D� always

decrease smoothly as a function of combination�size because the contributing performance

values are so constrained and interdependent �due to the resampling scheme in ACA	�

Standard deviations based on P �C	 also decrease �to a lesser degree	� but are always quite

large because of the way the measure is calculated� The variability in P �C	 means that

A� d� and D� is used in preference to P �C	� even for �IFC experiments�

None of the standard deviations associated with FORA points are useful in determin�

ing where the asymptote may liethe asymptote could lie within a wide range of P �C	

values in Figure ���� and the asymptote is generally several standard deviations away from

the FORA points for A� d� and D� in Figures ���� ����a	 and ����a	� The standard devi�

ations are not useful for placing sensible error bounds on the asymptote� since their value

varies with the number of replications combined� For these reasons� standard deviations

associated with FORA points are not considered beyond here�

��� Summary

Group operating characteristic curves may be calculated for all combinations of replica�

tions from a multiple�replication data set� This process is called all combinations analysis

�ACA	� The average sensitivity per combination�size de
nes a function of replications

added �FORA	� which generally increases as more replications are added� A FORA be�

gins at the average ROC performance level and tends asymptotically towards theoretical

performance�

Experimental FORAs were approximated quite well by a three�parameter data model

of the form

Ai � A� � 


iX
j��

j	 i � �

�Equation ���	� where A�� 
 and � are parameters whose values derive from a data set� and

where Ai represents the mean sensitivity value for GOC curves based on i replications� It

is possible to 
t this function to data by using non�linear least�squares regression� The 
t

of the regression�FORA may be visually assessed by means of a log�log plot� which shows

FORA�increments versus number of replications� plotted in double�logarithmic coordi�

nates� Computational details about ACA and FORA regression are given in Appendices E

and F�

Extrapolation of the data model� based on a 
nite data set� makes it possible to

estimate asymptotic� unique�noise�free performance� The asymptote can be very close to
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theoretical performance� both of which are considerably better than single�replication ROC

performance� A small discrepancy between the asymptotic and theoretical performance is

explained in terms of the curvature of the log�log plot data series� relative to a straight

line that is derived from the data model�

For the same data set� each di�erent measure of sensitivity results in its own FORA�

The amount of variability associated with each point on a FORA� and how smoothly

the FORA increases� depends on the measure and how it is calculated� FORAs based

on measures that use an entire GOC curve are much less variable than those based on

measures based on only a single point on the GOC curve�



Chapter �

Sampling statistics of asymptotic

performance

Asymptotic discriminability based on FORA regression only provides an estimate of unique

noise�free performance� If two or more independent sets of replications are analysed from

the same experiment� estimates of the asymptote will vary across sets� Hence� there is

sampling variability and error associated with empirical asymptotes� Asymptotes may

be estimated from as few as three replications but there is no upper limit to how many

replications can be combined� When the number of replications is small� the error associ�

ated with the estimate is relatively large� As more replications are combined in ACA� the

estimate of the asymptote becomes stable� and the error associated with it decreases to

zero� A very large data set is used to show how these sampling statistics can be estimated�

Practical problems arising in ACA of large data sets are described� and solutions are given�

Overview of chapter

The data set that is analysed in this chapter is from an SIFC amplitude discrimination

experiment by Whitmore et al� �����	� obtained through the courtesy of the authors�

One observer ran �� replications and a second observer ran �� replications� Experimental

methodology is described in Section ���� and ROC and GOC results are given in Sec�

tion ���� ROC curves varied from replication to replication� and GOC curves showed

better performance than mean ROC curves� FORA results are presented in Section ����

Combinatorial explosion made it impossible to compute ACA on such a large data set�

but two workable solutions to this problem are described� The FORA regression equation

�Equation ���	 is shown to provide an excellent description of an empirical FORA out to

�� replications� It is also shown that the observer with the best average ROC performance

does not necessarily have the best asymptotic performance� A FORA is presented based

on data from both observers� which shows that FORA regression works even when each

observer has a di�erent level of common noise� and potentially di�erent transfer functions

���
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and scaling of the rating scale� Section ��� shows how to estimate the sampling statistics

of asymptotes� and limitations of the estimation process are discussed�

��� Method

The experimental task was to detect whether or not a narrowband Gaussian noise signal

had been added to a wideband Gaussian noise masker� Decisions were made using a

continuous rating scale slider� Unlike Taylor et al��s �����	 experiment in the preceding

chapter� the theoretical ROC curve was unknown�

Observers� The observers were two adult males� each of whom had recently completed

over �� ��� trials in a similar SIFC amplitude discrimination experiment� Both men were

also observers in Taylor et al��s �����	 continuous rating scale experiment�

Stimuli� The maskers for the experiment were short�duration� low�pass Gaussian noise

transients with a �dB bandwidth of ���� Hz �nominally ���� Hz	� The signals were

short�duration� band�pass Gaussian noise transients with a � dB bandwidth of ��� Hz�

centred at ��� Hz� Both the signals and maskers were of the same duration and were

windowed using a Kaiser window �Rabiner " Gold� ����	 with a shape parameter of ��

The absolute duration was �� ms and the equivalent rectangular duration was ��� ms� The

signal�to�noise ratio was ��� dB� with the gated masker presented at a spectrum level of

�� dB SPL� During experimental sessions� a � kHz low�pass analog Gaussian noise masker

ran continuously at a spectrum level of �� dB SPL� All stimuli were presented diotically�

Transients were computer�generated� and stored as digital code sequences on disk� so

they could be reproduced across replications� The signal�generation program was written

in HPL �Hewlett Packard Language	 and implemented on an HP ���� computer� The

program used digital Butterworth 
lters �Stearns� ����	 to generate band�limited Gaussian

noise� A two�section 
lter was used for the low�pass masker process� with a nominal cuto�

of ���� Hz� A ��section band�pass 
lter was used for the signal�alone transients with

nominal cuto�s of ��� Hz and ��� Hz� The input to each 
lter was � kHz low�pass� white

Gaussian noise�� To generate signal�plus�noise transients� sequences of ��� consecutive

points were copied from the output of each digital 
lter� additively mixed� windowed� and

converted into ���bit digital code sequences� Noise�alone transients were generated from

the low�pass 
lter only� Each 
lter was run through ��� points before the next transients

�These nominal cuto�s� and the given data window� produced the measured � dB bandwidths of ���� Hz
for noise�alone transients and ��� Hz for signal�alone transients	 The white Gaussian noise input for each
�lter was de�ned by a sequence of normally distributed pseudo�random numbers� presented at a nominal
rate of �� kHz� which was the clocking rate of the digital�to�analog converter used in the experiment	
Normal variates were generated by applying Knuth�s polar algorithm �Knuth� ���� cited in Taylor� ����

to the numerical output of Evans et al	�s ����
 uniform pseudo�random number generator	
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were copied� Instantaneous values of the 
lter outputs were Gaussian out to � standard

deviations from the mean�

The code sequences were processed by a ���bit digital�to�analog converter card housed

in a Hewlett�Packard ����B multiprogrammer� under the control of the HP ���� com�

puter� The digital�to�analog converter was clocked at �� kHz� Its output was smoothed

using a passive � kHz low�pass 
lter before being attenuated� mixed with the continuous

masker and passed to a headset ampli
er� Stimuli were presented to observers using TDH�

�� headphones mounted in Rudmose Tracor RA���� headsets with MX���(AR cushions�

Observers sat in a booth in the same sound�attenuated chamber that was used for Taylor

et al��s �����	 experiment� described in previous chapters�

Procedure� The experiment involved multiple �����trial replications� with ��� trials per

event� Stimuli were presented in a haphazard sequence� under the constraint that the same

event could not occur more than four trials in a row� Each replication for each observer

used a di�erent trial sequence� so that any trial�by�trial order e�ects would contribute to

the unique noise and not the common noise� Trials were run in sessions of ��� trials that

lasted approximately �� minutes� Only one observer ran at a time�

Decisions were indicated using a continuous �� cm horizontal slider as a mechanical

analog to a rating scale� Slider position was measured electronically at the end of the

decision interval and converted into ratings on a ���point rating scale �Watson et al��

����	� Each trial began with the slider reset to the extreme left� Observers used the

slider so that its 
nal position re�ected their con
dence that the SN event had occurred�

with increasing position from left to right indicating increasing con
dence� Observers were

encouraged to try to use the whole scale evenly�

Each trial consisted of a warning interval of ��� ms� an observation interval of �� ms�

a decision interval of ���� ms and a reset interval of ��� ms� The reset interval was a

minimum duration� The next trial could not begin until the slider had been reset to its

extreme left� A set of LED lights on the decision panel were switched on and o� to mark

the trial intervals� Trial�by�trial knowledge of results was provided during the reset interval

using LEDs that indicated which event had occurred during the observation interval� The

timing of intervals and data collection was under the control of an HP ���� computer� but

stimulus production and data storage onto disk was done by an HP ���� computer�

Observer � completed �� replications over the course of six weeks while Observer �

completed �� replications over the course of three months� Observers completed anywhere

from zero to four replications per day� The initial plan was for observers to run �� repli�

cations each� which they did� but the plan changed and Observer � continued and ran

�� replications� After they had completed �� replications each� the observers repeated

some of their poorer replications� which had been earmarked as being dodgy at the time

they were run� for a variety of reasons� Observer � repeated nine of his 
rst �� replications�
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and Observer � repeated four of his 
rst �� replications� After this� no further replications

were repeated�

��� ROC and GOC results

The single�replication ROC curves for Observers � and � are shown in Figure ���� Both

observers were comparable in their level of performance and the amount of variability

across replications� The mean value of A for Observer � was ������� with a standard

deviation of ������� while the mean value of A for Observer � was ������� with a standard

deviation of �������

Figure ��� shows the mean ROC and GOC curves for the ROC curves in Figure ����

Although Observer � had the higher mean ROC curve� Observer � had the higher GOC

curve� According to Figure ���� which observer was better at the task depended on whether

unique noise was removed or not�

Figure ��� shows the mean ROC and GOC curves for Observer � based on three

successive ���replication blocks of data� While the mean ROC curves are reasonably

similar� the GOC curves are less so� which shows that unique noise was still present

after �� replications were combined� If all the unique noise had been removed� then all

three GOC curves should be the same� because the same stimulus set was used for all

replications� Observer � had a higher mean ROC curve than any of the ���replication

mean ROC curves for Observer �� but a lower GOC curve than any of the ���replication

GOC curves for Observer �� This indicates that the number of replications was not the

reason why the ���replication GOC curve for Observer � was better than the ���replication

GOC curve for Observer �� Rather� the common noise performance was di�erent across

the two observers� This di�erence is also seen in the FORA results� which are given in the

next section�
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��� FORA results

Various FORAs are presented in this section� starting with the ���replication FORA for

Observer � and three successive ���replication FORAs for Observer �� This is followed by

estimates of the ���replication FORA for Observer �� which illustrate practical problems

with ACA for large numbers of replications� and solutions to those problems� A ���

replication FORA based on �� replications from each observer is then presented� which

shows the result of combining data across observers� Finally� Section ��� deals with the

sampling statistics of estimated asymptotes� including residual error� and addresses the

question of how many replications should be run in GOC experiments� All of the FORAs

and asymptotes presented in this chapter are based on A� Data values and regression

parameters for the various FORAs are given in Table G�� in Appendix G�

��	�� FORAs based on � replications

Observer �� The ���replication FORA for Observer �� and its accompanying log�log

plot� are presented in Figure ���� The average value of A for single�replication data is

������� which improves to ������ after �� replications have been combined� The regression�

FORA in Figure ����a	 is given by Equation ��� using the parameter triplet �A� 
 �	 �

��������� �����������������	�
The regression�FORA 
tted most of the data well� The regression�FORA was slightly

higher than the empirical FORA at the middle combination�sizes� and slightly lower at

the larger combination�sizes� This was re�ected in the accompanying log�log plot� which

curved upwards compared to the straight line implied by FORA regression� The log�log

plot shows that the increments in the regression�FORA became smaller than the incre�

ments in the empirical FORA as the number of replications combined increased� This

pattern suggests that the estimated asymptote� at ������� underestimates the true asymp�

tote� but probably not by much� The log�log plot was reasonably linear� with r� � �������

Observer �� FORAs for Observer �� based on three successive blocks of �� replications�

are shown in Figure ���� The three GOC curves based on the same three data blocks were

shown in Figure ���� The GOC curves were di�erent from each other and so were the

FORAs and asymptotes� FORAs started o� at ������� ������ and ������ for blocks �� �

and �� respectively� GOC analysis provided large improvements after ���replications� with

values of A of ������� ������ and ������ respectively� Regression functions were 
tted to

the empirical FORAs �according to the parameters given in Table G�� in Appendix G	�

providing estimated asymptotic values of ������� ������ and ������ respectively�

Like the GOC curves in Figure ���� the variability across FORAs implies there is still

unique noise present �even after ���replications have been combined	� and this a�ects the

resulting asymptotes� These FORA results show that estimated asymptotic performance
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Figure 
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straight line indicates the log�log relationship based on parameters from the FORA regression
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Figure 
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mean area under the GOC curve as a function of replications combined� Hollow symbols denote
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regression functions� �b� The accompanying log�increment in area versus log of replications
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on parameters from the FORA regression function for each block� Symbols and line�types
denote the same data blocks as for panel �a��
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eters from the FORA regression function for each observer� Symbols and line�types denote
the same observer as for panel �a��
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does not unambiguously re�ect unique�noise�free performance� no matter how good the re�

gression may be for a given data block� The variability� or error� associated with estimated

asymptotes is discussed in Section ����

A comparison between Observers � and �� The ���replication FORA for Observer �

�from Figure ���	 and the ���replication FORA for Observer ��s 
rst data block �from

Figure ���	 are re�presented for comparison in Figure ���� The two FORAs cross between

combination�sizes of � and �� which shows again that Observer � had the better ROC

performance� and Observer � had the better GOC performance� Each observer�s FORA

tended to quite di�erent asymptotic values� which suggests that the discrepancy in GOC

performance between GOC curves shown in Figure ��� was because the common noise is

di�erent for each observer� rather than because Observer � ran �� more replications than

Observer �� The FORAs also suggest that Observer � would never catch up to Observer �

because the unique�noise�free performance for Observer � was inherently worse than that

of Observer ��

Conclusions such as these may be hard to draw based on ROC or GOC curves alone�

without calculating FORAs� regardless of whether the number of replications per observer

are equal or not� If comparing observers on the basis of just one GOC curve per observer�

any di�erences across observers could be due to di�erences in common noise� or due to

di�erences in unique noise� or both� Without describing how performance changes with

replications� it may seem possible that the observer with the worse GOC curve could run

more replications and catch up to the observer with the better GOC curve� Calculating a

FORA for each observer can help to show when this is possible and when it is not�

��	�� FORAs based on � replications

Combinatorial explosion puts a practical limit on the number of replications that can be

analysed in full using ACA� The limit arises because there are ��m � �	 possible GOC

curves from a data set of m replications� Once m becomes too big� even the fastest

computer is unable to complete ACA in a reasonable amount of time�� Two possible

solutions to this problem are suggested and applied to the ���replication data set�

The 
rst solution� called partial�ACA� is to only analyse data for combination�sizes

from � up to the largest size computable in a reasonable amount of time� along with

complementary combination�sizes� This results in a partial FORA� with outer points

de
ned at each end� but with inner points missing from the middle� It is still possible to


t a regression�FORA to the partial FORA and to estimate an asymptote� The second

�Each of the ���replication FORAs presented earlier required calculating the area under ������
 � ����
million GOC curves	 At the date of analysis� this was close to a practical limit� because of computation
time	 Full ACA on a ���replication data set requires ���� � �
 � ��� � ���� GOC curves� and would take
a while	
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solution� called sampled�ACA� is to use partial�ACA to derive as many outer points as

possible� and to estimate values for the inner points by random sampling� ACA� when

done in full on all combination�sizes� is called complete�ACA� to distinguish it from these

other two variants� The term ACA without a quali
er implicitly refers to complete�ACA�

Partial�ACA� For each combination of � replications taken from a set of size m� there

is a complementary combination of m � � replications� Calculating sums�of�ratings for

the former combination provides an e�cient way of calculating sums�of�ratings for the

latter combination� It is more e�cient to calculate GOC measures in ACA by pairing

combinations with their complements than by treating all combinations separately� ACA

results are identical� regardless of whether complementary combinations are used or not�

Speci
c details about the computation are given in Appendix F�

The result of using complementary combinations is that FORA points are calculated

in pairs� starting with � � � and � � m��� and working inwards from the outside� Values

of A were only calculated using complementary combinations of sizes � � � to � and ��

to �� �calculation time became prohibitive beyond � � �	� The last point on the FORA�

at � � m � ��� was also calculated� It is a special case� based on a single GOC curve�

because there is no combination that is complementary to all �� replications�

The outer points of the ���replication FORA based on A are presented in Figure ����

along with the accompanying log�log plot� The average area under the ROC curve is

������� which improves to ������ after �� replications have been combined� Only a

handful of outer points on a FORA are enough to 
t Equation ��� to the data� esti�

mate an asymptote and to also calculate some of the points on the a log�log plot� The

regression�FORA in Figure ����a	 is given by Equation ��� using the parameter triplet

�A� 
 �	 � ��������� �����������������	� which estimates the asymptote to be �������

The accompanying log�log plot �Figure ����b		 is consistent with the linear relationship

implied by the FORA parameters �dashed line	� The di�erence between the area under

the ���replication GOC curve and the estimated asymptotic area value is ������ which

shows that most� but not all the unique noise has been removed after �� replications�

Sampled�ACA� Sampled�ACA is another way of deriving FORA results without need�

ing to work through all ���� � �	 combinations� Partial�ACA is 
rst run to derive FORA

values for outer combination�sizes� as shown in Figure ���� and random sampling is then

used to estimate average values of A for inner combination�sizes �to 
ll in the gap in Fig�

ure ���	� Sampled�ACA was applied to the data for Observer �� For this data set� at each

combination�size from � � � to �� inclusive� ��� � ���� ��� combinations of size � were

randomly sampled� with replacement� from the set of ��C� possible combinations� and the

sample mean value of A was calculated�
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Figure 
�
� �a� The outer points on the ���replication FORA for Observer 
� showing mean
area under the GOC curve as a function of replications combined� All combinations were used
for combination�sizes from � to  and from 	 to ��� �b� The accompanying log�increment in
area versus log of replications combined� The straight line indicates the log�log relationship
based on parameters from the FORA regression function�
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The estimated ���replication FORA and its accompanying log�log plot are presented

in Figure ���� Data points for combination�sizes � to � and �� to �� are the same as in

Figure ���� The regression�FORA in Figure ����a	 is given by Equation ��� using the pa�

rameter triplet �A� 
 �	 � ��������� �����������������	� This provided an asymptote

at ������� agreeing with the earlier estimate to four decimal places� The empirical FORA

in Figure ����a	 was remarkably smooth and the regression�FORA was almost a perfect 
t

to the data� It should be emphasised that the solid line through the data points represents

a regression function� It does not join the experimental data points� �Very close scrutiny

of Figure ����a	 will reveal tiny discrepancies between the small central dot in each data

point and the regression function�	 The empirical log�log plot in Figure ����b	 was almost

linear� with r� � ������� The data series in the log�log plot was not entirely smooth�

however� which re�ects the fact that combinations were sampled rather than calculated

exhaustively�

The stability of the estimated points in the middle of the FORA is in�uenced by the

number of random samples per point� If only ���� combinations had been sampled� for

example� instead of ���� the estimated FORA and log�log plot would not be as smooth�

because of greater sampling variability� The in�uence of the number of samples on data

analysis was not investigated� but ��� was used as a compromise between stability and

practical computability�

The FORA based on partial�ACA of just the outer points and the FORA based also on

sampled inner points are consistent with each other� and their estimated asymptotes agree

to four decimal places� The agreement comes about because the empirical log�log plot was

very linear for this data set� Had the log�log plot curved appreciably� then sampled�ACA

would have provided a better estimate than partial�ACA� because the sampled inner points

would have provided more data for the regression�FORA�

Complete�ACA is certainly practical for sets up to about �� replications� but if a data

set is too large for complete�ACA� then sampled�ACA is preferable to partial�ACA because

it provides more certainty in FORA regression� The main disadvantage of sampled�ACA is

that it takes longer to compute than partial�ACA� Sampled�ACA required about �� million

extra GOC curves for the ���replication FORA compared to partial�ACA� Ultimately�

computation time is a limiting factor in the choice of analysis�

��	�	 Combining data across observers

GOC analysis can be performed on replications analysed within single observers� or across

observers or both� Experiments involving more than one observer can be used to assess

group performance� as long as the same stimulus set is used for each observer� The theory

of GOC analysis shows that when the decision axes of two or more inconsistent observers

are identical� or the axes share the same stochastic ordering� then all individual observers

have the same asymptotic� unique�noise�free GOC curve� Furthermore� the asymptotic



�� Sampling statistics of asymptotic performance �	�

0.78

0.82

0.86

0.90

0.94

0 15 30 45 60 75

(a)

0.9160

Asymptote
Regression Function

Empirical FORA

m
ea
n
A

Replications Combined

-10.0

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(b)

lo
g e
�I
nc
re
m
en
t
in
A
�

loge�Replications Combined�

Figure 
��� �a� Estimated ���replication FORA for Observer 
� showing mean area under the
GOC curve as a function of replications combined� Values for combination�sizes � to  and
	 to �� were calculated exactly� and values for combination�sizes � to � were estimated
by random sampling� �b� The accompanying log�increment in area versus log of replications
combined� The straight line indicates the log�log relationship based on parameters from the
FORA regression function�
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value of A will be the same across observers as within observers�

Figure ��� showed that the asymptotic value of A was di�erent for each observer� which

implies that the asymptotic GOC curves would be di�erent also� This does not mean that

GOC analysis and ACA cannot be done across observers� because GOC curves can be

calculated� In such a situation� GOC and FORA results call for a cautious interpretation�

because it is uncertain what is common across observers and what is unique�

The ���replications from Observer � and the 
rst ���replications from Observer � were

combined to estimate a ���replication FORA� This required ���� � �	 � ���� values of A�

which is impractically large for complete�ACA� and so sampled�ACA was done instead�

Partial�ACA was computed to provide outer points on the FORA for combination�sizes

� to � and �� to ��� Mean values of A were estimated for combination�sizes from �

to �� inclusive �based on ��� � ���� ��� combinations sampled at each combination�size	�

The result was an estimated ���replication FORA� which is given in Figure ��� with its

accompanying log�log plot� The ���replication regression�FORA provided an excellent 
t

to the data� apart from the 
rst few points� The average value of A was ������ initially�

and reached ������ after �� replications� just short of the estimated asymptote at �������

In Figure ����b	� the log�log plot for the 
rst �� replications for Observer � curved

slightly downwards whereas that for Observer � curved upwards� These trends seemed

to cancel each other out� roughly speaking� once the two sets of data were combined�

The log�log plot based on all �� replications fell almost exactly on the linear relationship

implied by the FORA parameters �dashed line in Figure ����b		� with r� � ������ for the

data points� The relatively poor 
t of the regression�FORA to the initial FORA points

in Figure ����a	 showed up as only slight discrepancies in the log�log plot �between data

points and the straight line in Figure ����b		� and did not appear to a�ect regression of

the rest of the FORA data points� The linear log�log pattern broke down for the last few

data points in the log�log plot� which dropped o� more steeply than the straight line� The

e�ect of this small bend on the regression�FORA was minimal �with discrepancies of less

than e�
 � ������	�

Since FORA data points are average values� it might be expected that the FORA

in Figure ����a	 is approximately the average of the two individual FORAs shown in

Figure ���� This was certainly the case� even though no simple averaging was taking

place in the estimation of either the ���replication FORA or the asymptotic value� The

asymptote estimated from the ���replication FORA was ������� which was close to the

average of the two individual ���replication asymptotes at �������

FORA regression using the three�parameter data model provided excellent descrip�

tions of Whitmore et al��s �����	 ACA results� Each observer showed di�erent levels of

unique noise and common noise� Group results across observers were intermediate to each

individual�s results� which seems intuitively correct�
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Figure 
��� �a� Estimated ���replication FORA based on 
� replications from each observer�
showing mean area under the GOC curve as a function of replications combined� Values for
combination�sizes � to � and � to �� were calculated exactly� and values for combination�
sizes � to �� were estimated by random sampling� �b� The accompanying log�increment in
area versus log of replications combined� The straight line indicates the log�log relationship
based on parameters from the FORA regression function�
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�� Sampling statistics of asymptotic values of A

Group operating characteristic analysis reduces the e�ect of observer inconsistency� but

cannot remove it entirely from any 
nite number of replications� FORAs tend asymp�

totically towards unique�noise�free performance� so there is residual error and variability

associated with asymptotes from any 
nite data set� Two independent sets of replications

from the same experiment are usually di�erent� even if taken from the same observer�

This section examines the variability of estimated asymptotes� rather than that of ROC

or GOC performance� how to assess the variability� and how to estimate the residual error

associated with any given number of replications�

Sampling statistics of the asymptotes were estimated by further analysis of data from

Observer � only� �The data set for Observer � was not large enough for this purpose without

con�icting with resampling problems�	 Sets of a given size� m� were randomly sampled

from the set of �� replications� ACA and FORA regression was performed on each set�

and the asymptotic value of A calculated� Having multiple ACA sets enabled the sample

mean� standard deviation� skewness and kurtosis of asymptotes to be estimated for each

ACA set size from � to �� inclusive �asymptotes can only be estimated for � or more

replications	� The results show how these statistics of asymptotes change as a function of

the number of replications used to estimate the asymptote�

Sampling with and without replacement

Ideally� the sample statistics should be based on independent sets of replications� sampled

without replacement� but this is impossible in practice� because it would require a huge

number of trials� For example� assume that stable statistics may be estimated from a

sample of ���� asymptotic values� Each ACA set contributes only a single asymptote� so

the statistics based on independent sets of size m would require �����m replications� At

���� trials per replication �for this experiment	� this means � million trials per value of m�

so estimates for m � � to ��� achieved below would require ��� million trials in total��

The only practical way of getting this quantity of data would be by computer simulation�

and not experimentation� The �� ����trial� ���replication data set for Observer � seems

small by comparison� yet it is the largest experimental set available�

Since independent ACA sets were not possible� sampling was done with replacement

from the set of �� replications� While the ACA sets were not independent� reasonably

stable statistical estimates were possible at larger ACA set sizes �approximately m � �	�

The e�ect of resampling with replacement� compared to sampling without replacement�

is not known� Probable artifacts at smaller ACA set sizes are discussed in Section ������

The resampling procedure may be similar to statistical estimation of ROC parameters by

jackknife techniques �Dorfman " Berbaum� ����	� but GOC analysis and ACA complicate

matters to an unknown extent�

�Since
P�


m��
��� ��� �m
 � ���� ���	
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ACA no� of Sample statistics of asymptotic A
set size� m resamplings mean std� dev� skewness kurtosis

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

� ����� ������ ������ ������ ������

�� ����� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ���� ������ ������ ������ ������

�� ��� ������ ������ ������ ������

�� ��� ������ ������ ������� ������

�� ��� ������ ������ ������� ������

Table 
��� Sample statistics of estimated asymptotic values of A� for ACA set sizes from �
to 
�� based on ACA sets that were resampled from the �� replications for Observer 
�

����� Results

The sampling statistics of estimated asymptotic values of A� as a function of m� are given

in Table ���� Compiler limitations meant that a maximum of nr � ����� �approximately

���	 resamplings could be run per ACA set size� This was done for ACA set sizes between

� and �� inclusive� Computation time became the limiting factor for m � ��� The

number of resamplings was ���� for m � ��� ���� for �� � m � ��� and ��� �or fewer	

for �� � m � ��� It is uncertain how large nr should be to achieve stable estimates�

Preliminary investigations suggested� for this data set� that statistics were too variable

when nr � ���� but were generally stable when nr � ����� Also the smaller the ACA set

size� the larger nr needed to be for the statistics to be stable�

Sample statistics as a function of ACA set size are plotted in Figures ���� and �����

The mean value of A is relatively constant� as can be seen in Figure �����a	� which plots A
on a scale from ��� to ���� The mean asymptotic value of A changes only in the third

decimal place �Table ���	� so the more detailed scale given in Figure �����b	 is required
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Figure 
��� Mean estimated asymptotic value of A as a function of ACA set size� for subsets
taken from the �� replications for Observer 
� Both graphs show the same data� but the
ordinate is scaled di�erently in each one� Panel �a� is scaled from ��� to ���� which is the usual
range of A� whereas panel �b� is scaled from ��	� to ��	
 and shows small�scale details�

in order to see variation in the mean� which begins at ������ for m � � replications and

increases to around ������ for m � ��� The mean seems stable for m � ��� �The decrease

at m � �� may have to do with the small number of resamplings ����	 compared to the

rest of the data�	

The initial increase in mean value from m � � to �� suggests a bias in estimates

based on small numbers of replications� The bias decreases as m increases� suggesting

that perhaps � or �� replications are su�cient to obtain a reasonably unbiased estimate of

the asymptote for this data set� This bias may be an artifact of the resampling procedure�

and why it arises is described in Section ������

It is di�cult to put a value on any bias because theoretical performance is not known

for this experiment� The data in Table ��� suggests the expected asymptotic A is �������

although the estimate from the ���replication FORA in Figure ��� was ������� The latter
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Figure 
���� Sample statistics of estimated asymptotic values of A resulting from ACA
of subsets of sizes � to 
� from the �� replications for Observer 
� �a� standard devia�
tion� �b� skewness�the horizontal line indicates the skewness of a symmetrical distribution�
�c� kurtosis�the horizontal line indicates the kurtosis of a Gaussian distribution�
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value is probably the best one to use because it is based on a much larger FORA �in

Figure ���	 than the FORAs that contributed to Table ���� Both estimates of the mean

������� and ������	 fall well within one standard deviation of each other for each ACA

set size given in Table ����

Figure �����a	 shows that the standard deviation of the asymptoticA decreases steadily

and smoothly as a function of m� although with diminishing returns as m increases� The

standard deviation is ���� at m � ��� and it would take more than twice as many replica�

tions in order to halve that� This suggests that there is still error in the second decimal

place for the estimated mean A� even after �� replications� The function of standard

deviation versus ACA set size in Figure �����a	 can be extrapolated� as is shown in Sec�

tion ������

Skewness is measured as the third moment around the mean divided by the cube of the

standard deviation �McNemar� ����	� Skewness indicates the asymmetry of a distribution

around its mean� and is zero for a symmetrical distribution� The skewness of estimated

asymptotes� shown in Figure �����b	� is relatively large at the smaller ACA set sizes� It

decreases towards zero� and remains near zero for m � ��� The initial positive skewness

indicates that the distribution of asymptotes tails o� to the right when m is small�� The

initial skewness may be another sampling artifact at small ACA set sizes�

Kurtosis is given by the fourth moment around the mean divided by the fourth power

of the standard deviation �McNemar� ����	� which indicates the concentration of a dis�

tribution around its mean �roughly� how peaked a distribution is	� The kurtosis of any

distribution may be compared with that of a Gaussian distribution� whose kurtosis is equal

to �� Figure �����c	 shows that the distribution of asymptotes is peaked for small ACA

set sizesagain� a potential artifactbut settles down to be in the vicinity of � for m � �

which� together with the skewness statistics� suggests that the distribution of estimated

asymptotes may well tend towards a Gaussian distribution for moderate to large ACA set

sizes�

The data analysis leading to Table ��� and Figures ���� and ���� shows how sample

statistics of asymptotic performance can be estimated� given a large but 
nite data set�

Stable estimates were achievable for Observer � in this experiment only� using about �� or

more replications� There is probably no minimal number in general� because results and

error will di�er across observers and experiments� The minimum number of replications

also depends on how much error is acceptable�

�Curiously� this suggests that the distribution of asymptotes is skewed in the opposite direction to
that expected for a measure of sensitivity that is bounded above at �	�� as suggested by McNicol ������
Figure �	
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Figure 
���� The standard deviation of estimated asymptotic values of A versus the ACA set
size� presented on double�logarithmic co�ordinates� for ACA sets of size � to ��� Data points
are joined by line segments only to highlight the linear relationship�

����� Estimating the standard deviation

The standard deviation of estimated asymptotes shown in Figure �����a	 shows a very

smooth decrease as a function of ACA set size� m� Lapsley Miller ������ personal com�

munication	 noted the similarity between Figure �����a	 and Figure ����b	� and suggested

replotting the data in Figure �����a	 on double�logarithmic axes� as presented in Fig�

ure ����� Only ACA set sizes between � and �� inclusive were used� because the number

of resamplings was relatively small for m � �� �Table ���	�

The resulting function in Figure ���� is highly linear in double�logarithmic coordinates�

suggesting an exponential regression to the data in Figure �����a	 �in linear coordinates	�

Such a regression function may be extrapolated� and provide an estimate of the standard

deviation of asymptotic A for any ACA set size� A simple way of doing the regression

is to 
t a straight line to the data in double�logarithmic coordinates� The function in

Figure ���� bends slightly at the left� and since the aim of regression was to extrapolate

to the right� the 
rst data point on the left was ignored� The remaining �� points formed

a highly linear series� with r� � ������� If s is the standard deviation� and m is the ACA

set size� then a linear least�squares regression of the remaining �� points provided the

regression equation

loge�s	 � ������� loge�m	� ������
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which can be rearranged as

s � ������ m�����	� ����	

where ������ is equal to exp��������	�
Estimated standard deviations based on Equation ��� agree with the empirical standard

deviations in Table ���� with relative errors of �, or less�� Table ��� lists estimated

standard deviations for ACA set sizes from � up to ��� in steps of �� Along with the

estimated ���replication asymptote of ������� these results provide strong grounds for

stating� with reasonable certainty� that unique�noise�free performance for Observer � in

this experiment was at

A � ����� 
 �����

�within 
� standard deviations	� This is in contrast to average single�replication ROC

performance at ����� 
 ������ Not only does unique noise increase variability� but the

decrease in performance can be viewed as a large bias� particularly if single�replication

ROC performance is interpreted as a re�ection of theoretical performance�

Table ��� shows that error could still a�ect the value of the asymptote in the second

decimal place� even after �� replications� The inverse of Equation ����

m � ������� s������	 ����	

indicates the number of replications needed in order to achieve a given standard deviation�

Table ��� lists the estimated number of replications for a set of given standard deviations�

Equation ��� indicates that Observer � would need to run over a thousand replications

in order for the asymptote to remain unchanged in the third decimal place� and tens of

thousands of replications to achieve stability to the fourth decimal place� While this is

possible in principal� it is certainly impractical�

����	 Potential artifacts at small ACA set sizes

Potential artifacts arise when estimating sample statistics of asymptotes� The problem

is that there is an unavoidable interdependence of results across �resampled	 ACA sets�

particularly at small ACA set sizes� m� which may a�ect sample statistics at small values

of m� ACA sets were resampled with replacement from the set of �� replications to

approximate statistics of random samples taken without replacement from an unlimited

number of replications� The number of resamplings� nr� needed to obtain stable estimates

�Apart from when the ACA set size is �� which Equation �	� is not intended to cover	 Equation �	� should
not be extrapolated to ACA set sizes of � or �� because FORA regression requires at least � replications�
and asymptotes cannot be estimated based on just � or � replications	
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ACA estimated ACA estimated

set size std� dev� set size std� dev�

� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� �� �������

�� ������� ��� �������

Table 
��� Estimated standard deviation of the asymptotic value of A for Observer 
� for ACA
set sizes from � up to ��� in steps of �� Estimates are based on regression using Equation ����

standard estimated number

deviation of replications

��� ����

���� ����

���� ����

���� ����

����� ����

����� �����

����� �����

������ �����

������ ����

������ ����

Table 
��� Estimated number of replications needed to achieve a given standard deviation of
the asymptotic value of A� Estimates are based on Equation ��
� The estimated number
of replications is a non�integer lower bound �given to as few decimal places as appropriate��
These should be converted to the next largest integer to be realistic�
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is not known� but was set to nr � ����� for � � m � ��� and nr � ���� was used as

a practical lower limit for m � ��� The total number of di�erent ACA sets of size m

that are possible from a data set of �� replications is ��Cm� and the ratio of this number

to the number of resamplings is ��Cm�nr� This ratio re�ects the scope for variation in

resampling ACA sets and asymptotes� Unfortunately� ��Cm�nr is relatively small at small

ACA set sizes� The ratio is ��� for m � �� and ���� for m � �� but the ratio is some

tens of thousands for � �m � �� and millions for m � �� Resampling interdependence at

small values of m must a�ect the estimated sample statistics of asymptotes presented in

Figures ���� and ����� Sample statistics at small values ofm probably re�ect the particular

sample of �� replications more than at moderate to large values of m� because the scope

for variability is reduced�

Once m � � �for a data set of �� replications	� interdependence is no longer a concern

because ��Cm�nr becomes very large� Curiously� kurtosis seems to settle down to a value

around � at just this point in Figure �����c	� and the mean asymptote tends to a stable

level once m is beyond �� No clear cuto� for m presents itself for either skewness or

standard deviation� and Figure ���� hardly suggests any e�ect at all for the standard

deviation �except perhaps at m � �	� If m � � is a reasonable cuto�� this suggests that

resampling artifacts are minimal once ��Cm�nr is on the order of ��� or more�

Sampling statistics of asymptotes were not calculated for Observer � because interde�

pendence is much worse for a data set of only �� replications� The ratio ��Cm�nr is never

more than ��� �using nr � �����	 for any value of m� and is generally less than ���

In summary� it is likely that aspects of the sample statistics of asymptotes at small

ACA set size are an artifact of the resampling procedure that was used� but the artifact is

minimal once the ACA set size is large enough� and once the data set is large enough�

��� Summary

FORA regression of a large data set makes it possible to not only estimate asymptotic

performance� but also to estimate sampling statistics and error bounds of the asymptote�

Several new analyses and a new data set were introduced in this chapter� FORA regression

provided excellent descriptions of the data� even out to �� replications� and unique�noise�

free performance values were obtained with unprecedented accuracy�

The data set from the amplitude discrimination experiment provided evidence that

the data pattern seen in Chapter � was not a coincidence� Log�log plots for the current

experiment were very linear� both within observers and across observers� and FORA re�

gression could hardly have been better than it was� The regression�FORA in Figure ����

for example� was virtually identical to the data series� and yet the regression was based

on the values of only three empirical parameters�

FORA results illustrated the large amount of improvement that was possible through
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the use of GOC analysis� The mean value of A was initially around A � ���� for Ob�

server �� but unique�noise�free performance was over A � ����� There were de
nite indi�

vidual di�erences between observers for the same stimulus set� both in the level of common

noise implied by each observer�s asymptote� and in the decrease in performance due to

unique noise� which was much larger for Observer �� Although Observer � was better

than Observer �� based on mean ROC performance� the roles were reversed when two or

more replications were combined� Relative ROC performance did not� in this case� re�ect

relative GOC performance or relative asymptotic performance�

Combinatorial explosion puts practical limits on ACA of large data sets� Two varia�

tions on ACA were introduced� partial�ACA and sample�ACA� Partial�ACA involved the

calculation of only a small number of data points near the ends of a FORA� whereas

sample�ACA involved random sampling of a 
nite number of combinations to arrive at es�

timated mean performance for combination�sizes between the end points� For Observer �

in this experiment� both variations on ACA arrived at the same estimated asymptote�

The large data set for Observer � made it possible to estimate sampling statistics of

the asymptote� Repeated ACA over subsets of replications made it possible to build up

a picture of the error associated with asymptotes� The minimum number of replications

needed for FORA regression is three� The estimated asymptote based sets of only three

replications� for example� was very close to estimates based on much larger sets� There was

certainly an improvement over single�replication performance� Generally� the variability of

asymptotic estimates was very large when only a small number of replications were used in

ACA� but variability decreased regularly with increasing ACA set size� Possible artifacts

in the estimation process were described� These were believed to have little impact� for

this data set� once the ACA set size reached double 
gures�

An avenue of investigation not pursued here is that of simulation� Both statistical simu�

lation� using Monte Carlo methods� and computational simulation of unique�noise�a�ected

ideal observers� could o�er ways around unavoidable practical limitations encountered in

ACA� Theoretical FORAs� noted in Chapter �� were not pursued either� and still need to

be integrated with the current framework�

In conclusion� Given enough replications� it is possible to achieve very accurate de�

scriptions of unique�noise�free psychophysical data� Reasonable estimates can be achieved

based on only a small number of replications� but at the expense of greater potential error�

The large number of replications from Observer � provided a way of evaluating how many

replications may be required in an experiment to achieve given error bounds on estimated

asymptotes� With regard to the asymptotic value of A� for example� the results for Ob�

server � suggested that �� replications were enough to obtain a standard deviation of �����

but almost ��� replications would be needed to achieve a standard deviation of ������



Chapter 	

Functions of replications added for

various experiments

The previous two chapters introduced ACA and FORA analyses as extensions of GOC

analysis� FORA regression was developed to estimate asymptotic� unique�noise�free per�

formance� The previous chapter showed how the sampling statistics of asymptotes may be

estimated� This chapter presents a collection of multiple�replication experimental results�

which show how ubiquitous the FORA data pattern is� Together with the experiments

in preceding chapters� these results show that ACA and FORA regression works over a

wide variety of experimental paradigms �SIFC and �IFC	� experimental tasks �frequency

discrimination and amplitude discrimination	� decision methodologies �continuous rating

scale and binary�decision tasks	� individual observers �seven di�erent people in all	� stim�

ulus parameters �bandwidth� duration� centre frequency� and signal�to�noise ratio	� and

measures of sensitivity� Each experiment investigates some� but not all� of these factors�

Results show that the general FORA regression pattern is extremely robust across ex�

periments and measures of sensitivity� with linear or near�linear log�log plots being the

norm��

These data sets did not come from one particular experimental project� Rather� they

came from di�erent projects used to investigate di�erent topics at di�erent times� and

were obtained through the courtesy of the authors� The experiments took place over a

period of nine years and are presented mostly in the order of data collection�

Section ��� presents results from two �IFC frequency discrimination experiments from

Lapsley Miller et al� �����	� which used known� discrete evidence distributions� The 
rst

experiment used a binary�decision methodology whereas the second experiment used a

continuous rating scale methodology� FORAs based on �� replications from each experi�

ment are compared and contrasted to show the e�ect of decision methodology on estimated

asymptotes�

�Similar �ndings were also found in other experiments run by Galvin et al	 �����
� and by Lapsley Miller
et al	 �����
� which are not presented here	

���
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Section ��� presents results from a �IFC amplitude discrimination experiment� also

from Lapsley Miller et al� �����	� The decision axis was not known for this experiment

but was assumed to be continuous because of the nature of the stimuli� FORAs were

calculated separately for each of four observers� The FORAs demonstrate a broad range

of single�replication performance across observers� and also a broad range of asymptotic

performance� Like Whitmore et al��s �����	 results in Section ���� the ranking of observers

according to asymptotic performance is not necessarily the same as the ranking based on

single�replication performance�

Section ��� presents results from a previously unpublished �IFC amplitude discrim�

ination experiment which involved multiple signal�to�noise ratios� FORA regression is

found to hold over a wide range of performance levels� from close to chance to near�perfect

performance� Minimal ceiling e�ects are illustrated in FORA regression at the highest

signal�to�noise ratio� Whereas previous experiments were mainly based on a large number

of replications� this experiment shows that FORA regression is also practical when only

eight replications are involved�

Finally� Section ��� summarises numerous FORA results reported by Lapsley Miller

�����	� A series of multiple�signal�to�noise�ratio� SIFC� amplitude discrimination exper�

iments were run to investigate the role of bandwidth and duration in the detection of

Gaussian noise signals� These experiments covered �� pairs of bandwidth and duration�

and the whole experimental project was roughly equivalent to running �� experiments like

the one in Section ���� with �� times as many FORAs�

Out of hundreds of empirical FORAs presented in Lapsley Miller �����	� �across con�

ditions� observers� signal�to�noise ratios and measures of sensitivity	� the vast majority

were 
tted by regression�FORAs that converged sensibly� having log�log plots with r�

values greater than ���� �typically ����� or more	� A handful of FORAs did not con�

verge sensibly� or at all� and these are discussed in Section ���� As well as analysing

two�event FORAs� Lapsley Miller analysed each data set using a six�event discrimination

measure� D�� FORA regression based on D� was extremely successful� with r� typically

between ������ and �������

��� FORAs based on binary�decision and continuous rating

scale data

Two �IFC multiple�replication� aural frequency discrimination experiments were run by

Lapsley Miller et al� �����	� with the same four observers taking part in each experiment�

A tonal transient was presented in each of the two observation intervals on each trial� One

transient came from a set of higher�frequency� tones while the other came from a set of

��Frequency� refers to tonal frequency in Hertz� and not frequency of occurrence	
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lower�frequency tones� The task of an observer was to decide whether or not the higher�

frequency tone had occurred in the 
rst interval� The two experiments were essentially the

same except for the way in way in which decisions were indicatedthe 
rst experiment

involved conventional �IFC binary�decision methodology �using two push�buttons	� while

the second experiment involved a continuous rating scale �using an electronic slider	�

These were part of a series of experiments that Lapsley Miller et al� �����	 used to

evaluate relationships between the SIFC and �IFC tasks� The experiments were unusual in

that the distributions of aural frequency were completely speci
ed by the experimenters

beforehand� This was so the theoretical ROC curve� which was the same for both ex�

periments� was known a priori �assuming the decision rule given below	� Like Taylor

et al��s �����	 SIFC experiment described in Chapter �� these �IFC experiments were

aural equivalents of the dice game�

One possible decision rule in a �IFC task is to use a di�erencing strategy �Tanner "

Birdsall� ����# Robinson " Watson� ����# McNicol� ����# Simpson " Fitter� ����# Egan�

����# Lapsley Miller et al�� ����	� Observers could calculate evidence values for each

observation interval separately �as they would for an SIFC task	 and use the di�erence

between the two values as the basis for �IFC decisions� If the second evidence value is

subtracted from the 
rst� then the di�erence in frequency becomes a new decision axis for

the �IFC task� A systematic manipulation of criterion�based decision rule applied to this

axis yields a �IFC ROC curve�

The label SN refers to higher frequencies� and N refers to lower frequencies� The �IFC

events are labelled as hSNNi and hNSNi� re�ecting the possible orders of presentation

of SN and N transients in each trial� For the purposes of �IFC ROC analysis� the �IFC

hit rate is conditional on the hSNNi event� while the �IFC false alarm rate is conditional

on the hNSNi event�

����� Method

Observers� Four human observers took part in both experiments� Observers � and �

were naive observers� whereas Observers � and � were experienced observers� Observers

� and � were the same two individuals� respectively� as Observers � and � in Whitmore

et al��s �����	 experiment �Chapter �	� Both were also observers in Taylor et al��s �����	

continuous rating scale� frequency discrimination experiment�

Stimuli� The N tones took on frequencies in � Hz steps from ��� Hz to ��� Hz inclusive�

The SN tones took on frequencies in � Hz steps from ��� Hz to ��� Hz inclusive� There

were �� di�erent frequencies in total� �� each for the SN and N events with an overlap

of � frequencies� The distribution of frequencies followed discrete� overlapping uniform

distributions when considered for any single observation interval� Assuming �IFC di�er�

encing strategy� this meant the theoretical �IFC distributions followed the overlapping�
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Figure ���� Probability mass functions for Lapsley Miller et al��s ��		�� 
IFC frequency discrim�
ination experiment� assuming a di�erencing decision strategy �after Lapsley Miller et al�� �		��
Figure ���

discrete triangular distributions shown in Figure ����� If XSN and XN denote the SN and

N random variables within a single observation interval� then the random variable for

the hSNNi event is XSN �XN while that for the hNSNi event is XN �XSN� Hence the

two distributions are mirror images of each other relative to a di�erence of �� and the

theoretical �IFC ROC curve is symmetrical about the negative diagonal in the ROC space

�Green " Swets� ����	�

The equipment used in these experiments was the same as described in Chapter �

for Whitmore et al��s �����	 experiment� in particular� the sound chamber� rating slid�

ers� headphone and headset models� headset ampli
er� ���bit digital�to�analog converter

�DAC	� multiprogrammer and the controlling computers were the same�

Digital code sequences for the sinusoidal transients were generated on an HP ����

computer using its internal sine function� Each code sequence� consisting of ��� points�

was output to the DAC� which was clocked at ��� kHz� The output of the DAC was

smoothed using a passive ���� kHz low�pass 
lter� The transients had an absolute duration

of ��� ms and an equivalent rectangular duration of ���� ms� A Kaiser window with shape

parameter of �� was used to gate transients on from zero to maximum power over the 
rst

�� ms and gate them o� over the last �� ms�

�The di�erence between two uniform distributions of equal width is a triangular distribution	
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During experimental sessions� a � kHz low�pass analog Gaussian noise masker ran

continuously at a spectrum level �� dB SPL� Transients were presented diotically at a

signal�to�masker level of ���� dB for Observers � and �� and at ���� dB for Observers �

and ��� The signal�to�masker level only a�ected the level of unique noise� not the common

noise or theoretical performance� Common noise was determined by the distributions of

tonal frequencies� which were independent of the masker�

Procedure� Each observer ran �� replications of each experiment� so there were ��

replications in total� Observers ran practice sessions until they demonstrated pro
ciency

at the task�

Each replication consisted of ��� trials� with ��� trials per �IFC event� Since there

were �� SN frequencies and �� N frequencies� there were ����� � ��� possible pairings of

frequencies across the SN and N sets� Each possible pairing was presented twice per �IFC

event in each replication� Pairings were presented using a di�erent haphazard sequence

across trials for each observer and each replication� The sequence of �IFC events was run�

limited so the same event could not occur more than a certain number of times in a row�

This was to help avoid trial counting as a possible means of improving performance� Each

replication had one run�limit value chosen at random from the values �� � or �� Observers

did not know what the limit was on any replication�

Each trial consisted of a �� ms warning interval� two ��� ms observation intervals

separated by a ��� ms inter�stimulus interval� a ���� ms decision interval� and a ��� ms

reset interval� In the continuous rating scale experiment� the reset interval was a minimum

duration� The next trial could not begin until the slider had been reset to its extreme left

so the slider always started in the same position on each trial� A set of LED lights on

the decision panel were switched on and o� to mark the trial intervals� No trial�by�trial

knowledge of results was given� but observers could later view their single�replication ROC

curves at the conclusion of each replication�

The continuous rating scale was used to indicate con
dence that the hSNNi event

order had occurredthe extreme left indicated zero con
dence while the extreme right

indicated ���, con
dence� with increasing con
dence indicated by an increasing slider

position going from left to right� The �� cm long continuous rating scale was partitioned

evenly into �� categories� and ratings were stored as integers from � to ���

In the binary�decision experiment� decisions were made by pushing one of two ��� cm

buttons which were on the same panel as the slider and LED lights� If neither button was

pushed by the end of the reset interval� an incorrect decision was recorded� which would

have added slightly to the unique noise��

�Observers � and � had found the task noticably easier than Observers � and � in preliminary exper�
imental sessions	 The levels were di�erent in order to even out single�replication performance across all
observers� which was desirable for the purposes of Lapsley Miller et al	�s �����
 study	

�This happened only a handful of times for Observers � to �� but almost �! of the time for Observer �	
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����� Data analysis

For each experiment� the �� replications from each observer were aggregated to form a data

set of �� replications� Since the same theoretical distributions applied to all observers� no

distinction is made here across observers� ROC and GOC analyses were performed on both

experimental data sets� and also on a third set based on a repartition of the continuous

rating scale data into two categories� This was useful for comparing results based on the

���point rating scale data and on binary�decision data� For convenience� the results are

discussed as if there were three separate data sets�

At the end of each experimental trial involving the continuous rating scale� an electronic

measurement of slider position was converted into one of �� rating categories� To generate

the derived�binary data� the ���point scale was partitioned at its midpoint� which was

equivalent to bisecting the original continuous scale� Ratings of �� or less were equated

with a �no� decision while ratings of �� or more were equated with a �yes� decision� The

resulting data is called derived binary�decision data� Each of the continuous rating scale

and push�button binary�decision experiments involved a di�erent set of replications� where

each separate replication is associated with new unique noise samples� The reason for the

third data set is that discrepancies in results between the ���point rating scale data and the

push�button binary�decision data could be due simply to unique noise sampling variablity�

rather than to an underlying pattern of di�erence due to the decision methodology� A

more direct comparison that minimises such sampling variability is between the ���point

rating scale data and the derived binary�decision data� both of which share the same

unique noise samples� Any discrepancies in results could be due only to collapsing the

rating scale from �� points down to �� but not to independent and unknown samples of

unique noise�

ROC and GOC Results� The single�replication ROC curves from each of the three

data sets� across all observers� are shown in the left�hand panels of Figure ���� along with

the theoretical �IFC ROC curve� There was obvious variability both across observers and

within observers� It is also clear that none of the ROC curves followed the theoretical

ROC curve and that ROC performance was well down from theoretical performance�

Figures ����a	 and ����c	 graphically show that not only did unique noise depress the level

of binary�decision performance� but that it also a�ected an observer�s apparent bias in the

task�

The ���replication mean ROC and GOC curves for Figures ����a	� ����c	 and ����e	

are given in Figures ����b	� ����d	 and ����f	 respectively� The mean ROC curves showed

relatively poor performance compared to theory� In contrast� the GOC curves were much

closer to the theoretical ROC curve and showed much better performance in the �IFC

task compared to the mean ROC curves�
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Figure ���� Single�replication ROC curves �left�hand panels�� and mean ROC and GOC curves
�right�hand panels� for all � replications for all observers in the discrete 
IFC experiments�
Panels �a� and �b� are for the push�button binary�decision data� �c� and �d� are for the derived
binary�decision data and �e� and �f� are for the ��point rating scale data �after Lapsley Miller
et al�� �		�� Figures �� � and ���



�� Functions of replications added for various experiments ���

Unbiased �IFC binary�decisions should lie on the negative diagonal� but the single�

replication ROC curves �points	 in Figures ����a	 and ����c	 generally did not� The mean

ROC curves in Figures ����b	 and ����d	� did lie on or very close to the negative diagonal�

This suggests that observers were unbiased on average� but that unique noise sampling

variability across replications resulted in apparent bias on individual replications�

The mean ROC points for the push�button binary�decision data and derived binary�

decision data in Figures ����b	 and �d	 were very similar to each other� This suggests

that the overall level of unique noise was the same for the continuous rating scale and

the push�button experiment� The ���point rating scale GOC curve was the closest to the

theoretical ROC curve� and the push�button binary�decision GOC curve was the furthest

away� A comparison between the GOC curves in Figures ����d	 and �f	 shows that after

���replications were combined� the GOC curve based on derived binary�decisions was

very slightly lower than the GOC curve based on ���point rating scale decisions� Since

GOC curves tend towards their 
nal form asymptotically �as replications are added	�

small di�erences between GOC curves that are close to asymptotic performance re�ects a

relatively large di�erence in the number of replications needed to reach a given level� This

can be shown using FORAs�

����	 FORA results

FORAs based on A� The number of replications of each experiment was too large to

compute ACA for all combination�sizes� Instead� partial�ACA was computed for combin�

ation�sizes � to �� and for the complementary sizes from �� to ��� This resulted in FORAs

that were de
ned only at their outer points�� FORAs based on A are presented in Fig�

ure ��� along with their respective log�log plots� The FORAs for the two binary�decision

data sets were similar� although the derived binary�decision FORA was consistently bet�

ter than the push�button FORA� by roughly the same amount at each combination�size�

The ���point rating scale FORA was much better than either of the two binary�decision

FORAs� Despite the di�erences in FORA location across the three data sets� the three esti�

mated asymptotes were remarkably similar to each other �horizontal lines in Figure ����a		�

and each compared well to theoretical performance�

Data points on the log�log plot for the two binary�decision FORAs �Figure ����b		 were

virtually identical to each other� The log�log plot for the ���point rating scale FORA was

consistently lower than the two binary�decision plots� which re�ects smaller increments

in the ���point rating scale FORA� The outer points on each of the three log�log plots

indicated that a full ���point data series would curve downwards� implying that each

asymptote underestimated theoretical performance�

�This was described in Section �	� in the analysis of Whitmore et al	�s �����
 experiment	
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Figure ���� �a� Outer points on the ��replication FORAs based on A for Lapsley Miller
et al��s ��		�� discrete case 
IFC experiments� Open symbols denote data points� horizontal
lines denote asymptotes� and curved lines denote regression functions� These are keyed to
the data sets as follows� � and � � � � for the push�button binary�decision� � and �� for the
derived binary�decision and � and ������ for the ��point rating scale� �b� The accompanying
log�log plot for each of the three data sets� Straight lines indicate log�log relationships based
on parameters from the FORA regression function for each data set� Symbols and line�types
denote the same data sets as for panel �a��
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Both of the binary�decision FORAs based on A started near ���� and increased to

around ���� after �� replications� In contrast� the ���point rating scale FORA started

at A � ���� and increased to almost ����� The 
nal values on each FORA �after ���

replications	 were very similar� because the GOC curves shown in Figure ��� were all

very similar� The asymptotic values of A for the three data sets were also similar� at

������� ������ and ������ for the push�button binary�decision� derived binary�decision�

and ���point rating scale FORAs respectively� All three values compared very well with

the theoretical A of ������� but all three values underestimated theoretical performance

slightly� This was consistent with the log�log plots� each of which implied that they curved

downwards slightly�

FORAs based on d�� D� and P �C	� FORAs for d�� D� and P �C	 were also calculated�

but are not plotted here� The FORAs and log�log plots for d� and D� were smooth and very

similar in form to those in Figure ��� whereas those for P �C	 were much more variable�

FORA results for each of the three data sets� and for all four measures of sensitivity� are

listed in Table G�� in Appendix G�

The relationship between A and d�� and between A and D�� accentuated di�erences

among the data sets� For d�� the estimated asymptotes were ������� ������ and ������

for the push�button binary�decision� derived binary�decision� and ���point rating scale

FORAs� respectively� compared to the theoretical value of d�� which was ������� For D��

the estimated asymptotes were ������� ������ and ������ bits� respectively� compared to

the theoretical value of D�� which was ������ bits� Curiously� the ���point rating scale

data provided the largest asymptotic A but the smallest asymptotic d� and D�� FORAs

from all three data sets underestimated the theoretical value of A� and overestimated the

theoretical values of d� and D�� Viewed separately� all three data sets provided good

approximations to the theoretical performance value for all three measures� A� d� and D��

The estimated asymptote from the ���point rating scale data� however� was consistently

the best �i�e� closest to theory	 for all three measures�

The FORAs for P �C	 for all three data sets were not smooth functions� and were

much more variable than those based on A� d� and D�� The FORA based on P �C	 for

the derived binary�decision data was so variable that the regression procedure could not

converge� The value of P �C	 based on the ���replication GOC curve for each data set was

much better than the average single�replication value of P �C	� because the GOC curves

were much better than the mean ROCs �right�hand panels in Figure ���	� Unlike the other

three measures� the initial values on the P �C	 FORAs were very similar for all three data

sets� This is because P �C	 was calculated from where an ROC or GOC curve intersected

the negative diagonal� The value of P �C	 for the ���replication ���point rating scale GOC

curve was exactly equal to the theoretical P �C	 value of ������� because the ���replication

GOC curve happened to intersect the negative diagonal at exactly the same point that

the theoretical ROC curve did �Figure ����f		�
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E�ect of using the trapezoidal rule to calculate A� Much of the discrepancy

between the continuous rating scale FORA and the binary�decision FORAs related to the

number of points on a GOC curve and the way in which A was calculated� Empirical

values of A were calculated using the trapezoidal rule �McNicol� ����# Bamber� ����	�

This rule can grossly underestimate theoretical values of A whenever a rating scale ROC

curve provides a poorly de
ned approximation to a theoretical ROC curve �Bamber� �����

Figure �	� This can occur when the number of ROC �or GOC	 points is small� In general�

there are � points on a ��replication GOC curve based on binary�decision data �excluding

the points ����	 and ����		� Underestimation of A in the binary FORAs in Figure ����a	

was large when � was small� but not when � was moderate to large� �� � ��� say	�

The regression�FORAs in Figure ����a	 suggested that the average performance based

on binary�decision data was always worse than that based on continuous rating scale data

within the range of replications �� � � � ��	� A correction for underestimation due to

the trapezoidal rule could be applied� similar to the use of A� for single�point ROC curves

�Pollack " Norman� ����# Smith� ����	�� Another possible correction could be to 
t

an ROC curve to each GOC curve calculated during ACA �Taylor� ����	� and use the

area under the 
tted curve as the sensitivity value for each GOC curve� This process�

described in Section ������ was not implemented here because of its extra complexity and

uncertain e�ects� Rather than correcting for underestimation due to the trapezoidal rule�

it is simpler to use a multiple�point rating scale instead of a two�point rating scale�

Comparison between rating scale and binary�decision data

The GOC curves� FORAs and subsequent asymptotes for all measures support the use of a

multiple�point rating scale instead of a two�point rating scale� whether the two�point scale

is derived from push�button methodology or from a bisection of a continuous rating scale�

The GOC curve and FORA based on the derived binary�decision data are worse than their

equivalents based on the ���point rating scale data� and yet this is essentially the same data

set� Careful examination of Figure ����a	 shows that that the binary�decision experiments

required at least twice as many replications than the rating scale experiment in order to

achieve a given performance level� This was true� even after a point when the GOC curves

based on binary�decision data were well de
ned in the ROC space �after �� replications�

say	� When only a small number of binary�decision replications were combined� average

performance was relatively poor was due to the resolution of GOC curves in the ROC

space� Once many replications were combined �say �� or more	� GOC curves would have

been adequately de
ned in the ROC space� but average performance was still poorer� This

may have been due to loss of information due to categorisation �Watson et al�� ����	� Both

problems suggest there are reasons to prefer the use of multiple�point rating scales in GOC

and ROC analysis�

�The measure A� itself would not work for this purpose� because GOC curves based on two or more
replications are comprised of more than a single point	
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Watson et al��s ����� study� In the context of single�replication ROC curves� Wat�

son et al� �����	 showed that the amount of information available in rating data that is

generated by partitioning a continuous rating scale increases with the number of rating

categories� They showed that for their data� there was a noticable increase in information�

even going from two to three categories� and that improvement extended up to �� cate�

gories�

Taylor�s ���
� simulations� Further results supporting the use of multiple�point rat�

ing scales were reported by Taylor �����	� who ran computer simulations of unique�noise�

a�ected observers in GOC experiments� Taylor�s simulations were like implementations

of a dice game� extended to model unique noise �Watson� ����	� Common noise was

distributed according to Gaussian distributions of di�erent means and unequal variances�

and unique noise was distributed as an additive Gaussian variable� The simulation data

was analysed in terms of two�point and ���point rating scales �essentially partitions of the

decision axis	 using ACA to calculate FORAs based on dz� Taylor �����	 found for both

data sets that dz improved as a function of replications added� and approached the known

theoretical value of dz in relatively shallow FORAs� The FORA based on the ���point

rating scale was consistently better �by ������� in the value of dz	 than the FORA based on

binary�decision data� Taylor used the simulated data to estimate the unique�to�common

noise variance ratio� k� �which was set to � ���	� and found that much better estimates

were made using the ���point data� compared to the binary�decision data� The error in

estimates were about ����, for the ���point data� depending on the number of replications

combined� but anywhere from �����, for the binary�decision data�

Conclusion

These experiments and simulations showed that it is more e�cient to average out unique

noise using a rating scale with moderate to high resolution than it is using a binary�decision

scale� GOC analysis works best if the rating scale is well�de
ned� As more replications are

combined in GOC analysis� the mean rating per stimulus tends to some expected value

for each stimulus� In order for a set of mean ratings to approximate their expected values

�over an entire stimulus set	� fewer replications are needed if a continuous rating scale is


nely partitioned than if it is coarsely partitioned� Similar arguments apply to partitions of

decision axes� which theoretically underlie multiple�point rating scales �including binary�

decision scales	� If the goal in a discrimination task is to achieve the best performance�

then highly partitioned continuous rating scales should be used when possible� unless there

are very good reasons not to�
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��� Amplitude discrimination FORAs for four observers

A multiple�replication� �IFC aural amplitude discrimination experiment was run as part

of Lapsley Miller et al��s �����	 research project� The task was to decide in which of two

observation intervals a noise signal had been added to a noise masker� Decisions were

made using a continuous rating scale� The theoretical ROC curve for this experiment was

unknown� but the decision axis was assumed to be continuous because of the nature of

the stimuli�

����� Method

Observers� The same four observers from the discrete case� �IFC frequency discrimi�

nation experiments in Section ��� also took part in this experiment�	 Like the previous

experiments� each of the observers ran multiple practice sessions until they demonstrated

pro
ciency at the task�

Stimuli� The signals for the experiment were short�duration� band�pass 
ltered Gaussian

noise transients with an equivalent rectangular bandwidth of �� Hz� centred at ��� Hz� The

maskers were short�duration� low�pass 
ltered Gaussian noise transients with an equivalent

rectangular bandwidth of ���� Hz� The signals and maskers were of the same duration� and

were gated together using a Kaiser window with a shape parameter of �� The absolute

duration of the window was �� ms� which gave an equivalent rectangular duration of

��� ms� The signal�to�noise ratio was ��� dB� and the gated masker had a spectrum

level of �� dB SPL� During experimental sessions� an � kHz low�pass analog Gaussian

noise masker ran continuously at a spectrum level �� dB SPL� All stimuli were presented

diotically�

The same experimental system and equipment were used as in discrete case experi�

ment described the preceding section� including the controlling computers� DAC� sound

chamber� slider panel� headphones and headsets� The main di�erences in stimuli for this

experiment were the bandwidth of the continuous masker �� kHz	� the clocking rate of the

DAC ������ Hz	� the post�DAC 
lter �� kHz low�pass	� and the method of digital signal

generation�

Signal generation�
 The reproducible digital transients used in this experiment were

based on computer�generated inverse fast Fourier transforms �IFFTs	� implemented on an

HP ���� computer� A radix�� IFFT was used to generate ������point digital time series�

At the clocking rate of the DAC� each IFFT produced a ���� ms time series� from which

four non�overlapping sections of �� ms duration ���� points	 were selected at random� one

for each of the four observers�

�Observers are numbered the same as in the preceding section	
	A complete description of the signal generation method is available in Lapsley Miller �����
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Two separate sets of IFFTs were run� a signal�alone set and a noise�alone set� The

spectrum input to each IFFT for either set was a random sample from a band�limited

rectangular spectrum with zero power outside of the band� The amplitude within each

spectral bin was uniformly distributed across IFFTs� and the input values were indepen�

dent across spectral bins� The input to each signal�alone IFFT was a band�pass spectrum

with an absolute bandwidth of �� Hz� which contained �� spectral components and was

centred at ��� Hz� The input to each noise�alone IFFT was a low�pass spectrum with an

upper cuto� of ���� Hz� which contained ���� spectral components�

Signal�alone and noise�alone transients were generated separately and stored on disk

as a series of �oating�point values� Prior to windowing� the distribution of instantaneous

values for the signal�alone waveforms was Gaussian out to ��� standard deviations from the

mean� and that for the noise�alone waveforms was Gaussian out to � standard deviations�

The signal�alone and noise�alone transients were randomly paired� additively mixed�

windowed and converted into signal�plus�noise digital code sequences� Similarly� noise�

alone transients by themselves were windowed and converted into noise�alone digital code

sequences� After windowing� the equivalent rectangular bandwidth of the signal�alone

transients was �� Hz� and the equivalent rectangular bandwidth of the noise�alone tran�

sients remained the same at ���� Hz� All code sequences were stored on disk so that the

waveforms generated by the DAC were reproducible� Each of the �oating�point signal�

alone and noise�alone transients stored on disk contributed to one and only one stimulus

transient� Each of the four observers had a unique stimulus set� Each IFFT that was

computed contributed to one and only one transient per observer� in order to minimise

the waveform correlations in a stimulus set�

Experimental design� Each of the four observers ran �� replications� consisting of

���� trials per replication� ��� trials per �IFC event� These were run in sessions of ���

trials that took about �� minutes to complete� A di�erent haphazard trial sequence was

used on each replication� and the sequence of �IFC events was run�limited so that the

same event could not occur more than �� � or � trials in a row �the value was randomly

chosen and changed from trial to trial	�

Each trial consisted of a ��� ms warning interval� two �� ms observation intervals

separated by a ��� ms inter�stimulus interval� a ���� ms decision interval� and a ��� ms

reset interval� The reset interval was a minimum duration� The next trial could not begin

until the slider had been reset to the extreme left� so the slider always started in the same

position on each trial� A set of LED lights were switched on and o� to mark the trial

intervals� No trial�by�trial knowledge of results was given� but observers could later view

their single�replication ROC curves at the conclusion of each replication�

The continuous rating scale was used to indicate con
dence that the hSNNi event

order had occurredthe extreme left indicated zero con
dence while the extreme right

indicated ���, con
dence� with increasing con
dence indicated by an increasing slider
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position going from left to right� The �� cm long continuous rating scale was measured

electronically� partitioned evenly into �� categories� and ratings were stored as integers

from � to ���

����� Results

ROC and GOC results� Single�replication ROC curves for each observer are presented

in Figure ���� There was appreciable variability across replications� both within and across

observers� Observer � showed the most variability� having a standard deviation of values

of A of ����� compared to about ���� for each of the other observers� P �C	�IFC� calculated

from where an ROC curve crossed the negative diagonal� varied by as much as ���� �for

Observer �	� The ���replication mean ROC and GOC curves for each observer are shown

in Figure ���� The mean ROC curve indicated expected single�replication performance

and the GOC curve indicated the improvement in performance that was possible once

unique noise was reduced� Observer � showed the best mean ROC and GOC performance

of all four observers� Although the mean ROC performance di�ered among the other

three observers� their GOC performance was fairly similar� This can also be seen in their

FORAs�

FORA results� Each observer�s ���replication FORA and log�log plot based on A is

shown in Figure ���� FORA values and parameters and estimated asymptotes for each

observer �for the A measure only	 are given in Table G�� in Appendix G� The FORAs

highlight individual di�erences that are harder to recognise in the ROC space alone� The

FORAs in Figure ��� showed that of the four observers� Observer � in �circles and solid

lines	 had the worst average single�replication value of A of the four observers� and yet

had the second best asymptote�

Observer � clearly had the best performance �triangles in Figure ���	 of any of the four

observers� In fact� the average single�replication value of A for Observer � �������	 was

slightly better than the asymptote for Observer � �������	� This implied that Observer �

could not have expected to perform better� on average� than Observer �� no matter how

many replications were run�

The FORAs for Observers � and � started at almost the same level� where the average

performance for Observer � was slightly worse than performance for Observer �� However�

their FORAs crossed between � and � replications� and GOC performance for Observer �

was better� on average� than performance for Observer �� once data from more than one

replication was combined�

The initial value of A for Observer � �������	 was more than ���� greater than the

initial value for Observer � �������	� Nevertheless� the asymptote for Observer � �������	

was almost ���� greater than the asymptote for Observer � �������	� The large initial

di�erence in average ROC performance between Observers � and � was solely due to unique
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(d) Observer 4

Figure ���� All � single�replication ROC curves for each observer in Lapsley Miller et al��s
��		�� 
IFC amplitude discrimination experiment�
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Figure ���� The ��replication mean ROC curves and GOC curves for each observer in the

IFC amplitude discrimination experiment �after Lapsley Miller et al�� �		�� Figure ����
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Figure ��	� The ��replication FORA and log�log plot for each observer in Lapsley Miller
et al��s ��		�� continuous case 
IFC experiment� Key� Observer �� � and ������
Observer 
� � and � � � �� Observer �� � and ��� Observer �� � and ������� �a� Mean value
of A as a function of the number of replications combined� Horizontal lines denote asymp�
totes� curved lines with �� denote regression functions� �b� The accompanying log�increment in
area versus log of replications combined for each observer� where straight lines indicate log�log
relationships based on parameters from the FORA regression function for each observer�
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noiseinconsistent decision makingrather than any inherent� unique�noise�free ability

to discriminate between events� The reversal of relative performance for the same two

individuals also occurred in Whitmore et al� �����	 experiment �described in Chapter �	�

In a much larger series of experiments� which are the topic of Section ������ Lapsley Miller

�����	 found that inter�observer FORA performance reversal occurred ��, of the time�

which suggests that this type of result is common� and that comparisons of observers based

on single�replication performance should be done with caution�

Equation ��� provided excellent regression 
ts to the empirical FORAs across a wide

range of performance levels� The log�log plots were fairly linear for all observers� with

a slight tendency to curve downwards� This implied that the asymptotes overestimated

true asymptotic performance� at least to some small degree� The log�log plot for Ob�

server � �circles in Figure ����b		 was the most curved� This relates to the fact that the

regression�FORA for Observer � �Figure ����a		 was slightly o��centre compared to the

data series upon which it was based� The extent to which the asymptote for Observer �

is overestimated is not known� However� the log�log plot and amount of improvement in

the FORA in Figure ��� are both comparable to what was shown in Figures ��� and ���

for Taylor et al��s �����	 experiment �Chapter �	� There it was known that the asymptote

overestimated the theoretical value of A by ������� Based on this analogy� the asymptote

for Observer � in Figure ����a	 could be overestimated by perhaps ����� or less� This still

places Observer � asymptotically ahead of Observers � and ��

Conclusion

Substantial unique noise e�ects were successfully reduced in Lapsley Miller et al��s �����	

�IFC amplitude discrimination experiment by GOC analysis and by ACA� The FORAs

calculated from this data set provided further evidence that the data pattern described by

Equation ��� holds across di�erent experiments� The FORAs showed that among a group

of observers� relative performance based on single�replication ROC analysis� and even

GOC analysis based on �� replications� does not necessarily re�ect relative asymptotic

unique�noise�free performance�

��� FORAs over a wide range of performance levels

Results from a previously unpublished� multiple�replication� �IFC aural amplitude discrim�

ination experiment are presented here� The task was to decide in which of two observation

intervals a noise signal had been added to a noise masker� Five di�erent signal�to�noise ra�

tios were used� and the performance of observers ranged from near�chance to near�perfect�

The results demonstrate ACA and FORA regression over a full range of performance

levels� particularly at very high levels� Unique�noise�free psychometric functions are also

estimated�
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The �IFC experiment was one of three previously unpublished amplitude discrimina�

tion experiments� Results for the other two experiments are not presented here� but they

are mentioned because of an interwoven experimental design� The �IFC experiment is

reported because it is the best for demonstrating FORA regression at high performance

levels �d� � �	� This �IFC experiment included the highest performance levels in any of

the data sets presented in this thesis�

��	�� Method

Observers� Two experienced observers took part in the experiment� Both had partic�

ipated in previous SIFC and �IFC amplitude discrimination experiments� and both were

familiar with continuous rating scale sliders���

Stimuli and equipment

The signals for the experiment were short�duration� band�pass 
ltered Gaussian noise

transients with an equivalent rectangular bandwidth of �� Hz� centred at ��� Hz� The

maskers were short�duration� low�pass 
ltered Gaussian noise transients with an equivalent

rectangular bandwidth of ���� Hz� The signals and maskers were of the same duration� and

were gated together using a Kaiser window with a shape parameter of �� The absolute

duration of the window was ���� ms� which gave an equivalent rectangular duration of

�� ms� Signals were presented at 
ve di�erent signal�to�noise ratios �SNRs	� namely

��� �� �� � and �� dB� The gated masker had a spectrum level of �� dB SPL� During

experimental sessions� an � kHz low�pass analog Gaussian noise masker ran continuously

at a spectrum level �� dB SPL� All stimuli were presented diotically�

The experiment was run using an IBM�compatible personal computer �PC	 and a

Hewlett Packard �����A High�Performance Measurement Coprocessor� housed inside the

PC��� The coprocessor controlled experimental trial sequences and data collection� whereas

the PC controlled stimulus production� The computer also housed a Turtle Beach Mon�

terey soundcard which was used for waveform production under the control of the PC�

The Monterey soundcard was used for its CS���� ���bit digital�to�analog converter �DAC	�

which was clocked at ����� Hz� and followed by an on�board �� kHz low�pass analog

smoothing 
lter��� The output of the soundcard was attenuated� mixed with the continu�

ous analog masker� and passed to a headset ampli
er� Stimuli were presented to observers

�
These were the same two observers who took part in the amplitude discrimination experiment in
Chapter �	 Observer numbering has been kept the same	

��The PC had a �� MHz Intel ��DX CPU� �� MB of memory� and ran under MS�DOS 	��	 The
coprocessor had a � MHz Motorola MC ���� CPU� � MB of memory� and ran HP Basic �	�	

��The soundcard was chosen for its speci�cations	 The combined DAC and �lter system had a noise
�oor �speci�ed from the documentation
 of ���� dB over the audible range	 The soundcard was originally
con�gured with a Turtle Beach Rio MIDI synthesizer card attached to it	 This synthesizer was removed as
it was not required� and the noise �oor decreased further without it	 The �lter had a �at response below
�� kHz� a �dB bandwidth of ����� Hz and a rollo� of ��� dB per octave	
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in a sound�attenuated chamber� through TDH��� headphones mounted in Rudmose Tracor

RA���� headsets with MX���(AR cushions� Apart from the digital waveform generation

and production� much of the rest of the experimental system concerned with stimulus

production and shaping was the same as for the other experiments described in this and

previous chapters� The equipment that was common across experiments included the

passive attenuators� analog mixer� headset ampli
er� make and model of headset� rating

sliders� and soundchamber�

Signal generation� The digital transients used in this experiment were computer�

generated using inverse fast Fourier transforms �IFFTs	� Transients were generated and

stored as digital code sequences on disk� so that they could be reproduced across repli�

cations� Code sequences were generated using an IBM�compatible PC��� A radix�� IFFT

algorithm was used to generate ����point digital time series� At the clocking rate of the

DAC� each IFFT produced a ����� ms time series� from which non�overlapping sections

of ���� ms duration ����� points	 were selected� Two separate sets of IFFTs were run� a

signal�alone set and a noise�alone set� The spectrum input to each IFFT for either set was

a random sample from a band�limited rectangular spectrum with zero power outside of the

band� The amplitude within each spectral bin was uniformly distributed across IFFTs�

and the input values were independent across spectral bins� The input to each signal�alone

IFFT was a band�pass spectrum with an absolute bandwidth of �� Hz� which contained

���� spectral components and was centred at ��� Hz� The input to each noise�alone IFFT

was a low�pass spectrum with an upper cuto� of ���� Hz� which contained more than

��� ��� spectral components� After windowing� the equivalent rectangular bandwidth of

the signal�alone transients was �� Hz� and the equivalent rectangular bandwidth of the

noise�alone transients remained the same at ���� Hz�

Multiple� non�overlapping� �����point sections were selected from the ��� million�point�

long�duration time series produced by each IFFT� Each section was used to generate a

stimulus transient� Ideally� a di�erent IFFT would be used to calculate each section� to

ensure uncorrelated stimuli� but the computation time per IFFT made this prohibitive�

Instead� multiple sections were selected per IFFT� in a way that took the autocorrelation

function of the IFFT into account� One hundred sections were randomly selected from

each signal�alone IFFT� and two hundred sections from each noise�alone IFFT� The au�

tocorrelation function depended on the bandwidth �W 	 of the IFFT input spectrum� and

essentially dropped to zero �on average	 for time lags greater than ��W seconds� The

minimum lag that was used was about �����W for the signal�alone sections� and ��W for

the noise�alone sections� each of which was partly related to the number of sections chosen

per IFFT� As well as setting a minimum lag� the starting point of each of the sections was

randomly chosen from a range of ���� values� to further minimise correlation�

��The PC used for signal�generation� which was not the experimental PC� had a �� MHz Intel ��DX
CPU� � MB of memory� and ran under MS�DOS 	��	
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Signal�alone and noise�alone transients were generated separately and stored on disk

as a series of �oating�point values� Prior to windowing� the distribution of instantaneous

values was Gaussian out to � standard deviations for the signal�alone waveforms� and was

Gaussian out to � standard deviations for the noise�alone waveforms�

The signal�alone and noise�alone transients were randomly paired� additively mixed�

windowed and converted into signal�plus�noise digital code sequences� Similarly� noise�

alone transients by themselves were windowed and converted into noise�alone digital code

sequences� All code sequences were stored on disk so that the waveforms generated by the

DAC were reproducible� Each of the �oating�point signal�alone and noise�alone transients

stored on disk contributed to one and only one stimulus transient�

Experimental Design

Each observer replicated the experiment eight times using the set of reproducible stimulus

transients� Although the reproducible transients were the same across observers� each

observer had a unique set of pairings of SN and N transients� one pairing per �IFC trial�

The unique pairings meant that each observer� in e�ect� had a separate set of �IFC stimuli�

As a result� GOC analysis could be done only within observers and not across observers�

The task of the observer was to decide in which of two observation intervals the signal

had occurred� A continuous rating slider was used to indicate con
dence that the hSNNi
event order had occurred� The extreme left indicated zero con
dence that hSNNi had

occurred� while the extreme right indicated ���, con
dence� with increasing con
dence

indicated by an increasing slider position� The �� cm long continuous rating scale was

partitioned evenly into rating categories� and ratings were stored as integers from � to �����

For the purposes of data analysis� the �����point scale was uniformly partitioned into a

����point scale �due to memory limitations in the data analysis program	�

Each trial consisted of a ��� ms warning interval� two �� ms observation intervals

separated by a ��� ms inter�stimulus interval� a ���� ms decision interval� and a ���� ms

reset interval� The reset interval allowed the observer to reset the slider� The next trial

could not begin until the slider had been reset to the extreme left� A set of LED lights

on the slider panel were switched on and o� to mark the trial intervals� No trial�by�trial

knowledge of results was given� but observers could view their single�session ROC curves

�for � SNRs	 at the end of each session� and their single�replication ROC curves after each

completed replication�

The �IFC experiment was one of three amplitude discrimination experiments that were

run concurrently� The other two experiments involved SIFC tasks� One SIFC experiment

used the same types of noise signals as the �IFC experiment� and the other used tonal

transients of the same duration and center frequency as the other two conditions� The

stimulus sets were di�erent in each experiment� Trial blocks from all three experiments

were interwoven in a haphazard sequence� constrained so that sessions from the same
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experiment were not run more than twice in a row� To reacquaint the observer with the

type of stimuli for each �IFC session� six preview trials were run at the beginning of each

session using stimuli from the higher SNRs ��� and � dB	� alternating between �IFC events

on successive trials� The stimuli used in these preview trials were not part of the main

stimulus set and no data was collected for them�

Each replication consisted of ���� trials per SNR� or ���� trials in total� Trials were

run in �� sessions of ��� trials per session per replication� and SNRs were intermixed within

sessions �Tucker� Evans� " Je�ress� ����# Emmerich� ����b	� Each observer completed

��� �IFC sessions in total over the eight replications� Each session took about �� minutes

to run� A di�erent haphazard sequence was generated for each observer and for each

replication� so that any time�order e�ects based on the trial sequence would contribute to

unique noise rather than common noise �and could later be removed by GOC analysis	�

Each haphazard �����trial sequence was partitioned into sections of ��� trials to determine

the trial sequence for each session� Within a session� no constraint was made on the number

of trials per SNR� The trial sequence was run�limited so that the same �IFC event and

SNR could not occur more than � or � times in a row �with either � or � randomly chosen

with equal probability on each trial	�

Practice sessions were run over the course of several months to familiarise the observers

with the tasks� and to 
nalise interval timings and stimulus parameters� Most of the later

practice sessions were run with SNRs set from �� dB to �� dB� The levels were later

dropped to ��� �� �� � and �� dB� because the task was found to be too easy at �� dB�

Experimental sessions were run over a � month time period� There were no restrictions

as to how many sessions either observer could or should run in any given day� nor the time

of day to run� On average� each observer completed one �IFC session per day� Part way

through the 
rst replication� Observer � halted his data collection due to circumstances

unrelated to the experiment� Sessions began again after a break of seven weeks� The

longest break Observer � took from data collection was �� days�

��	�� ROC and GOC results

ROC� mean ROC and GOC curves were calculated separately for each observer at each

signal�to�noise ratio� These are presented in Figure ���� Panels�a	 and �b	 show each

observer�s � ROC curves at each SNR� Performance for each observer was a�ected by

unique noise at all SNRs� The most consistent set of ROC curves was for Observer �

at the highest SNR ��� dB	� Apart from that subset of data� ROC curves for a given

SNR varied appreciably across replications� both in the shape of the curve and in the

implied level of performance� The standard deviation of A� across replications at each

SNR� ranged from ����� to ����� for Observer �� and from ����� to ����� for Observer ��

These values are small� because they are based on the area under an entire ROC curve�

For a given false alarm rate� the hit rate at each SNR could vary by as much as ����
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depending on the SNR� The ROC variability shown in Figures ����a	 and ����b	 is typical

of such experiments� Many similar examples are given in Lapsley Miller �����	� whose

experiments are described in Section ����

Mean ROC curves for each SNR and for each observer are shown in Figures ����c	

and ����d	� Except at the lowest SNR ��� dB	� Observer � performed better on average

than Observer �� particularly at the highest SNR� A similar pattern also held for the ��

replication GOC curves� which are shown in Figures ����e	 and ����f	� with Observer �

having better GOC performance at all but the lowest SNR�

There was a general asymmetry in both the mean ROC curves and the GOC curves�

Mean ROC and GOC curves indicated slightly higher performance to the right of �or

above	 the negative diagonal when compared to the left of �or below	 the negative diago�

nal� The GOC curve for Observer � at � dB was an exception to this� with the asymmetry

going the other way� The asymmetry is curious in light of the theoretical result that �IFC

ROC curves should be symmetrical in the negative diagonal �Green " Swets� ����	� Pos�

sible reasons include time�asymmetric masking e�ects or memory e�ects� An inspection

of histograms of ratings for each observer at each SNR did not reveal any obvious trend�

but the data was so variable that any small e�ect would be swamped� Since only eight

replications were run� and the observers were inconsistent� unique noise sampling variabil�

ity could fully account for the results� Similarly� common noise sampling variability� due

to stimulus sampling and pairing� could also account for the results �even though there

were ���� trials per event	� There is a paucity of �IFC ROC curves in the literature� and

the symmetry of empirical �IFC ROC curves has yet to be assessed� While �IFC ROC

symmetry may be predicted in theory �Green " Swets� ����# Egan� ����	� Figure ���

indicates that is not necessarily the case in practice�

��	�	 FORA results

FORAs for A and d� are described here� FORA values� parameters and estimated asymp�

totes for this experiment are given in Table G�� in Appendix G�

FORAs based on A� FORAs based onA were calculated for each observer at each SNR�

These are presented with their associated log�log plots in Figure ��� for Observer �� and

in Figure ��� for Observer �� Both ROC and GOC performance �the 
rst and last FORA

points� respectively	 improved with increasing SNR� as expected� The set of asymptotes for

each observer also followed the order of SNRs� This was expected� but was not guaranteed�

In multiple�SNR experiments� even for the same observer� the order of asymptotes across

SNRs does not have to re�ect the order of mean ROC curves� or GOC curves� across

SNRs�

The regression�FORAs in Figures ��� and ��� 
tted the empirical FORAs so well that

regression points are indistinguishable from data points on the scale that is shown �with



�� Functions of replications added for various experiments ���

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

H
it 

R
at

e

  

(a)  Observer 1
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(b)  Observer 2
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(c)  Observer 1

Mean ROC curves
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(d)  Observer 2

Mean ROC curves
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(e)  Observer 1

GOC curves
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(f)  Observer 2

GOC curves

Figure ��
� ROC� mean ROC and GOC curves for each observer at each signal�to�noise ra�
tio �SNR� in the 
IFC amplitude discrimination experiment� The SNRs were ��� �� �� �
and �
 dB� Within each panel� curves improve towards the top�left with increasing SNR� Left�
hand panels show curves for Observer � and right�hand panels show curves for Observer 
�
The ROC curves for �� dB and � dB in panels �a� and �b� overlap slightly� but are generally
distinct� with the curves for � dB being higher than those for �� dB�
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A between ��� and ���	� The log�log plots were all highly linear for the 
rst four SNRs�

but were less so for the highest SNR� Observer � performed better than Observer � at all

but the lowest SNR ��� dB	� Potential improvements in A were smallest at the lowest

and highest SNRs� and largest at the middle SNR �� dB	� The potential improvement was

as much as ��� in value at � dB for both observers�

There were two unusual patterns in the FORAs based on A� First� although the em�

pirical FORA for Observer � at �� dB was higher than that for Observer �� the asymptote

for Observer � was higher than that for Observer �� Second� the linear form of the log�log

plot for Observer � broke down at the highest SNR ��� dB	� This particular FORA was

associated with a very high performance level �A � ����	� Each of these patterns are ex�

amined in detail later� Performance across observers at �� dB is discussed in Section ������

and performance for Observer � at �� dB is discussed in Section ������

FORAs based on d�� FORAs based on d� were also calculated for each observer at each

SNR� shown in Figure ��� for Observer �� and in Figure ��� for Observer �� The pattern

of results was di�erent for d� compared to the results based on A� which re�ected the fact

that �as a measure	 d� is unbounded above� whereas A is bounded above� It is clear in

Figures ��� and ��� that not only only did d� increase with SNR� but that the amount

of improvement in d� also increased with SNR��� Potential improvement in asymptotic

performance� compared to single�replication performance� was generally large� Values of

d� improved by �����, for each observer at the upper four SNRs� and by up to ���, at

the lowest SNR� At the highest SNR� d� improved in value by more than ��� at the highest

SNR�

Log�log plots based on A and d�� In general� the total amount of improvement in

a FORA a�ects the location of the associated log�log plot� regardless of the measure of

sensitivity� If the total FORA improvement is large� then FORA increments are large�

and consequently� the associated log�log plot is higher� If the total FORA improvement

is small� then FORA increments are small� and consequently� the log�log plot is lower

down� The log�log plots based on d� in �Figures ���� and ����	 increased with increasing

SNR� whereas the log�log plots based on A �Figures ��� and ���	 overlapped for di�erent

SNRs� This re�ected the fact that d� was unbounded above� and the total improvement

in d� increased with increasing SNR� whereas A was bounded above at unity� so the total

improvement was constrained at the higher SNRs�

A concept introduced previously in Section ��� is the relative curvature of a FORA�

indicated by the � parameter� which is the slope of a linear log�log plot� The relative

curvature is an indication of the rate at which a FORA approaches its asymptote� regard�

��Except for Observer � for � dB versus � dB	 The improvement in d� is �	��� for � dB� compared to
�	���� for � dB	
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Figure ���� The ��replication FORA and log�log plot based on A for Observer � at each signal�
to�noise ratio �SNR�� �a� Mean value of A as a function of the number of replications com�
bined� Hollow symbols denote data points� horizontal lines denote asymptotes� and ���� points
joined by line segments denote regression functions� �b� The accompanying log�increment in
area versus log of replications combined for each SNR� where straight lines indicate log�log
relationships based on parameters from the FORA regression function for each SNR�
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Figure ���� The ��replication FORA and log�log plot based on A for Observer 
 at each signal�
to�noise ratio �SNR�� �a� Mean value of A as a function of the number of replications com�
bined� Hollow symbols denote data points� horizontal lines denote asymptotes� and ���� points
joined by line segments denote regression functions� �b� The accompanying log�increment in
area versus log of replications combined for each SNR� where straight lines indicate log�log
relationships based on parameters from the FORA regression function for each SNR�
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Figure ���� The ��replication FORA and log�log plot based on d� for Observer � at each signal�
to�noise ratio �SNR�� �a� Mean d� value as a function of the number of replications combined�
Hollow symbols denote data points� horizontal lines denote asymptotes� and ���� points joined
by line segments denote regression functions� �b� The accompanying log�increment in d� versus
log of replications combined for each SNR� where straight lines indicate log�log relationships
based on parameters from the FORA regression function for each SNR�
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Figure ����� The ��replication FORA and log�log plot based on d� for Observer 
 at each signal�
to�noise ratio �SNR�� �a� Mean d� value as a function of the number of replications combined�
Hollow symbols denote data points� horizontal lines denote asymptotes� and ���� points joined
by line segments denote regression functions� �b� The accompanying log�increment in d� versus
log of replications combined for each SNR� where straight lines indicate log�log relationships
based on parameters from the FORA regression function for each SNR�
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less of the total improvement of the FORA� The steeper the slope of the log�log plot� the

greater the relative curvature� which implies that fewer replications are needed to attain

a given proportion of the possible improvement in performance�

For each observer� the slopes of the log�log plots based on d� were similar across SNRs�

In contrast� the slopes of the log�log plots based on A increased systematically with in�

creasing SNR and absolute performance levels� regardless of the location of the log�log

plot� This showed that the relative curvatures of FORAs based on d� were similar across

performance levels� whereas the relative curvatures of FORAs based on A increased with

performance level� Lapsley Miller �����	 found similar data patterns for FORAs based

on A and on d� over a wide range of stimulus parameters�

��	�� FORAs at low performance levels

FORAs for both observers at the lowest SNR ��� dB	 appeared �at in Figures ��� to

to ����� because of the plotting scales that were used� These FORAs are re�presented here

in more detail� Figure �����a	 shows the FORAs based on A� and Figure �����b	 shows

the FORAs based on d�� Figure ���� shows how FORAs that have only a small total

improvement� such as those at the lowest SNR� also follow the same form as FORAs that

have a much larger total improvement� such as those at moderate to high SNRs� This

much can also be inferred from the log�log plots presented in Figures ��� to ����� which

are all fairly linear at �� dB�

The results at �� dB imply an order reversal of observers according to performance

value� GOC results based on one to eight replications suggest that Observer � was better

than Observer �� The asymptotes� however� suggest that Observer � would be better than

Observer � if more replications were run� The regression�FORAs may be extrapolated

to a point where they cross each other� The functions based on A would cross after

�� replications at A � ������� The functions based on d� would cross after �� replications

at d� � ������� Similar types of crossover were also found in experiments reported in other

chapters�

��	� Ceiling e�ects at high performance levels

Out of the data sets presented so far in this chapter� the highest performance of all

occurred for Observer � at �� dB in the current �IFC experiment� The FORA based on A
had an initial value of ������� which reached ������ after � replications� and implied an

asymptote at ������� This particular data gives the best �and perhaps only	 example of

a ceiling e�ect in FORA regression� By comparison� the FORA for Observer � at �� dB

implied an asymptote at A � ������� but even that level is not high enough to show a
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Figure ����� Detail of the lowest FORAs �at � dB� for both observers� based on A and d��
Hollow symbols denote data points� horizontal lines denote asymptotes� and ���� points joined
by line segments denote regression functions� Observer � showed better GOC performance �for
the �nite number of replications run�� but Observer 
 showed better asymptotic performance�
�a� Mean A as a function of replications added �taken from Figures ��� and ��	�� �b� Mean d�

as a function of replications added �taken from Figures ���� and ������
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Figure ����� Detail of FORAs at the highest performance level �at �
 dB� for Observer 
�
based on A and d�� Hollow symbols denote data points� horizontal lines denote asymptotes�
and ���� points joined by line segments denote regression functions� �a� Mean A as a function
of replications added �taken from Figure ��	�� �b� Mean d� as a function of replications added
�taken from Figure ������
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de
nite ceiling e�ect���

The steepest slope for Observer � in Figure ����b	 was for �� dB� showing that the

highest FORA in Figure ����a	 had the greatest relative curvature� The FORA only

seemed very �at in Figure ����a	 because of the scale on which it was plotted� This

FORA� based on A� and the associated FORA based on d�� are re�presented in detail in

Figure ����� Data points on the FORA based on A were approximately 
tted by the

regression equation� but the 
t was worse than most of the other FORAs based on A that

have been shown up to this point� In contrast� the FORA based on d� �Figure �����b		

showed a much better regression 
t�

Together� Figures �����a	 and �����b	 demonstrate a ceiling e�ect� which is related

to the fact that A� as a measure� is bounded above at unity� The ceiling e�ect is small�

but demonstrable� The estimated asymptotic value of A was ������� and the asymptotic

value of d� was ������� The d��equivalent of ������ is ������� however� which is slightly

less than ������� Although the FORA based on A was somewhat distorted� the FORA

based on d� showed that there was a relatively smooth pattern underlying the data��� The

empirical log�log plot based on d� �open circles in Figure �����b		 fell almost straight onto

the FORA�s equivalent linear function� apart from the last point� and was much closer to

the data than the related log�log plot based on A �open circles in Figure ����b		�

These results show that FORA regression can be sensibly applied to data associated

with very high performance levels� The regular form of the regression function may not

describe FORAs based on A� because the data could be distorted by ceiling e�ects� Use

of an unbounded measure such as d� can correct for ceiling e�ects� and sensible prediction

of asymptotic performance levels for d� � � is in fact possible�

��	�� Psychometric functions

A psychometric function shows how performance changes as a function of a stimulus pa�

rameter� such as SNR� Psychometric functions are often used to compare performance

across individuals� groups or experimental conditions� Such functions are usually calcu�

lated based on single�replication experiments only� and the confounding e�ects of unique

noise on performance are incorporated within the results� ACA and FORA regression�

however� allow comparisons to be made based on estimated unique�noise�free performance�

Psychometric functions for both observers in the current experiment are presented

in Figures ���� and ����� Figure ���� shows A as a function of SNR� where the SNR

��There is a hint of a small ceiling e�ect for Observer � at �� dB because of the similarity of his log�log plot
�open circles in Figure �	���b

 with that of Observer � for the same SNR �open circles in Figure �	���b

	
In contrast to ceiling e�ects� it is hard to show any �oor e�ects with FORAs because FORAs tend to
increase away from chance performance rather than tend towards it	

��There is no necessary reason why the estimated asymptotic value of A should be less than or equal
to �� even though the data must be	 The fact that the FORA for A does converge to a sensible value is
encouraging	 Examples of asymptotes converging above � are given in Section �	�	�	
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for Observer � and solid lines are for Observer 
� For each observer� the lower function shows
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is expressed in dB� and Figure ���� shows d� as a function of SNR� where the SNR is

expressed as a voltage ratio� Large potential improvements in performance at the highest

SNR can be seen using d�� which would otherwise remain hidden if using A� In each graph�

dashed lines are for Observer � and solid lines are for Observer �� The lower of the two

functions for each observer shows average ROC performance at each SNR� based on the


rst point of each FORA� while the upper function shows each individual�s asymptotic

performance at each SNR�

For each observer and for either measure� the asymptotic psychometric function was

higher than the ROC psychometric function� This is expected since all FORAs were

increasing functions� The psychometric functions show that Observer � was better than

Observer � in the task� both asymptotically� and in terms of ROC performance �except for

ROC results at �� dB	� Figure ���� suggests that the ROC psychometric functions were

approximately the same shape as the asymptotic psychometric functions� but were shifted

horizontally by approximately ��� dB� The psychometric functions in Figure ����	 showed

that d� was approximately linear with SNR� expressed as a voltage ratio� and that the e�ect

of unique noise was to decrease the slope of the psychometric functions for each observer�

This is roughly consistent with a constant attenuation� in dB� which would equate to a

multiplicative change in voltage ratio� When converted to power ratios� attenuations of

��� dB imply that the e�ect of unique noise was similar to having stimulus maskers with

��,����, more power than the maskers that were used� This indicates that the amount

of unique noise was approximately the same as the amount of common noise� which is

consistent with what has been found elsewhere �Swets et al�� ����# Watson� ����# Green�

����# Ahumada et al�� ����# Spiegel " Green� ����# Siegel " Colburn� ����	�

Lapsley Miller �����	 made use of asymptotic psychometric functions to evaluate hu�

man amplitude discrimination �also using Gaussian noise signals	� In her experiments

�described in Section �����	� Lapsley Miller found that single replication performance was

typically attenuated from asymptotic performance by ������� dB� and attenuation was gen�

erally una�ected by stimulus duration� As power ratios� these attenuations imply that the

e�ect of unique noise was similar to having stimulus maskers with ��,����, more power

than the maskers that were used� which is also consistent with previous measurements of

unique noise�

Summary� Psychometric functions can be used to show how performance changes as a

function of SNR� both with and without the e�ects of unique noise� Experimental data

indicates that the e�ect of unique noise on aural amplitude discrimination is to attenuate

performance by the equivalent of ��� dB in SNR� Psychometric functions derived from

FORAs may also provide an extra tool for evaluating theories and models of observers�

because any theory or model should account for both asymptotic performance and single�

replication performance�
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�� FORAs in Lapsley Miller�s 	�


� experimentation

Apart from Taylor�s �����	 experiments with pigeons� and what is presented in this thesis�

the only other study that has used ACA to calculate FORAs is by Lapsley Miller �����	�

Her Ph�D� thesis investigated the joint role played by bandwidth� W� and duration� T �
in amplitude discrimination in human hearing� She made extensive use of ACA and the

FORA regression procedure to estimate unique�noise�free performance from her data sets�

The aim of her project was to investigate hearing� and FORAs provided one method for

doing this� A verbal summary of her results is given here� with an emphasis placed on

data patterns rather than on their implications for amplitude discrimination� No graphs

are presented�

����� Method

Observers� Three observers took part in the experiments� Only results for the 
rst two

observers are reported here� because more extensive data sets were available for them�

Observer � was an experienced observer� and had taken part in Lapsley Miller et al��s

�����	 experiments described in Sections ��� and ���� Observer � was a novice observer�

Observers ran more than �� ��� practice trials each to familiarise themselves with the

variety of stimulus conditions� The stimulus sets used for practice were di�erent from

those used for the main data collection�

Stimuli� An extensive series of SIFC experiments was run� involving �� di�erent ex�

perimental conditions� Each condition had signals based on a di�erent pair of W and T
values��� and each condition was an experiment in its own right� W ranged from ��� Hz

to ��� Hz in octave steps� and T ranged from ��� ms to ���� ms� also in octave steps�

W and T were chosen so that the product WT took on values of �� � and �� There were

seven conditions forWT � �� six conditions forWT � �� and 
ve conditions forWT � ��

making up �� conditions in all� Stimuli in each condition were presented at 
ve di�erent

SNRs� which ranged from � dB to �� dB for WT � �� from �� dB to �� dB for WT � �

and from �� dB to � dB for WT � �� all in � dB steps for each WT � Detectability

increases as WT increases� so di�erent SNRs were used at each WT to ensure that the

performance range was similar for each WT �

The experimental system was the same described for the experiment in Section ���� The

task of an observer was to detect a Gaussian noise signal in the presence of a Gaussian noise

��Lapsley Miller used the essential���	�! bandwidth and essential���	�! duration measures to specify
W and T 	 These measures describe the interval required to constrain ��	�! of a transient�s energy in
the frequency domain and time domain� respectively �Landau and Pollack� ���� cited in Lapsley Miller�
����
	 Algorithms for calculating these measures in discrete time are given in her Appendix B	 The Kaiser
window that was used in the experiments had a shape parameter of �� for which the equivalent rectangular
duration was equal to T � and the absolute duration was equal to ���� � T 	
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masker� Signals and maskers were gated together and presented diotically� The spectrum

level of the Noise�alone transients was �� dB SPL� During experimental sessions� an � kHz

low�pass analog Gaussian noise masker ran continuously at a spectrum level �� dB SPL�

Experimental design� Each observer ran six replications at each of �� experimental

conditions� Each replication of each condition consisted of the presentation of ���� tri�

als� ��� SN trials for each of the 
ve SNRs� plus ��� N trials� Over six replications�

each observer completed �� ��� trials per condition� Stimuli were presented in a di�erent

haphazard order for each replication and for each observer� For each replication� and

across SNRs� trials were run in eight sessions of ��� trials for WT � � and �� sessions

of ��� trials for WT � � and for WT � �� All of the data for WT � � was collected


rst� then the data for WT � �� and 
nally the data for WT � �� Only one condition

was run per session� and a haphazard order of conditions was used across sessions� SNRs

were intermixed within sessions �Tucker et al�� ����# Emmerich� ����b	� Within a session�

no constraint was made on the number of trials per SNR� nor on the number of trials

per event� The trial sequence was run�limited so that the same event and SNR could not

occur more than �� � or � times in a row �where �� � or � was randomly chosen with equal

probability on each trial	� A series of short preview trials were run at the start of each

session to remind observers of the type of stimuli for the current session� The stimuli used

in the preview trials were not used for the main data collection�

Lapsley Miller used the same continuous rating scale methodology as described for

other experiments in this thesis� The position of the rating slider was measured electron�

ically and converted into a �����point rating scale� Each SIFC trial consisted of a brief

warning interval �� ��� ms	� an observation interval whose length was determined by

the absolute duration of the stimuli� a decision interval of ���� ms and a minimum reset

interval of ��� ms� A set of LED lights on the decision panel were switched on and o�

to mark the trial intervals� No trial�by�trial knowledge of results was given� but observers

viewed their single�session ROC curves �for 
ve SNRs	 at the end of each session� and

viewed single�replication ROC curves after each completed replication�

����� Results

As well as ROC and GOC curves� Lapsley Miller presented FORAs� log�log plots and

asymptotes for all of the conditions� for each observer and for di�erent measures of sen�

sitivity� GOC analysis was only performed within observers� and not across observers�

FORA results were presented for each observer� condition� SNR� and over four measures

of sensitivity� A� d�� D� and D�� The focus here is mainly on the results for A and D��

although some results based on d� and D� are also described�
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FORAs based on two�event measures

The results fell over a full range of possible performance� from near�chance to near�perfect�

depending on the particular condition and SNR� For each of the �� conditions� and for

each observer� asymptotic values of A lay between ���� and ���� at the lowest SNR �with

FORA data lying below the asymptote	� and between ���� and ���� at the highest SNR�

The sets of FORAs for each condition were similar in form to the FORAs presented in

Figures ��� to ���� in the previous section� except that they were based on six replications�

With 
ve SNRs per condition� and �� conditions� there were �� FORAs per observer

for a given measure of sensitivity� The number of performance values that were averaged to

calculate each point on a FORA was small compared to numbers used in other experiments�

Because only six replications were run� �C� was either �� �� �� or �� for � � � � � � ��

Nevertheless� mean FORAs were generally stable� and regression�FORAs and log�log plots

could be estimated for most of the data sets�

Within each condition� the log�log plots became steeper� and � decreased with increas�

ing SNR� for FORAs based on A and D�� The slope was more homogeneous for FORAs

based on d�� and did not vary systematically across SNRs� A similar pattern occurred in

the previous section �Figures ��� to ����	� and occurred because A and D� are bounded

in nature� whereas d� is unbounded�

Relative reversal of observer order based on ROC and asymptotic performance

Both observers performed comparably across most conditions� The observer with the

higher single�replication value of A usually had the higher asymptotic value as well� but

this was often not the case� In �� out of the �� condition�and�SNR pairings� the observer

with the smaller initial value of A had the higher asymptotic value� Relative�performance

reversal was scattered among the many conditions and SNRs without an obvious pattern�

except for the WT � �� ��� ms� � Hz condition� In this condition� the initial A values for

Observer � were better than those for Observer � at all SNRs� whereas the opposite was

true for their asymptotes�

Summary of correlations

Tables E�� to E�� in Lapsley Miller ������ Appendix E	 list each observer�s six�replication

FORA results based on A� d� and D�� including correlations �r	 for all of the associated

��point log�log plots� Values of r for log�log plots based on A have been converted to r��

and are summarised here�

Out of the �� FORAs for Observer �� there were �� FORAs with r� greater than or

equal to ������� �� with r� between ������ and ������� two with r� between ������ and

������� and two relatively stray FORAs� one with r� � ������ and one with r� � �������

For Observer �� there were �� FORAs with r� greater than or equal to ������� �� with
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r� between ������ and ������� and one with r� � ������� Since r� on a log�log plot

indicates how well FORA data is 
tted by Equation ���� these results show that the

FORA regression was extremely robust across observers� parameter values �W� T � and

SNR	 and performance levels �without regard to stimulus parameters	�

Non�converging and over�converging FORAs

The vast majority of FORAs shown in this and previous chapters� and in Lapsley Miller

�����	� can be successfully 
tted by Equation ��� and extrapolated to estimate unique�

noise�free performance� There was a small set of Lapsley Miller�s �����	 data� however�

for which FORA extrapolation broke down�

There is no necessary reason why an asymptotic value of A �or of D�	 should be less

than or equal to �� even though the empirical FORA must be� Some of the FORAs

in Lapsley Miller�s data either did not converge� because the � parameter was greater

than ��� or over�converged to impossible values such as A� � � or �D�	� � �� FORAs

based on d� cannot over�converge because d� is unbounded above� so they either converge

to a 
nite value or they do not converge at all�

Sensible convergence in Lapsley Miller�s data was by far the rule� but there were

exceptions� Of the ��� FORAs based on A from either observer� there was only one that

did not converge at all� and one that over�converged beyond A � �� The latter was for

Observer � at WT � �� T � ��� ms� W � �� Hz� and � dB �the highest SNR	� The

regression�FORA based on A started at ������ and over�converged to an asymptote at

A � ������� In spite of this� the regression was very reasonable� because r� for the log�log

plot was ������� For the same data analysed using d�� the regression�FORA started at

d� � ������ and converged to an asymptote at d� � ������ �r� was also ������ based on d�	�

The results for this condition may be contrasted with results for a similar condition� with

a similar pattern of results� but which did converge sensibly� For Observer � at WT � ��

T � ��� ms�W � � Hz� and � dB �which only di�ered to the over�converging condition in

the value ofW	� the regression�FORA based on A started at ������ and converged sensibly

to an asymptote at A � ������� with r� � ������� The regression�FORA based on d� for

the same data started at d� � ������ and converged to d� � ������� with r� � ������� If

the underlying level of performance is very high �say d� � �	� there may be only a very


ne line between over�convergence and sensible convergence for FORAs based on A�

Out of all ��� regression�FORAs based on A� the regression�FORA in only one con�

dition did not converge �sensibly or otherwise	� This was for Observer � at WT � ��

T � ��� ms� W � �� Hz� and �� dB �the lowest SNR	��	 The FORA based on A started

o� at A � ������� but it was extremely �at and hardly increased over six replications�

It could not converge because � � ������� �which was was greater than ��	� This data

��These particular experimental parameters �including SNR
 were the only ones for which FORA re�
gression broke down so badly that none of the FORAs based on either A� d� or D� converged	
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resulted in a log�log plot with r� � ������� The FORA based on d� su�ered the same

problem as that for A� with virtually the same � and r� values�

These examples of poor convergence show two extremes that were part of a pattern for

Observer �� The most problematic results of the entire data set occurred for Observer �

at T � ��� ms� regardless of the bandwidth� SNR or measure of sensitivity� In contrast�

results for Observer � when T � ��� ms were sensible for all bandwidths� SNRs and

sensitivity measures� FORAs for Observer � at T � ��� ms at the higher SNRs showed

appreciable improvement from one to six replications��
 more so than for conditions based

on shorter durations� This indicated that there was a large amount of unique noise a�ecting

Observer � at the longest duration�

Observer � undoubtably had very high levels of unique noise� because the empirical

GOC curve improved appreciably based on only six replications� Whether the underlying

asymptotic values of A and d� were in fact so high is inconclusive� The log�log plots were

shallow and the data series showed signs of curving downwards� If so� the empirical FORA

may have coverged on a lower sensitivity value if the data series was extended further�

Running further replications probably would have helped to stabilise the FORA results

for this observer and stimulus duration� FORA regression functions for this experiment

generally provided such good 
ts to data� that it may be easy to forget that only six

replications were run�

FORAs based on the six�event measure� D�

Scur
eld �Scur
eld� ����� ����� ����	 extended the Theory of Signal Detectability to n�

event discrimination tasks� He developed n�event ROC analysis within the context of

information theory� and proposed using a new measure� Dn� as a measure of overall perfor�

mance in an n�event task� Dn speci
es the amount of information about event�orderings

that is contained in an observer�s decisions� Like other measures of sensitivity� Dn is based

on decision axis values when used in a theoretical context� and on ratings or mean�ratings

when used in a practical context� The measure D� in two�event discrimination tasks is a

speci
c case of Dn� In an n�event task� Dn can range between zero and logb�n�	� where the

base b de
nes the unit of information�

Lapsley Miller�s �����	 experiments involved a two�event task� and were analysed using

two�event ROC and GOC analyses and two�event measures of performance for each SNR�

observer and experimental condition� The data could also be interpreted and analysed in

terms of a six�event discrimination task �one N event plus 
ve SN�events� per observer and

per condition	� The six�event measure� D�� may be used to evaluate overall performance for

each observer and condition� taken across all SNRs� There are two theoretical assumptions

required in order for this analysis to hold� ��	 that all evidence distributions �one per event	

�	The value of A improved by �	��"�	�� for the three highest SNRs	
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fall onto the same unidimensional decision axis� and ��	 that there is a strictly monotonic

increasing transform between the decision axis �with six distributions on it	 and the rating

scale� That is to say� a psychophysical transfer function must be assumed� Given these

assumptions� which also underlie two�event ROC analysis� then Lapsley Miller�s analysis

based on D� holds���

Experimental results based on D� were a�ected by unique noise in much the same

way as results based on A� namely� performance was depressed and there was variability

across replications� For a given set of replications� the sum of ratings was calculated per

stimulus� and used as the basis for calculating D�� The number of replications per set was

anywhere from from one to six� inclusive� depending on which combination of replications

was analysed� A value of D� was calculated for each combination� based on all six signal

levels �including noise�alone	� and the average D� value at each combination�size de
ned

a FORA� Data values were only combined within observers and not across observers�

Each of the FORAs based on D� had a regression function 
tted to it using Equa�

tion ���� and asymptotic D� values were calculated� Across all observers and conditions�

all but two of the �� FORAs converged to sensible values� and those that did not were

for Observer � when T � ��� ms� Single�replication D� values varied between ��� and

��� bits� depending on the condition and the observer� The asymptotic D� values that

converged sensibly ranged between ��� and ��� bits� and showed a de
nite improvement

compared to their respective single�replication D� values�

Comparisons between single�replication and asymptotic values of D� showed that per�

formance improved by ������, for Observer �� and by �����, for Observer �� This was

fairly consistent across all conditions� and demonstrates the overall gains to be had from

using GOC analysis across a wide range of stimulus parameters and performance levels�

The e�ect of unique noise was to reduce by one third to one half the amount of infor�

mation about event�ordering contained in observers� decisions� The information is lost in

single�replication performance� but can be retrieved by applying GOC analysis to average

out unique noise�

Across all conditionseven those that did not converge sensiblyFORA regression


ts could hardly have been better� For Observer �� seven of the �� conditions had log�log

plot correlation values�� of r � ������� �to four decimal places	� another six conditions

had r � �������� and the other 
ve conditions had r between ������� and �������� For

Observer �� twelve of the �� conditions had r � �������� 
ve conditions had r � ��������
and one condition had r � ��������

The stability of log�log plots based on D� was due� in part� to the large number of

trials per condition ��� ��� trials per FORA� with ���� trials per replication	� The use

of D� meant all of this data could be sensibly contribute towards a single overall measure

�
Using base � logarithms� D� can vary between � and �	�� bits	 The subscript �� in D� refers to the
number of events and not to the number of replications run� which also happens to be 	

��Original r�values are reported here� rather than r�	
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of performance� The very high correlations may also partly re�ect the fact that only six

replications were run� If the data series was extended further� say to �� replications� it is

not known if the log�log plots would curve or not�

There were problems with the FORAs based on D� for Observer � at T � ��� ms�

which mirrored problems with two�event FORAs for the same observer at the same stim�

ulus duration� D� FORAs for two conditions with this duration converged� but not to

sensible values� The D� asymptotes for W � � Hz and W � �� Hz were ������� bits and

������� bits respectively� which are nonsensical because the maximum possible value of

D� is ������ bits� Like the two�event FORA results for Observer � for these experimental

conditions� the D� FORAs and log�log plots were all very shallow� and the log�log plots

showed signs of curving downwards� even over 
ve data points� This indicated that the

regression�FORA would overestimate the asymptote� and that more replications may have

been needed to obtain sensible results�

����	 Summary

Lapsley Miller�s �����	 amplitude discrimination experiments involved two observers run�

ning six replications each� in �� experimental conditions� at 
ve SNRs per condition�

FORA regression was found to be extremely robust over ��� di�erent combinations of

observers� conditions and SNRs� in which performance ranged from close to chance to

near�perfect� Log�log plots for two�event FORAs based on A typically had r� values

greater than ������ and six�event FORAs based on D� typically had r� values greater

than ������ The experiments showed that it was possible in practice to estimate asymp�

totic performance and asymptotic psychometric functions from as few as six replications�

The results also showed that a comparison of observers based on ROC performance often

di�ers from a comparison based on estimated unique�noise�free performance� Relative�

performance reversal across observers occurred in ��, of pairings of SNR and condition�

The result is a consequence of individual di�erences in common noise and unique noise�

and sampling variability of replications due to having a 
nite data set�
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��� Summary of Chapter

The aim of the chapter was to show ACA and FORA regression for a variety of di�erent

experiments� These� and the FORA results from the preceding chapters� demonstrate the

pervasive and robust nature of the FORA data pattern characterised by Equation ����

The pattern held across observers� experimental methodologies� types of stimuli� measures

of performance� and levels of performance� All of the FORAs were increasing functions�

which re�ected the improvement in GOC performance as more replications were added�

In Section ���� FORA regression worked for both binary�decision and rating method�

ologies� and the estimated asymptotes were similar in both cases� Section ��� showed

that the pattern held for di�erent observers who performed at di�erent levels� Section ���

also clearly showed that comparisons among observers within a group depended on what

what is compared� relative single�replication performance does not necessarily translate

into relative unique�noise�free performance� This type of result also occurred in Whitmore

et al��s �����	 experiment in Section ������ in the unpublished experiment in Section ����

and throughout Lapsley Miller�s �����	 project� Performance reversal may sometimes oc�

cur due to sampling variability� for example� but some of the very 
rm patterns� such as

those shown in Figure ���� argue against that as the sole reason�

Section ��� showed ACA and FORA results for an experiment that used multiple SNRs�

The FORA data pattern was found to hold over a wide range of performance levels� includ�

ing very high levels �d� � �	� Many similar experiments were run by Lapsley Miller �����	�

which were described in Section ���� Estimated asymptotes in multiple�SNR experiments

may be used to specify asymptotic� unique�noise�free psychometric functions� These are

of interest in psychophysics� since they provide details about the potential performance of

sensory systems that are unavailable through conventional ROC analysis�



Chapter 


Summary and Conclusions

Human beings are inconsistent decision makers in discrimination tasks� Psychophysical

results change from replication to replication of an experiment� even when identical stim�

ulus sets are used across replications� This contributes to error in the task and decreases

performance� There are practical implications of this decrease� namely the consequences

of errors in any task� There are also theoretical implications� because theories tested

against single�replication results will be in error to the extent that the replication is in

error� Most psychophysical experiments employ only a single presentation of a stimulus

set� and therefore are not designed to account for inconsistent decisions� Their results and


ndings would change if they did�

Studies that incorporate inconsistency� usually under the heading of internal noise�

are often concerned with modelling the error and quantifying it� particularly in terms

of a ratio of unique�to�common noise variances� k� Relatively little emphasis has been

placed on removing the error� There are at least two experimental procedures that will

reduce the error� multiple�presentation experiments and multiple�replication experiments�

Both methods involve repeated presentations of a given stimulus� Multiple�presentation

experiments� such as Swets et al� �����	� assume internal averaging of unique noise� prior

to each decision� whereas multiple�replication experiments� such as Taylor et al� �����	�

do not� Rather� decisions are made after each replication and averaged after the fact by

the experimenter� Neither of these experimental designs are widely used� although they

both address practical and theoretical problems�

This thesis is primarily concerned with the removal of unique noise resulting from

observer inconsistency in multiple�replication experiments� The data in such experiments

can be understood in the context of the Theory of Signal Detectability by the use of receiver

operating characteristic analysis� There are two basic e�ects of observer inconsistency�

��	 each replication of a multiple�replication experiment results in a di�erent ROC curve�

and a di�erent performance value� and ��	 the average performance level is lower compared

to what it would be without inconsistency� It is possible to remove the extra error by

���
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averaging across replications� but what is being averaged is crucial to the results� Mean

ROC analysis involves averaging ROC curves� whereas GOC analysis involves averaging

ratings or decisions on a per stimulus basis� A mean ROC curve indicates expected

single�replication ROC performance� whereas an asymptotic GOC curve indicates unique�

noise�free performance� It was seen throughout this thesis that mean ROC analysis does

not remove the e�ects of unique noise� but rather it incorporates them�

Part I

The basic question that motivated the developments in Part I was  why does GOC analysis

work�! Empirical transform�average GOC analysis� reported in Chapter �� showed that

GOC analysis worked under a large variety of transforms� All of the transforms applied in

Chapter � resulted in GOC curves that were better than the mean ROC curve� and some

were often as good as the sums�of�integer�ratings GOC curve� However GOC analysis

worked� it seemed to be robust with respect to order�preserving transforms� even the more

extreme ones�

The topic of strictly monotonic increasing �s�m�i�	 transforms also arose in the theoret�

ical relationship between a decision axis and a rating scale� namely� the transfer function�

The question of how transform�average GOC analysis works may be rephrased as a ques�

tion of how GOC analysis could work at all under any arbitrary ordinal scaling�

In a multiple�replication experiment� each stimulus is associated with a distribution of

ratings� de
ned across replications� GOC analysis averages ratings on a per stimulus basis�

and a GOC curve results from the ordering of a stimulus set according to mean rating�

What is required to explain GOC analysis is a general statistical property under which

the order of a stimulus set remains una�ected by s�m�i� transforms of a rating scale or a

decision axis� The key statistical property that achieves the desired result is stochastic

ordering� The distribution of ratings per stimulus extends to a family of distributions

when an entire stimulus set is considered� If the family is stochastically ordered� then

the order of mean ratings will always be the same for any strictly monotonic increasing

transform� Since mean ratings form the basis of GOC analysis� then this suggests that

GOC analysis will work under any arbitrary ordinal transform� including transfer functions

that transform the decision axis into the rating scale� Assuming that stochastic ordering

holds on the decision axis� then GOC analysis will work� If the family is not stochastically

ordered� then GOC analysis may work� but it is speci
c to a given rating scale� transfer

function and decision axis� With stochastic ordering� any speci
c scaling of an underlying

decision axis or a rating scale does not need to be known in order for GOC analysis to

work� The transfer function does not need to be known# the only requirement� in theory�

is that the transfer function is strictly monotonic increasing�

An implication of the theory of GOC analysis is that there is no inherent or special

scaling of a rating scale in a discrimination task� Rating distributions do not need to
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approximate theoretical distributions in order for GOC analysis to work� No inherent

meaning of rating categories is necessary for an ordinal rating scale to be useful in GOC

analysis or discrimination tasks in general�

Many models of inconsistent observers implicitly or explicitly average unique�noise�

a�ected values on a decision axis� The e�ect of scaling on the order of stimuli� according

to mean value� is as much a problem on a decision axis as it is on a rating scale� Hence

stochastic ordering is as relevant to such models as it is to GOC analysis� One of the


ndings of Chapter � was that if stochastic ordering does not hold� then the removal of

unique noise on one decision axis is not the same the removal of unique noise on a second

�s�m�i��transformed	 decision axis� If averaging unique noise on a decision axis is viewed

as recovering a theoretical ROC curve on a decision axis� then the so�called theoretical

curve may change under s�m�i� transforms of the decision axis when stochastic ordering

does not hold�

Arbitrary ordinal scales have implications for models of unique noise� Unique noise is

often modelled as having the same form for all common noise values on a decision axis� If

unique noise is of the same form along one decision axis� however� then it will generally

not be so after a non�linear s�m�i� transform of the decision axis� This may not matter if

the focus of a theory is on a speci
c decision axis� but if a theory or model is used to model

a data set of ratings� then arbitrary ordinal scales and axes are a problem for analyses

that assume a particular scale� or axis�

The potentially arbitrary nature of ordinal scales� particularly decision axes� raises

questions about measures that are scale�speci
c� The unique�to�common noise variance

ratio� k� is one such measure� It is often used to specify or characterise observer incon�

sistency� Decision axes are arbitrary� in the sense that an unlimited number of di�erent�

s�m�i��related axes produce the same ROC and GOC data� Therefore� k calculated on one

decision axis can be di�erent from k calculated on another decision axis� where each axis

could account for� or result in� the same rating data�

The two main contributions of this thesis are the theory of GOC analysis� and the

FORA regression procedure� There seems to be nothing in the theory of GOC analysis�

however� to suggest that the FORA data pattern should emerge from GOC analysis� or

from models of unique�noise�a�ected observers� FORAs do not follow in any obvious way

from the theory of GOC analysis� Theoretical FORAs were noted in Chapter �� but were

not discussed� Some theoretical FORAs are of a similar form to the ones described here�

whereas others are not� The theoretical FORAs are based on speci
c models� and are a

starting point for a general theory� The main theoretical problem that remains unsolved

is the theoretical basis for FORA regression� and its relationship to the theory of GOC

analysis�
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Part II

Data from a multiple�replication experiment can be combined in GOC analysis� As more

replications are added together� unique noise is removed and GOC curves tends to an

asymptotic form� As a consequence� a measure of performance tends toward an asymp�

totic value as a function of replications added �FORA	� Replications may be combined

in any order� and each order results in a di�erent sample�FORA� Taylor �����	 used all

combinations analysis �ACA	 to reduce the variability and error associated with sample�

FORAs� For a given data set of m replications� the GOC curve can be calculated for each

subset of � replications� and a measure of performance can be calculated based on each

GOC curve� The average performance value for all combinations of size �� plotted as a

function of �� de
nes an average FORA �or just FORA	�

FORAs generally follow the same form� Logarithms of FORA increments are approxi�

mately linear functions of the logarithm of the number of replications� which is seen when

the increments are graphed as a log�log plot� A linear log�log plot implies a summed power

series of the form

Ai � A� � 


iX
j��

j	 i � �

�Equation ���	� where Ai represents performance after i replications are combined� A� de�

notes the initial value of the FORA� and 
 and � determine how performance improves

as as the number of replications in the data set increases� A linear regression to a log�log

plot does not provide the best regression to a FORA� A non�linear least�squares regression

procedure was derived instead� which 
t Equation ��� to a FORA data series� rather than

to a log�log plot� The regression function can be extrapolated to an in
nite number of

replications to obtain an estimate of asymptotic� unique�noise�free performance�

The FORA regression function is a three�parameter data model� and is not a theory

of performance in multiple�replication experiments� Parameter values derive from data

for any given FORA� The data model is non�parametric in the statistical sense� because

it does not assume any distributions� FORA regression requires that a minimum of three

replications are run� The resulting regression function may be extrapolated to any number

of replications� and in the limit� it estimates asymptotic� unique�noise�free performance�
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FORAs were plotted or described for a variety of di�erent experiments� tasks� decision

methodology� measures of performance� stimulus parameters� levels of performance� and

individual observers� Linear log�log plots occurred in all of the experiments across all of

these factors and showed that Equation ��� describes an extremely robust data pattern�

The following results were found�

	 The log�log plot was either linear or near linear for most data sets� with r� � ����

being the norm�

	 FORA regression works over a very wide range of performance levels� including very

high levels such as d� � ��

	 FORA regression works across observers as well as within observers�

	 The ranking of members of a group according to their performance in a task can be

a�ected by unique noise� Rankings based on ROC performance� GOC performance�

and asymptotic performance do not necessarily agree with one another�

	 FORA analysis showed that while GOC analysis removes unique noise e�ects from

both continuous rating scale data and binary�decision data� the removal is more

e�cient when the number of rating categories is large�

	 FORAs based on P �C	 were more variable than FORAs based on A� d�� D�� or D��

This probably re�ected the fact that P �C	 was calculated from a single ROC point�

whereas the other measures were based on the area� under an entire ROC curve� A�

	 Given a large enough data set� it is possible to calculate sample statistics of estimated

asymptotes� and put error bounds on the asymptote�

	 ACA need not be computed in full for very large data sets� It is possible to achieve

reasonable asymptotic estimates using partial�ACA and sampled�ACA�

	 Stable estimates of the asymptote are possible with ���� replications� although this

will generally depend on experimental conditions�

	 FORA regression can be used to estimate unique�noise�free psychometric functions�

�Or from volumes under ROC hypersurfaces� in the case of D�	
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Appendix A

Arcsin�averaging

Two results are shown in this appendix� ��	 the equation for a general linear transform of

the sin�x	 function� and ��	 that the transform�average based on arcsin�y	 is identical to

that based on arcsin �
p
y	��

The general linear transform of the sine function

The central� strictly monotonic increasing� sigmoidal section of the sine function is de
ned

for values of the argument between ��
� and �

� radians� This section may be transformed

linearly �in both directions	 onto the regions de
ned by the intervals �a b% and �c d% as

sketched in Figure A��� There are no restrictions on a� b� c and d other than that they are

real�valued and 
nite� and that a � b and c � d� The general equation for the sketched

function is

g�x	 �

�
d� c

�

��
sin

��
x� a

b� a

�
� � �

�

�
� �

�
� c �A��	

for x � a � x � b� which results in g�x	 � c � g�x	 � d� Since it is not immediately obvious

that Equation A�� relates to Figure A��� a brief description of the equation is given below�

Let the argument of the sine function Equation A�� be

x� �

�
x� a

b� a

�
� � �

�
 �A��	

where x� is a linear function of x� Equation A�� then simpli
es to

g�x	 �

�
d� c

�

�
�sin �x�	 � �	 � c� �A��	

�Notationally� x and y are just general variables in this appendix and do not refer to values on any
decision axis	

���
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a b

g(
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Figure A��� General increasing linear transform of a section of the sine function�

If a � x � b� then

��
�
� x� � �

�


which can be seen by substituting a and b in turn for x in Equation A��� The result is as

desired since it is the section of the sine function between ��
� and �

� that is of interest�

Since a � x � b� then

�� � sin�x�	 � ��

Substituting sin�x�	 � �� and sin�x�	 � � in turn in Equation A�� means that

c �
�
d� c

�

�
�sin �x�	 � �	 � c � d �A��	

which is just a linear function of sin�x�	�

Together� Equations A�� to A�� mean that if a � x � b then c � g�x	 � d� and hence

that Equation A�� is the correct description of the function sketched in Figure A��� Start�

ing with the sine function de
ned bewteen ��
� and �

� � Equation A�� is a linear rescaling in

the horizontal direction while Equation A�� is a linear rescaling in the vertical direction�

Application to transform�averaging

If Equation A�� gives y � g�x	� then the inverse function� x � g���y	� is given by

g���y	 �

�
b� a

�

��
�

�
arcsin

�
�

�
y � c

d� c

�
� �

�
� �

�
� a �A��	

for c � y � d�
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Figure A��� The functions y � �

�
�� � sin�x�� and y � sin��x��

Equations A�� and A�� can be used to calculate the transform�average mean of a given

set of values� In transform�average GOC analysis �Chapter �	� the equations would be

applied to ratings� Either of the two equations could be de
ned as the forward transform�

and the other as the reverse transform� although the resulting GOC curve will depend

on which is used as which� Figure ����c	 shows the arcsin�mean GOC curve� where the

transform�average �Equation ���	 is Equation A�� �with parameters a � �� b � �� c � �

and d � ��� and with ratings rji substituted for y	� Figure ����e	 shows the sine�mean

GOC curve� where the transform�average �Equation ���	 is Equation A�� �with parameters

a � �� b � ��� c � � and d � �� and with ratings rji substituted for x	�

Equations A�� and A�� can also be used to calculate arcsin�averaged proportions �or

probabilities	� as in Section ���� Proportions lie between zero and one inclusive� so have

c � � and d � �� In Figure A��� the proportion values� say yi� contributing to the mean

lie on the vertical axis between c and d� They are converted to values xi on the horizontal

axis via the relationship xi � g���yi	� The arithmetic mean x�value� x� is calculated and

transformed back as y � g�x	� The mean ROC curves presented throughout the earlier

chapters were calculated using Equations A�� and A�� in the manner described above�

speci
cally with a � ��
� � b � �

� � c � � and d � �� This means the transform functions are

y �
�

�
�� � sin�x		 �A��	

and

x � arcsin ��y � �	  �A��	

with the range y � �� �% being mapped onto the domain x � ����  �� % �Figure A��	�
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The rationale for transform�averaging like this is discussed in Section ���� It is similar

to converting to z�scores using the inverse of the standard N�� �	 Gaussian cumulative

distribution function� z � &���y	� averaging z�scores and converting back using y � &�z	�

Using Equations A�� and A�� avoids the problem of using &���y	 when any of the yi equal

either zero or one�

It also has been suggested �McNicol� ����# Macmillan " Kaplan� ����	 that the trans�

form

x � arcsin �
p
y	 �A��	

and its inverse

y � sin��x	 �A��	

be used in place of x � &���y	 and y � &�x	 respectively� It is shown that using Equa�

tions A�� and A�� results in the same transform�average mean as when using Equations A��

and A���

The relationship between �
� arcsin ��y � �	 and arcsin

�p
y
�

It is easiest to show the equivalence of means using Equations A�� and A��� From well

known trigonometric formulae�

y � sin��x	 �A���	

� sin�x	 sin�x	

�
�

�
�cos�x� x	� cos�x� x		

�
�

�
��� cos��x		

�
�

�

�
� � sin

�
�x� �

�

��
 �A���	

which is the same as Equation A�� with a � �� b � �
� � c � � and d � �� In other words�

y � sin��x	 is a sine function that has been linearly transformed in both directions� The

inverse transforms of Equations A��� and A��� are� respectively�

x � arcsin �
p
y	

�
�

�

�
arcsin ��y � �	 �

�

�

�
� �A���	

The range of y for Equation A���� y � �� �%� is the same as that for Equations A��

and A��� Equation A��� maps y�values onto the domain x � �� �� % whereas Equation A��

maps y�values onto the domain x � ����  �� % �Figure A��	� This di�erence is re�ected in the

argument of the sine functions in Equations A��� and A�� respectively� The relationship
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between the two domains is a simple linear transform� namely for any x� � ����  �� %� there

is an x� � �� �� %�
� such that

x� �
�

�

�
x� �

�

�

�
�A���	

A given set of proportions �y values	 could be transformed into either a set of x� values �via

Equation A��	� or into a set of x� values �via Equation A���� or via Equation A�� followed

by A���	� The means of the two sets of x�values are related by Equation A���� which is to

say that x� �
�
�

�
x� �

�
�

�
� Applying either Equation A�� to x� or Equation A��� �or A��	

to x� results in the same �arcsin�averaged	 y�value� regardless of whether the x�values were

originally derived via Equation A�� or Equation A���

�Here� the subscript ��� refers to transforms based on Equations A	 and A	�� and the subscript ���
refers to transforms based on Equations A	� and A	�	



Appendix B

Linear transforms of function

domains

The purpose of this appendix is to provide some results that are used in Appendix C�

These results show what happens when a linear increasing transform� s � h�t	 � kt � c�

is applied to the domain of a general Riemann�integrable function ���t	� and its e�ect on

the integral of the transformed function� It is important to note that the linear transform

is applied to the domain of ���t	 and not to its range� Once the primary result has been

derived� it is then applied to a more complex transform that is a composite of sections of

linear increasing functions� Each linear function is de
ned on a separate �disjoint	 interval

of the real number line� R� where all of the functions have the same slope� but each has a

di�erent intercept� How these results relate to Appendix C is described at the end of this

appendix�

For a given function� ���t	� de
ne a second function� ���s	 � ���t	 � s t � s � h�t	 �

kt� c� so that

���s	 � ��

�
s� c

k

�


where t � h���s	 � s�c
k

is the inverse linear transform �k and c are real�valued constants�

k � �	� Consider an interval� t � �a b	 mapped via h onto s � �ka�c kb�c	� The integral

�Square brackets denote inclusion� and round brackets denote exclusion	 The choice of inclusion and
exclusion re�ects the usage of these results in Appendix C	

���
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of �� over the transformed interval isZ hb�

s�ha�
���s	 ds �

Z kb�c

s�ka�c
���s	 ds

�

Z kb�c

s�ka�c
��
�
h�� �s	

�
ds

�

Z kb�c

s�ka�c
��

�
s� c

k

�
ds

� k

Z b

t�a
���t	 dt �B��	

which is achieved by substitution using t � s�c
k
� The scalar value k in Equation B�� comes

from the fact that ds � k dt�

The result shows that when a linear transform h of slope k � � is applied to the

domain �a b	 of a Riemann�integrable function ��� then the integral of the resulting func�

tion �� over its related domain �h�a	 h�b		 is equal to k times the integral of �� taken

over �a b	� Another interpretation of this result is that if the domain of a function is

either stretched or compressed linearly by a factor of k� then the integral of the resulting

function �taken over the new domain	 is scaled by k� Note that this result is depends only

on the slope� k� and is independent of the intercept c�

Extension to transforms over unions of disjoint domains� Let I� I� I� � � � be a

sequence of disjoint� non�zero intervals in R� where the boundaries of the ith interval are

ai and bi �ai � bi	� Let h� h� h� � � � be a sequence of linear transforms associated with

these intervals� where the ith transform� hi� is de
ned only on the ith domain Ii� Let Ji

denote the range of the ith transform �where Ji has boundary values at hi�ai	 and hi�bi		�

Furthermore� let hi�t	 � kt � ci� where the slope k is identical for all i� and where the

intercepts are arbitrary� subject to the constraint that all of the ranges J� J� J� � � � are

disjoint� Let I � �iIi and J � �iJi be the unions of domains and ranges� respectively�

Let the transform h �without subscript	 be de
ned as h�t	 � hi�t	 � t � Ii� which is the

composite of all of the linear functions over their respective domains� �Note that h�t	 does

not need to be de
ned for values of t that lie outside of I	�

For any given Riemann�integrable function� ���t	� that is de
ned on I� let ���s	 �

���t	 � s t � s � h�t	� The transform h�t	 provides a one�to�one mapping of I onto J � and
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therefore s � h�t	 has a unique inverse function� Equation B�� shows thatZ
Ji

���s	 ds �

Z hbi�

s�hai�
���s	 ds

� k

Z bi

t�ai

���t	 dt

� k

Z
Ii

���t	 dt �B��	

holds for all i� because h has the same slope� k� over each interval� Ii� and because Equa�

tion B�� is independent of the intercept� ci� for the i
th interval�

Since the intervals Ii are disjoint� and the intervals Ji are disjoint� thenZ
J

���s	 ds �
X
all i

Z
Ji

���s	 ds

�
X
all i

k

Z
Ii

���t	 dt

� k

Z
I

���t	 dt� �B��	

Equation B�� is applied only in Appendix C� Using some notation from Appendix C�

the function G�t	 is substituted for ��� and G��s	 is substituted for ��� The unions of

intervalsdenoted as I and J hereare respectively used to represent either I� and J��

I� and J�� or I� and J�� all of which are de
ned in Appendix C�



Appendix C

Stochastic ordering

The topic of this appendix is the stochastic ordering of random variables� Stochastic order�

ing is also known as stochastic dominance� particularly when applied to models involving

utility and risk functions� Stochastic ordering is not new in statistics� and thorough bib�

liographies on the topic can be found in Findlay and Whitmore �����	� Kroll and Levy

�����	 and Whitt �����	� There are various types of stochastic ordering� The type that

is most relevant to the theory of GOC analysis is called �rst�degree stochastic ordering�

There is also an important distinction between strict and non�strict stochastic ordering

�which is explained in detail in Section C��	� Most of the literature deals with non�strict

stochastic ordering� but both types are crucial to the theory of GOC analysis� Fishburn

and Vickson �����	 provide a series of proofs that are the most similar to the material

in this appendix� The context and assumptions underlying Fishburn and Vickson�s work

are not entirely suitable for a general theory of GOC analysis� and readers are referred to

Fishburn and Vickson ������ Appendices �A and �B in particular	 for a comparison with

the proofs presented here�

A variety of de
nitions� theorems and corollaries about stochastic ordering are pre�

sented in this appendix� The results are applied in Chapter � to the model of a unique�

noise�a�ected ideal observer shown in Figure ��� and form the core of the theory of GOC

analysis� The appendix is divided into three sections� Section C�� provides de
nitions of

stochastic ordering and deals with the e�ect of continuous� s�m�i� transforms of stochas�

tically ordered random variables� Section C�� deals with s�m�i� transforms of random

variables that are not stochastically ordered� Section C�� deals with stochastically or�

dered random variables that are transformed using a �non�strict	 monotonic increasing

step function�

Although this appendix primarily deals with the stochastic ordering of random vari�

ables� stochastic ordering can also be applied to sample sets of values� where each set is

sampled from a di�erent random variable� In that case� sample cumulative distribution

functions take the place of the cumulative distribution functions in the derivations and

��
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results in Sections C��� C�� and C��� Due to sampling variability� stochastic ordering of

a set of random variables does not guarantee stochastic ordering of sample sets based on

the random variables� nor vice versa�

The notation used in this appendix follows the notation used in Chapter �� Unless

stated otherwise� the random variables described in this appendix can be either discrete�

mixed or continuous� �Random variables that are singular continuous �Parzen� ����	�

either in whole or in part� are excluded from consideration� because the integrals that are

used in the derivations would be unde
ned�	

Much use is made here of Riemann�Stieltjes integrals� but in the derivations� these

mostly result in the more familiar Riemann integrals and are� at worst� piece�wise inte�

grable� Background material on the calculus of Riemann�Stieltjes integrals is available in

Clarke �����	 and Rudin �����	� for example� Summaries of how Riemann�Stieltjes inte�

grals can be applied to probability and statistics are provided by Clarke �����	� Parzen

�����	 and Shohat �����	��

C�� The e�ect of strictly monotonic increasing transforms

of random variables on stochastic ordering� and on the

ordering of expected values

This section provides a de
nition of stochastic ordering� and describes properties that are

held by stochastically ordered sets of random variables� This is followed by Theorem �

and its corollaries� which show the e�ect of strictly monotonic increasing transforms of

stochastically ordered random variables� The e�ect of such transforms on expected values

of random variables is also described�

De�nition � Consider any two random variables	 Y� and Y�	 which are either continuous	

or discrete	 or mixed	 and which have respective cumulative distribution functions FY�

and FY�� Y� is stochastically less than Y� �denoted Y�
st
� Y�� if and only if FY��t	 �

FY��t	 � t � R and if FY��t	 � FY��t	 for some non�zero interval on the real number line R�

The converse is Y�
st

� Y�	 which means that Y�
st
� Y� is not true�

De�nition � For two random variables	 Y� and Y�	 Y� is stochastically less than or equal

to Y� �denoted Y�
st
� Y�� if and only if FY��t	 � FY��t	 � t � R� The converse is Y�

st

� Y�	

which means that Y�
st
� Y� is not true�

�Although readers should beware of typographical errors in Shohat �����
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(t)FY1
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Figure C���

Cumulative distribution functions� FY��t� and FY��t�� of two stochastically ordered random variables�

Y� and Y�� where Y�
st
� Y�� In this example� Y� and Y� are both continuous�

The di�erence between De
nitions � and � is that Y� � Y� is a possibility in De
nition �

�i�e� the two cumulative distribution functions may be identical	� but not in De
nition ��

The relationship Y�
st
� Y� implies that either Y�

st
� Y� or Y� � Y� applies� but not both�

Figure C�� shows an example of the cumulative distribution functions of Y� and Y�� where

Y�
st
� Y��

The stochastic ordering of random variables sometimes follows the same rules as the

numerical ordering of quantities� but not always� For example� if Y�
st
� Y� and Y�

st
� Y�

then Y� �� Y�� Similarly� if Y�
st
� Y� and Y�

st

� Y� then Y� � Y�� Also� note that Y�
st
� Y�

implies Y�
st
� Y�� but not vice versa� and that Y� � Y� implies Y�

st
� Y�� but not vice versa�

However� Y�
st

� Y� does not imply that Y�
st
� Y�� and Y�

st

� Y� does not imply that Y�
st
� Y��

Furthermore� Y� �� Y� does not imply that either Y�
st
� Y� or Y�

st
� Y� holds� It is possible

to have Y� and Y� such that Y� �� Y�� Y�
st

� Y� and Y�
st

� Y� all hold simultaneously� An

example of this case is used in the proof of Theorem ��

Corollary � �Transitivity� Let Y�	 Y� and Y� be any three random variables� If Y�
st
� Y�

and Y�
st
� Y�	 then Y�

st
� Y�� If Y�	 Y� and Y� are such that either Y�

st
� Y�

st

� Y� or

Y�
st

� Y�
st
� Y�	 then Y�

st
� Y�� If Y�

st

� Y�
st

� Y�	 then Y�
st

� Y��
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De�nition � The domain of a random variable is the set of values of R for which the

probability mass or density is non�zero� The mutual domain of a set of random variables

is the smallest continuous interval on R containing all values of the union of the domains

of the random variables�

The mutual domain is not a standard mathematical concept� but is introduced here

for later convenience� The mutual domain of a set of random variables is not necessarily

the same as the union of the domains of the random variables� although it may be� An

example of where they are not the same is where Y� and Y� are two continuous uniform

random variables whose domains do not overlap and are separated by a gap� The mutual

domain of Y� and Y� is the union of the domains of each random variable and the interval

of the gap� If Y� and Y� were discrete random variables� the mutual domain includes the

points at which probability is massed� as well as all of the intervals between these points�

The concept is convenient when applying the same transform to a multitude of random

variables simultaneously� The mutual domain may be the entire real number line� although

it need not be�

De�nition � In terms of a Riemann�Stieltjes integral	 the expectation of a random vari�

able Y is

E �Y 	 �

Z
�

t���
t dFY �t	 �C��	

�Clarke	 
���� Parzen	 
�����

De�nition � E �Y 	 exists and is �nite if and only if
R
�

t��� t dFY �t	 is absolutely inte�

grable	 that is	 when
R
�

t��� jtj dFY �t	 �� �Clarke	 
���� Parzen	 
�����

Computationally� De
nition � is equivalent to determining that the Riemann integralsZ
�

t��
��� FY �t		 dt and

Z �

t���
FY �t	 dt

both converge and are 
nite �Clarke� ����	� in which case

E �Y 	 �

Z
�

t��
��� FY �t		 dt�

Z �

t���
FY �t	 dt �C��	

�Clarke� ����# Parzen� ����	� Equation C�� may be interpreted geometrically �Parzen�

����� pp� �������	� Say the cumulative distribution function FY �t	 is as graphed in Fig�

ure C��� Let AY be the area of the region below FY �t	 and to the left of t � �� and let

BY be the area of the region above FY �t	 and below one that lies to the right of t � ��

The expected value� E �Y 	� is then BY minus AY � Equations C�� and C�� are useful be�

cause of their generality� The expectation is described entirely in terms of the cumulative
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FY(t)
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Figure C���

Regions de�ned by the cumulative distribution function� FY �t�� of a random variable� Y� relating

to the expected value� E �Y � �after Parzen� �	�� Figure 
A��

distribution function FY �t	� and it applies equally well to discrete� continuous� or mixed

random variables� If Y is either discrete or mixed� then the integrals are evaluated in a

piecewise manner�

Theorem � If Y� and Y� are any two continuous	 mixed or discrete random variables

whose expectations exist and are �nite	 then Y�
st
� Y� implies that E �Y�	 � E �Y�	� Fur�

thermore	 for any strictly monotonic increasing transform	 h	 de�ned over the mutual

domain of Y� and Y�	 then Y�
st
� Y� implies that h�Y�	

st
� h�Y�	 and	 consequently	 that

E �h �Y�		 � E �h �Y�			 if the expectations exist and are �nite�

Proof� Let Y� and Y� be any two continuous� mixed or discrete random variables whose

expectations exist and are 
nite� In that case� from De
nition �� they may be expressed

as the Riemann�Stieltjes integrals

E �Y�	 �

Z
�

t���
t dFY��t	

and

E �Y�	 �

Z
�

t���
t dFY��t	� �C��	
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The di�erence between the means is

E �Y�	�E �Y�	 �

Z
�

t���
t dFY��t	�

Z
�

t���
t dFY��t	

�

Z
�

t���
t dG�t	 �C��	

where G�t	 is de
ned as

G�t	
def
� FY��t	� FY��t	 � t � R� �C��	

Figures C�� and C�� sketch FY��t	� FY��t	 and G�t	 for hypothetical continuous and discrete

examples�

Integrating Equation C�� by parts� gives

E �Y�	�E �Y�	 � �t G�t	%�t��� �
Z
�

t���
G�t	 dt �C��	

The 
rst term on the right�hand side of Equation C�� vanishes to zero because

�tG�t	%�t��� � lim
a���
b��

�tG�t	%bt�a

� lim
a���
b��

�
t
�
FY��t	� FY��t	

��b
t�a

� lim
a���

�
t
�
FY��t	� FY��t	

���
t�a

� lim
b��

�
t
�
�� FY��t	

�� t
�
�� FY��t	

��b
t��

� �

since

lim
a���

aF �a	 � ���
h
lim
a��

aF ��a	
i

�C��	

� ��� �

� � �C��	

and

lim
b��

b ��� F �b		 � � �C��	

for the cumulative distribution function F of any random variable whose expectations

�The expression in Equation C	� is a meaningful Riemann�Stieltjes integral� even though G�t
 is not
monotonic increasing� and hence integration by parts is permissable	 This is because G�t
 is of bounded
variation by virtue of its composition	 See Clarke �����
� Rudin ����
 or Borowski and Borwein �����

with respect to functions of bounded variation and their use in Riemann�Stieltjes integrals	
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Figure C���

�a� Cumulative distribution functions� FY��t� and FY��t�� of two stochastically ordered continuous

random variables� Y� and Y�� where Y�
st
� Y�� �The functions are o�set slightly where they are

equal�� �b� The di�erence function G�t� � FY��t�� FY��t��
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Figure C���

�a� Cumulative distribution functions� FY��t� and FY��t�� of two stochastically ordered discrete

random variables� Y� and Y�� where Y�
st
� Y�� �Filled circles denote inclusion� Empty circles denote

exclusion� The functions are o�set slightly where they are equal�� �b� The di�erence function

G�t� � FY��t�� FY��t��
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exist and are 
nite �Clarke� ����	�� Equation C�� then simpli
es to

E �Y�	�E �Y�	 � �
Z
�

t���
G�t	 dt� �C���	

The integral in Equation C��� is a Riemann integral� regardless of whether Y� and Y� are

continuous� discrete� or mixed� If either of Y� and Y� is either discrete or mixed� then G�t	

is not continuous over the entire real number line� and Equation C��� is evaluated in a

piecewise manner� as is needed in Figure C��� for example�

A second way of arriving at the same result implicitly involves the same vanishing

of terms as given above� which is required in order for the integrals in Equation C�� to

converge �i�e� when expectations exist and are 
nite	� From Equation C���

E �Y�	 �

Z
�

t��

�
�� FY��t	

�
dt�

Z �

t���
FY��t	 dt

and so

E �Y�	�E �Y�	 �

Z
�

t��

��
�� FY��t	

�� ��� FY��t	
��
dt � � �

� � � �
Z �

t���

�
FY��t	� FY��t	

�
dt �C���	

� �
Z
�

t���

�
FY��t	� FY��t	

�
dt

� �
Z
�

t���
G�t	 dt�

�The integrals involved in Equation C��� can be related back to Figure C��� in terms

of di�erences in the areas of the regions AY and BY � applied separately to Y� and Y�� In

this context� Equation C��� states that E �Y�	 � E �Y�	 � �BY�
� BY�

	 � �AY�
� AY�

	�

This equation is not pursued further� but is noted as a geometrical interpretation of

E �Y�	�E �Y�	�	

De
nition � and Equation C�� together imply that if Y�
st
� Y�� then G�t	 � � � t � R

and G�t	 � � for some non�zero intervals in R� This implies that if Y�
st
� Y�� then the

integral of G�t	 is positive� that isZ
�

t���
G�t	 dt � �� �C���	

Taken together with Equation C���� this implies that E �Y�	 � E �Y�	 � �� and so

E �Y�	 � E �Y�	� This completes the proof of the 
rst part of Theorem ��

�Equations C	� and C	� hold �and the expectation exists
 for many� but not all� random variables	
For example� the mean of a Cauchy random variable does not exist� precisely because the limits given in
Equations C	� and C	� are in�nite	
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A trivial corollary of this result is that if Y�
st
� Y�� then E �Y�	 � E �Y�	�

If Y� �� Y� and if neither Y�
st
� Y� nor Y�

st
� Y� holds� then FY��t	 and FY��t	 must cross

at least once� This means there is some non�zero interval in R for which FY��t	 � FY��t	

holds true� and some interval for which FY��t	 � FY��t	 holds true� Equivalently� there is

some non�zero interval for which G�t	 � � holds true� and some interval for which G�t	 � �

holds true� Hence no general statement may be made about the sign of the de
nite integral

in Equation C���� nor about the orderings of the E �Y�	 and E �Y�	� Equation C��� would

have to be speci
cally evaluated to determine the order of means�

Let R� � h�Y�	� R� � h�Y�	� where h is any continuous s�m�i� transform de
ned over

the mutual domain of Y� and Y� for which E �R�	 and E �R�	 exist and are 
nite� Since

h is s�m�i� over the domain of Y�� then � s t � s � h�t	�

FR��s	 � P �R� � s	

� P �R� � h�t		

� P �h���R�	 � t	

� P �Y� � t	

� FY��t	�

Similarly� FR��s	 � FY��t	 � s t � s � h�t	� Next� let G��s	 be de
ned as

G��s	
def
� FR��s	� FR��s	�

It follows from this that � s t � s � h�t	�

G��s	 � G�t	� �C���	

The function G��s	� de
ned for R� and R�� corresponds to G�t	� de
ned for Y� and Y��

The equivalences that lead to Equation C��� imply that if FY��t	 � FY��t	 � t � R and

FY��t	 � FY��t	 for some non�zero interval in R� then FR��s	 � FR��s	 � s � R and

FR��s	 � FR��s	 for some non�zero interval in R� and vice versa� In brief�

Y�
st
� Y� � R�

st
� R�� �C���	

The order of expectations of the transformed random variables can also be determined

by speci
cally calculating

E �R�	�E �R�	 � �
Z
�

s���
G��s	 ds �C���	

which follows from Equation C��� when applied to R�� R� and G��s	� As with Y� and Y��



C� Stochastic ordering ��


if R�
st
� R�� then the integral of G��s	 is positive� that isZ

�

s���
G��s	 ds � �� �C���	

Taken together with Equation C���� this implies that E �R�	 � E �R�	� This result holds

for any s�m�i� transform h� where R� � h�Y�	 and R� � h�Y�	� as long as E �R�	 and E �R�	

exist and are 
nite� So if Y�
st
� Y� then R�

st
� R�� which implies that E �R�	 � E �R�	�

Consequently� Y�
st
� Y� implies that E �h �Y�		 � E �h �Y�		� Q�E�D�

Note that while stochastic ordering of random variables implies an ordering of the

means� the converse is not true� An ordering of the means does not imply that stochastic

ordering holds�

Continuous random variables� If Y� and Y� are both continuous random variables�

with respective probability density functions fY� and fY�� then E �Y�	 �
R
�

t��� t fY��t	 dt�

and E �Y�	 �
R
�

t��� t fY��t	 dt� Equation C�� can be evaluated using

E �Y�	�E �Y�	 �

Z
�

t���
t dG�t	

�

Z
�

t���
t

�
d

dt
G�t	

�
dt

�

Z
�

t���
t
�
fY��t	� fY��t	

�
dt�

Discrete random variables� If Y� and Y� are both discrete random variables� then

their cumulative distribution functions are piecewise continuous� and so are G�t	 and

G��s	� Figure C�� sketched what G�t	 may look like in the discrete case� Integrals of such

functions� and Equations C��� and C���� are calculated as Riemann integrals� evaluated

in a piecewise manner� In practice� this requires a series summation �over possibly an

in
nite number	 of de
nite Riemann integrals� each one de
ned over a 
nite interval�

where the limits of each integral are neighbouring points at which probability is massed�

If the expectations exist and are 
nite� then the sum of the de
nite integrals converges to

E �Y�	 � E �Y�	� The sum converges because E �Y�	 and E �Y�	 are both 
nite� and the

convergence is absolute �De
nition �	�

Discrete random variables are typically �but not necessarily	 de
ned on an integer

domain� In general� a discrete random variable may be de
ned over any countable set of

values� f� � �  c� c� c� � � � g� Only real�valued discrete random variables whose values� ci�

are s�m�i� with their integer�valued index values i are considered here��

�Other real�valued discrete variables are possible whose values either do not� or cannot� form an s	m	i	
mapping onto the integers	 It is di#cult to base ROC analysis on such variables and so they are excluded
from consideration here	
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If cj� and cj� are any two points at which probability is massed� then the integral of

G�t	 evaluated between these points is

Z cj�

t�cj�

G�t	 dt �

j���X
j�j�

�cj�� � cj	 G�cj	�

For integer�valued discrete random variables� cj�� � cj � �� and so

Z cj�

t�cj�

G�t	dt �

j���X
j�j�

G�cj	

�

j���X
j�j�

�
FY��cj	� FY��cj	

�
�

Corollary � Let Y� and Y� be any two random variables whose expectations exist and are

�nite� Let h�	 h�	 h� � � � be continuous	 strictly monotonic increasing functions	 where

h� is de�ned on the mutual domain of Y� and Y�	 h� is de�ned on the mutual domain of

h��Y�	 and h��Y�		 h� is de�ned on the mutual domain of h��h��Y�		 and h��h��Y�			 and

so on� If Y�
st
� Y�	 then

E�� � � h��h��h��Y�			% � E�� � � h��h��h��Y�			%

if the expectations exist and are �nite�

Proof� Consider 
rst the case of two transforms� h� and h�� Corollary � results then from

the double application of Theorem �� From Theorem �� if Y�
st
� Y�� then h��Y�	

st
� h��Y�	�

And again from Theorem �� if h��Y�	
st
� h��Y�	 then h��h��Y�		

st
� h��h��Y�		� which

implies that E�h��h��Y�		% � E�h��h��Y�		%� By extension� and by repeated application of

Theorem �� any number of s�m�i� transforms can be nested to produce the desired result�

Another way of viewing this is that the s�m�i� transform of an s�m�i� transform is itself an

s�m�i� transform �i�e� h
�t	 � h��h��t		 is an s�m�i� transform	� The series can be extended

so that h
�t	 � � � � h��h��h��t		� which is an s�m�i� transform� and Theorem � applied to h


also gives the desired result�

Corollary � If there is a stochastically ordered set of random variables	 fY� Y� Y� � � � g
such that Y�

st
� Y�

st
� Y�

st
� � � � 	 then h�Y�	

st
� h�Y�	

st
� h�Y�	

st
� � � � holds for any continuous

s�m�i� transform h de�ned over the mutual domain of all of the Yj�

Corollary � For any fY� Y� Y� � � � g	 de�ned and stochastically ordered as in Corollary �	

and for any continuous s�m�i� transform h de�ned over the mutual domain of all the Yj	

E�Y�	 � E�Y�	 � E�Y�	 � � � and E�h�Y�		 � E�h�Y�		 � E�h�Y�		 � � � The ordering of the

expected values of both the untransformed and the transformed random variables follows

the stochastic ordering of the Y�variables	 if the expectations exist and are �nite�
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Corollaries � and � follow directly from the application of Equation C��� and Theorem �

to successive overlapping pairs of the Y�variables �Y� and Y�� then Y� and Y�� etc�	�

C�� Strictly monotonic increasing transforms of random vari�

ables that are not stochastically ordered

The results and derivations presented in the preceding section showed what happens when

an s�m�i� function is used to transform random variables that are stochastically ordered�

In contrast� this section shows what happens under such transforms when the random

variables are not stochastically ordered� Before the main result �Theorem �	 is derived�

some of the integrals involved in the preceding section are reformulated� in order to simplify

later proofs�

Notation� The symbols T and S are used to succinctly provide three relationships in one

statement� For example�  A T B � C S D! should be read as  if A � B then C � D#

if A � B then C � D# and if A � B then C � D�! In derivations that use these stacked

symbols� it may be helpful to follow only the top inequality� If that holds� then the bottom

inequality holds because it is the converse of the top inequality� and the middle equality

also holds�

Let I� � I� and I� respectively be the union of intervals in R over which G�t	 � ��

G�t	 � � andG�t	 � �� or equivalently� the union of intervals in R over which FY��t	 � FY��t	�

FY��t	 � FY��t	 and FY��t	 � FY��t	� Figure C�� shows how G�t	 relates to FY��t	 and FY��t	�

and how I�� I� and I� also relate to these functions� Let
R
I�
G�t	 dt�

R
I�
G�t	 dt andR

I

G�t	dt denote the integral of G�t	� with respect to t� taken over the intervals that make

up I�� I� and I�� respectively� Note that I� � I� � I� � R � and also that
R
I

G�t	dt � �

by the de
nition of I�� Given these de
nitions� thenZ
�

t���
G�t	 dt �

Z
I�
G�t	 dt�

Z
I�
G�t	 dt�

Z
I

G�t	 dt

�

Z
I�
G�t	 dt�

Z
I�
G�t	 dt

�

Z
I�
G�t	 dt�

����Z
I�
G�t	 dt

����  �C���	

where
R
I�
G�t	 dt � � and

R
I�
G�t	 dt � � by the de
nitions of I� and I��
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Figure C���

�a� Cumulative distribution functions� FY��t� and FY��t�� of two random variables� Y� and Y�� that

are not stochastically ordered �Y�
st

� Y��� �The functions are o�set slightly where they are equal��

�b� The di�erence function G�t� � FY��t� � FY��t�� Intervals de�ned as I
�� I� and I� in the text

are also shown�
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Lemma � Z
I�
G�t	 dt T

����Z
I�
G�t	 dt

���� �
Z
�

t���
G�t	 dt T �

� E �Y�	 S E �Y�	 �

�Note that the direction of the inequalities changes from one line to the next in Lemma ��	

Which of
R
I�
G�t	 dt and

R
I�
G�t	 dt has the greatest absolute value determines the order

of E �Y�	 and E �Y�	� The integrals could also be of equal magnitude but of opposite

sign� which implies that that E �Y�	 � E �Y�	� Lemma � holds for any Y� and Y� whose

expectations exist and are 
nite� It follows directly from Equations C��� and C���� and is

true regardless of whether Y� and Y� are stochastically ordered or not�

Let h� R� � h�Y�	� R� � h�Y�	 and G��s	 be de
ned as for Theorem �� Considering

the mutual domain of R� and R�� let J
�� J� and J� respectively denote the unions of

intervals over which G��s	 is greater than� less than or equal to zero� Let
R
J�
G��s	 ds

denote the integral of G��s	 with respect to s taken over the intervals that make up J��

and similarly for integrals over J� and J�� Since h is an s�m�i� transform� then there is a

simple relationship between I� and J�� between I� and J�� and between I� and J�� the

boundaries of a J interval are de
ned by the transform h being applied to the boundaries

of a I interval�

Lemma � Z
�

s���
G��s	 ds T � � E �R�	 S E �R�	

i�e� that E �h �Y�		 S E �h �Y�		

�Like in Lemma �� note the change of direction of the inequalities�	 Lemma � follows from

Lemma � except applied to R�� R� and G��s	� rather than Y�� Y� and G�t	� It is true

regardless of whether R� and R� are stochastically ordered or not�

Theorem � Let h	 Y� and Y� be de�ned as for Theorem 
	 such that E�h�Y�		 and E�h�Y�		

both exist and are �nite� If Y�
st

� Y�	 Y�
st

� Y� and Y� �� Y�	 then regardless of the order

of E �Y�	 and E �Y�		 it is always possible to choose a strictly monotonic increasing trans�

form	 h	 such that E�h�Y�		 is either less than	 greater than	 or equal to E�h�Y�		�
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Proof� Let Y� and Y� be such that Y�
st

� Y�� Y�
st

� Y� and Y� �� Y�� meaning that

FY��t	 � FY��t	 for some intervals in R while FY��t	 � FY��t	 for other intervals� Conse�

quently� G�t	 � � for some intervals and G�t	 � � for others� like in Figure C���b	�

The proof of Theorem � relies on describing an s�m�i� transform� h� that will either

maintain or reverse �as desired	 the order of E �R�	 and E �R�	 relative to the order of

E �Y�	 and E �Y�	� It is assumed that the expectations involved in the proof exist and

are 
nite� meaning that the integrals that are involved converge� The transform that is

proposed here is only one possible transform that will su�ce to prove the theorem� Many

other transforms will also achieve the same end�

Choose a continuous s�m�i� transform h�t	 that is composed entirely of joined line

segments� where di�erent segments can have di�erent slopes and where all of the slopes

are positive �since h is an increasing function	� The segments are de
ned so they only join

at the values of t de
ned by boundary points between I�� I� and I�� Let the slope of all

segments comprising I� be set to k�� let the slope of all segments comprising I� be set

to k�� and let the slope of all segments comprising I� be set to k
� The slopes� k�� k�

and k
� are all positive constants� since h�t	 is s�m�i� Their values are chosen later� and it

is important to note that k�� k� and k
 are independent of Y� and Y��

From Equations C��� and C���� and from Lemma � �and with attention to the direction

of the inequalities	� it follows that

E �Y�	 S E �Y�	 � E �Y�	�E �Y�	 S � �C���	

� �
Z
�

t���
G�t	 dt S � �C���	

�
Z
�

t���
G�t	 dt T �

�
Z
I�
G�t	 dt�

����Z
I�
G�t	 dt

���� T �

�
Z
I�
G�t	 dt T

����Z
I�
G�t	 dt

����
�

R
I�
G�t	 dt��R

I�
G�t	 dt

�� T �� �C���	

Similarly� from Lemma �

E �R�	 S E �R�	 �
R
J�
G��s	 ds��R

J�
G��s	 ds

�� T �� �C���	

Equations C��� and C��� are clearly similar in form� Since G��s	 � G�t	 � s t � s � h�t	
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�Equation C���	� then the main di�erence between the related integrals in the two equa�

tions is the domain of integration� It is shown in Appendix B that an increasing piecewise�

linear rescaling of a function domain by a transform such as h results in an integral that

is scaled by the slope of the line segments in the transform� In the current example� the

transform only applies to each of I�� I� and I� separately� which are regions over which

the slope of the transform has the same value� The possibility that any of these domains

of integration is the union of disjoint subsets of R is taken into account in Appendix B�

Speci
cally� the results in Appendix B show thatZ
J�
G��s	 ds � k�

Z
I�
G�t	 dt �C���	

and ����Z
J�
G��s	 ds

���� � k�
����Z

I�
G�t	 dt

����  �C���	

with Z
J

G��s	 ds � k


Z
I

G�t	 dt

� � �C���	

where Equation C��� holds by the de
nitions of I� and J�� Since the value of k
 does not

a�ect Equation C���� k
 can be set arbitrarily to one� and then ignored� Equations C���

and C��� together imply thatR
J�
G��s	 ds��R

J�
G��s	 ds

�� �
k�
R
I�
G�t	 dt

k�
��R
I�
G�t	 dt

�� � �C���	

Substituting Equation C��� into Equation C��� implies that

E �R�	 S E �R�	 � k�
R
I�
G�t	 dt

k�
��R
I�
G�t	 dt

�� T � �C���	

� k�

k�
S � �C���	

where

�
def
�

R
I�
G�t	 dt��R

I�
G�t	 dt

��
is de
ned here for convenience only� �Note that the ratio of k�values is k�

k�
in Equation C����

which changes to k�

k�
in Equation C����	 The assumptions given for Theorem �� that Y�

and Y� are not stochastically ordered and that the integrals in Equation C��� converge
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�because E �Y�	 and E �Y�	 exist	� imply that � is a 
xed �nite� positive value for any

given pair of random variables� Y� and Y��

In order to prove Theorem �� separate conditions need to be shown under which

E �h �Y�		 � E �h �Y�		� E �h �Y�		 � E �h �Y�		� and E �h �Y�		 � E �h �Y�		� regardless

of the order of E �Y�	 and E �Y�	� Equation C��� does just that� With � being a 
xed pos�

itive value� Equation C��� states that if k� and k� are chosen such that k��k� � �� then

E �h �Y�		 � E �h �Y�		# if k
��k� � �� then E �h �Y�		 � E �h �Y�		# and if k��k� � � then

E �h �Y�		 � E �h �Y�		� In this way� k� and k� can be chosen so the order of E �h �Y�		

and E �h �Y�		 is either the same as or opposite to the order of E �Y�	 and E �Y�	� This

completes the proof of Theorem �� Q�E�D�

Several points follow directly from the proof of Theorem ��

	 Theorem � only applies when Y� and Y� are not stochastically ordered� If either

Y�
st
� Y� holds� or Y�

st
� Y� holds� then Theorem � applies instead of Theorem ��

	 The value of k
 does not matter at all� only the ratio of k� and k� is important�

	 The results of Theorem � hold for an unlimited number of transform functions� These

functions can be either linear or non�linear� as long as Equation C��� is satis
ed�

The results are a consequence of de
ning h such that the I� and I� regions of R are

su�ciently stretched or compressed �as desired	 into J� and J� respectively� This

was achieved in the proof by setting k� and k��

C���� Non�strict inequalities in stochastic ordering

The results presented so far were stated for the case of strict stochastic ordering� They also

apply� with modi
cation� to non�strict stochastic ordering �De
nition �	� In Theorem ��

strict stochastic and numerical inequalities �e�g�  
st
�! and  �!	 may be replaced by non�

strict inequalities �e�g�  
st
�! and  �!	 and the modi
ed theorem will still hold�

Assuming that the expectations involved exist� then Equations C�� to C���� C���

and C��� all hold regardless of whether Y� and Y� are stochastically ordered or not� �This

includes non�strict stochastic ordering� so these equations do not need modi
cation�	 If

Y�
st
� Y� in the statement of Theorem �� then Equation C��� �and its following text	�

Equation C��� �both inequalities	� and Equation C��� �and its following text	 can all

be changed from strict inequalities to non�strict inequalities� The non�strict inequalities

follow through to the conclusion of the proof on p� ����

Non�strict ordering may also be applied to Corollaries �� � and �� and leads to the

following conclusion�
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Corollary � Corollaries � and  hold for any arbitrary combination of strict and non�

strict inequalities in the ordering sequence	 where the ordering is stochastic for the random

variables and numerical for their expected values� For example	 if Y�
st
� Y�

st
� Y�

st
� � � � 	

then h�Y�	
st
� h�Y�	

st
� h�Y�	

st
� � � � 	 and consequently	 E�Y�	 � E�Y�	 � E�Y�	 � � � � and

E�h�Y�		 � E�h�Y�		 � E�h�Y�		 � � � �

The combination of strict and non�strict ordering of more than two random variables was


rst dealt with in Corollary �� Corollary � results from Corollary �� and by application

of both strict and non�strict versions of Theorem � to successive overlapping pairs of the

random variables involved�

In Theorem �� the conditions that Y�
st

� Y� and Y�
st

� Y� �along with Y� �� Y�	 can

be replaced by their non�strict counterparts� Y�
st

� Y� and Y�
st

� Y�� without changing the

statement of the theorem� This is because Y�
st

� Y� implies that Y�
st

� Y� and Y� �� Y�� and

Y�
st

� Y� implies that Y�
st

� Y� and Y� �� Y��

C�� The e�ect of step function transforms of random vari�

ables on stochastic ordering� and on the ordering of

expected values

The preceding section dealt with s�m�i� transforms of random variables� their e�ect on

stochastic ordering� and subsequent e�ects on the ordering of expected values� This section

deals with the e�ect of step function transforms on stochastic ordering� and on the ordering

of expected values�

Let Rj be a continuous� discrete� or mixed random variable� Let � be a monotonic

increasing step function de
ned on a partition )R of the real number line� R� and let

Qj � ��Rj	 be a new random variable� Qj is always discrete� regardless of the form of Rj�

The domain of Qj can be any countable set of real numbers� *Q � f� � �  q� q� q� � � � g�
where q��� � q�� *Q can be either 
nite or in
nite� but it has at least two members �since

it is de
ned from a step function	� The partition )R is a countable set of real�valued

numbers� )R � f� � �  r� r� r� � � � g� r��� � r�� where the number of values in *Q is one

more than the number of members in )R� Each interval� �r��� r�% de
ned by the partition

is assigned a value in *Q via the left�continuous step function

��r	 � q� for r � r��� � r � r� �C���	

An example of ��r	 is sketched in Figure C��� If )R is bounded below� then take r��� to

be �� for the smallest value of �� Similarly� if )R is bounded above� then take r� to be

� for the largest value of ��

�Square brackets denote inclusion� and round brackets denote exclusion	
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q1

q2

q3

q4

q5

r1 r2 r3 r4

Λ(r)

r

Figure C�	�

Example of a monotonic increasing step function ��r� that maps intervals de�ned by a partition

�R � f� � � � r�� r�� r�� � � � g onto discrete values lying in the set �Q � f� � � � q�� q�� q�� � � � g� �Filled

circles denote inclusion� Empty circles denote exclusion�� Note that ��r� is not a cumulative

distribution function�

For the �th interval� the e�ect of � is to mass the probability of Rj lying in the interval

�r��� r�% and assign it to Qj at the value q�� In terms of Riemann�Stieltjes integrals� the

probability mass function of Qj is

P �Qj � q�	 � P �r��� � Rj � r�	

�

Z r�

r�r���

dFRj�r	

for any Rj that is either continuous� discrete or mixed� If Rj is continuous and its proba�

bility density function is fRj�r	 �
d
dr
FRj�r	� then

P �Qj � q�	 �

Z r�

r�r���

fRj�r	 dr�
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If Rj is discrete and its probability mass function is P �Rj � r	� then

P �Qj � q�	 �
X
all r�

r����r�r�

P �Rj � r	�

The cumulative distribution function of Qj is

FQj�q	 � P �Qj � q	

�
X
all ��
q��q

P �Qj � q�	� �C���	

Equation C��� de
nes FQj�q	 for all q � R� When q � q�� the value of the cumulative

distribution function of Qj matches that of the cumulative distribution function of Rj�

that is�

FQj�q�	 � P �Qj � q�	

� P �Rj � r�	

� FRj�r�	 �C���	

�noting that r� for the maximum � is taken to be ��	 If Rj is continuous� then

FQj�q�	 �

Z r�

r���
fRj�r	 dr

and if Rj is discrete� then

FQj�q�	 �
X
all r�
r�r�

P �Rj � r	�

Next� consider Rj to be one of a family of continuous� discrete� or mixed random

variables� fR� R� R� � � � g� with � de
ned on the mutual domain of all of them� The

partition )R is not just speci
c to the jth R�variable� but may be applied equally to any

such R�variables lying on the same axis�

Theorem � Let Rj and Rk be any two of the R�variables in a family of random variables

fR� R� R� � � � g� Let the step function �	 and its related partition )R	 be de�ned as above

for Equation C���	 and let Qj � ��Rj	 and Qk � ��Rk	� If Rj

st
� Rk	 then Qj

st
� Qk�

Whether Qj

st
� Qk holds	 or Qj � Qk holds	 depends on how )R partitions the mutual

domain of Rj and Rk� If FRj�r�	 � FRk�r�	 for any r� � )R	 then Qj

st
� Qk	 otherwise

Qj � Qk�
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Proof� For the random variables� Rk and Qk�

FQk�q�	 � FRk�r�	 �C���	

from Equation C���� If Rj

st
� Rk� then

FRj�r	 � FRk�r	 � r � R �C���	

with a strict inequality holding over some non�zero interval in R �because strict stochastic

ordering is involved	� Together� Equations C���� C��� and C��� imply that if Rj

st
� Rk�

then

FQj�q�	 � FQk�q�	

for all q� � *Q� Since Qj and Qk are discrete� then

FQj�q	 � FQk�q	 �C���	

holds for all q � R �including all q� � *Q	� By De
nition �� Equation C��� implies that

Qj

st
� Qk� which proves the main conclusion of Theorem ��

Conditions for strict stochastic ordering of Qj and Qk

The condition Qj

st
� Qk implies that either Qj

st
� Qk or Qj � Qk� The condition Qj

st
� Qk

holds if there is a non�zero interval in R in which FQj�q	 � FQk�q	� Such an interval may

or may not exist� depending on the speci
cs of FRj�q	� FRk�q	 and )R� in particular� how

the partition )R cuts across any intervals for which the strict inequality FRj�r	 � FRk�r	

holds�

In order to demonstrate this claim� let � be a value �not necessarily in )R	 where

FRj
and FRk

change from being equal to being non�equal� and let � be the next largest

value at which FRj
and FRk

change back from being unequal to being equal �where � and

� need not be 
nite	� For reference purposes� any non�zero interval between successive

points at which FRj�r	 �� FRk�r	� such as �� �	 or �� �	� is referred to as an unbroken

interval� an example of which is sketched in Figure C��� By de
nition� FRj�r	 �� FRk�r	

for all r � �� �	� To remove any need to treat continuous random variables separately

from discrete or mixed random variables� the point r � � is included in the unbroken

interval in the case when Rj and Rk are both continuous random variables �even though

FRj��	 � FRk��		� This is done for convenience� and does not a�ect the conclusions�

Consider a case where � and � are both 
nite and Rj and Rk are such that there is

only one unbroken interval �� �	 in R� If )R is such that �� �	 falls entirely within the

same single interval de
ned via )R� then Qj � Qk� If �� �	 falls across more than one
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0

1

α β r

FRj
(r)

FRk
(r)

Figure C�
�

Cumulative distribution functions� FRj�r� and FRk�r�� for two stochastically ordered random vari�

ables� Rj and Rk� where Rj

st
� Rk� showing boundary points� � and �� of the unbroken interval

over which FRj�r� and FRk�r� di�er� �The functions are o�set slightly where they are equal��

interval de
ned via )R� then Qj

st
� Qk�

First� consider if �� �	 falls entirely within the same interval� say the �th interval�

�r��� r�%� In that case

r��� � � � � � r� �C���	

This is a trivial case� because the step function masses all of the probability of Rj and Rk

at the same point� namely at q � q�� Speci
cally� P �Qj � q�	 � P �Qk � q�	 � �� which

implies that Qj � Qk�

Second� consider the case where �� �	 falls across more than one interval de
ned via

)R� for example� the �th interval� �r��� r�%� so that

r��� � � � r� � �� �C���	

As before� FRj�r	 � FRk�r	 for all r � �� including for r � r���� In this case� however�

r� falls within �� �	� and so by the de
nition of �� �	� FRj�r�	 � FRk�r�	� By Equa�

tions C��� and C���� this implies that FQj�q�	 � FQk�q�	 holds for at least one value�

q� � *Q� Since FQj and FQk are right�continuous cumulative distribution functions� then
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FQj�q	 � FQk�q	 holds for all q � �q� q���	� which� along with Qj

st
� Qk �from Equa�

tion C���	� implies that Qj

st
� Qk�

These results show that whether or not Qj and Qk follow a strict stochastic ordering

depends on where the intervals of )R fall with respect to an interval over which FRj
and FRk

are di�erent�

The results can be extended to an arbitrary number of unbroken intervals� By Def�

inition �� if Rj

st
� Rk� then there must be at least one unbroken interval for which

FRj�r	 �� FRk�r	� such as �� �	� and in general� there may be more� Let the set of such

unbroken intervals be f��� ��	� ��� ��	� � � � g� The unbroken intervals are de
ned indepen�

dently of the partition intervals f � � � �r� r�%� �r� r�%� �r� r�% � � � g� because the unbroken

intervals result from the speci
c distributions of Rj and Rk� whereas the partition intervals

are de
ned by the partition )R�

When Rj

st
� Rk� Qj � Qk occurs if and only if both boundary points ��i and �i	 of each

and every unbroken interval lie entirely within a partition interval �but di�erent unbroken

intervals can lie within di�erent partition intervals	� That is to say� for every index value i

there is an index value � such that

��i �i	 � �r��� r�%

�i�e� that Equation C��� holds for each ��i �i	 	� If these conditions hold� then strict

stochastic ordering of Rj and Rk results in the non�strict stochastic ordering of Qj and Qk�

If� for any such unbroken interval� ��i �i	� there is a single value r� � )R �for any

index value �	 such that �i � r� � �i� then FQj�q�	 � FQk�q�	 over a non�zero interval�

�q� q���	� which implies that Qj

st
� Qk� rather than Qj

st

� Qk�

This completes the proof of Theorem ��

In summary� if Rj

st
� Rk� then �at worst	 Qj

st
� Qk holds and so

Rj

st
� Rk � Qj

st
� Qk �C���	

� E�Qj	 � E�Qk	� �C���	

Equation C��� follows from Equation C���� by applying Theorem � �modi
ed for non�strict

stochastic ordering according to Section C����	 to Qj and Qk�

If the partition )R is such that at least one value r� � )R falls within an unbroken
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interval ��i �i	� then

Rj

st
� Rk � Qj

st
� Qk �C���	

� E�Qj	 � E�Qk	 �C���	

where Equation C��� follows from Equation C��� by Theorem ��

Special cases� If Rj and Rk are such that FRj�r	 � FRk�r	 holds over the entire real

number line �for example if Rj and Rk were both Gaussian of equal variance but di�erent

means	� then Equations C��� and C��� must apply� Similar results hold for random

variables for which FRj�r	 � FRk�r	 applies over their entire mutual domain only �which

could just be a subset of R	� as long as )R and � involve a partition of the mutual domain

of Rj and Rk� When )R was 
rst de
ned �p� ���	� it was described as a partition of the

entire real number line� R� In order to apply Theorem � or any consequent corollaries�

)R need only be de
ned as a partition of the mutual domain of any R�variables that are

involved� If the entire mutual domain falls within a single partition interval de
ned by )R

�such as �r��� r�% 	� then all of the resultingQ�variables are singular because all probability

for each one is massed at a single point�

In practical terms� Theorem � shows that if Rj

st
� Rk� then the 
ner the partition� )R�

the less likely it is that Qj � Qk and the more likely it is that Qj

st
� Qk� For an entire

family of R�variables� as mentioned in Theorem �� the more variables there are in the

family� the less likely it would seem that a single partition applied to their mutual domain

would result in of all of the Q�variables being equal to each other�

Corollary �

Rj

st
� Rk � Qj

st
� Qk

� E�Qj	 � E�Qk	�

Theorem � holds for when the random variables� Rj and Rk� are strictly stochastically

ordered� Corollary � says that the same results apply when Rj and Rk follow non�strict

stochastic ordering �Rj

st
� Rk	� This can be seen by also considering when Rj � Rk� in

which case Qj � Qk and so E�Qj	 � E�Qk	� That� together with Theorem �� prove

Corollary ��

Corollary 	 Let Rj and Rk be any two random variables whose expectations exist and are

�nite� Let ��	 ��	 �� � � � be left�continuous	 monotonic increasing step functions	 where

�� is de�ned on the mutual domain of Rj and Rk	 �� is de�ned on the mutual domain of

���Rj	 and ���Rk		 �� is de�ned on the mutual domain of ������Rj		 and ������Rk			
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and so on� If either Rj

st
� Rk or Rj

st
� Rk	 then

E�� � ����������Rj			% � E�� � ����������Rk			%

if the expectations exist and are �nite�

Proof� Consider 
rst the case of just two transforms� �� and ��� Corollary � results

then from the application of Theorem � �if Rj

st
� Rk	 or Corollary � �if Rj

st
� Rk	� followed

by the application of Corollary � to the results� in either case� In the 
rst application

�using just ��	� where Rj and Rk may be strictly stochastically ordered� the resulting

variables� ���Rj	 and ���Rk	� are ordered� but are not necessarily strictly ordered� Again

from Corollary �� if ���Rj	
st
� ���Rk	 then ������Rj		

st
� ������Rk		� which implies that

E�������Rj		% � E�������Rk		%� By extension� and by repeated application of Corollary ��

any number of monotonic increasing step function transforms can be nested to produce the

desired result� Another way of viewing this is that a monotonic increasing step function of a

monotonic increasing step function �i�e� �
�r	 � ������r		 is itself a monotonic increasing

step function� The series can be extended to any number of step functions� �
�r	 �

� � ����������r		� Corollary � applied to Qj � �
�Rj	 and Qk � �
�Rk	 gives the desired

result�

Even if Rj

st
� Rk held to start with in Corollary � �rather than Rj

st
� Rk	� Equa�

tion C��� shows that strict ordering is not guaranteed to hold after the 
rst transform� ���

is applied� although it may hold� depending on the conditions outlined earlier in the proof

of Theorem �� In a series of nested transforms� � � ����������r		� applied to Rj and Rk

such that Rj

st
� Rk� once strict stochastic order has been lost in the series� it cannot be

recovered by further transformations�

Corollary 
 Assume there is a family of stochastically ordered R�variables	 R� R� R� � � � 	

in which any Rj may be either continuous	 discrete	 or mixed� Let �	 )R and *Q be

de�ned as for Theorem �	 and let Qj � ��Rj	 de�ne a family of discrete Q�variables	

Q� Q� Q� � � � If the R�variables are such that R�
st
� R�

st
� R�

st
� � � � 	 then the Q�variables

are such that Q�

st
� Q�

st
� Q�

st
� � � � Strict stochastic ordering of the Q�variables is possible	

but not guaranteed	 in accordance with the conditions given in Theorem ��

Corollary � follows from the repeated application of Theorem � �and Equation C��� in

particular	 to successive overlapping pairs ofR�variables �R� andR�� thenR� andR�� etc�	�

Note that the partition )R and the step function � are independent of the R�variables�

and hence are the same for all pairings Rj and Rk�
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Corollary � For a family of R�variables and Q�variables that are de�ned and stochas�

tically ordered as in Corollary �	 the ordering of the expected values of the Q�variables

follows the stochastic ordering of the R�variables	 if the expectations exist and are �nite	

so E�Q�	 � E�Q�	 � E�Q�	 � � � Strict numerical ordering of these expectations is possible	

but not guaranteed	 in accordance with the conditions given in Theorem ��

Corollary � follows from the repeated application of Theorem �� and Equation C��� in

particular� to successive overlapping pairs of R�variables �R� andR�� thenR� andR�� etc�	�

The premises in Corollaries � and �� that the sequence R�
st
� R�

st
� R�

st
� � � � involves

strict ordering� may be modi
ed according to Corollary �� So  
st
�! may be arbitrarily

replaced by  
st
�! in the premises about the R�variables without altering the conclusions

that Q�

st
� Q�

st
� Q�

st
� � � � and that E�Q�	 � E�Q�	 � E�Q�	 � � �

Summary

Theorem � and Corollaries �� � and �� about strict stochastic ordering following contin�

uous s�m�i� transforms of Y�variables have their respective equivalents in Theorem � and

Corollaries �� � and �� about non�strict stochastic ordering following monotonic increasing

step function transforms of R�variables�
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C� Summary

Section C�� showed that� ��	 a set of stochastically ordered random variables results in

a set of numerically ordered means� where the ordering of means follows the stochastic

ordering of the random variables� ��	 stochastic ordering is una�ected by s�m�i� transforms

of random variables� and ��	 the order of means of the transformed stochastically ordered

random variables follows the order of means of the original random variables� Theorem �

and the corollaries in Section C�� hold for strict stochastic ordering� and with modi
cation�

also to non�strict stochastic ordering�

Section C�� showed that s�m�i� transforms of a pair of random variables that are not

stochastically ordered results in new pair of random variables that are also not stochasti�

cally ordered� Given the original pair of random variables� it is always possible to invent

an s�m�i� transform that will put the means of the transformed random variables in either

order� or set them to equal each other� This is true� regardless of the order of the means

of the original random variables� �It is of particular interest in Chapter � to consider cases

when the order of means following the transform is opposite to that of the means prior to

the transform�	

Section C�� dealt with monotonic increasing step function transforms of stochastically

ordered random variables� A step function is associated with a partition of the real number

line� and the transform e�ectively masses the probability associated with each partition

interval onto a single value that lies in the range of the step function� Step function trans�

forms of stochastically ordered random variables maintain stochastic ordering� They may

preserve strict stochastic ordering� but unlike s�m�i� transforms� step function transforms

are not guaranteed to do so� Whether or not strict ordering is maintained depends on how

the points of discontinuity in the step function lie with respect to intervals over which

cumulative distribution functions di�er across random variables�

The relationships among the Y� R and Q�variables and their expectations may be

summarised as

Y�
st
� Y�

st
� � � � � R�

st
� R�

st
� � � � � Q�

st
� Q�

st
� � � �

� � �
E�Y�	 � E�Y�	 � � � � E�R�	 � E�R�	 � � � � E�Q�	 � E�Q�	 � � � �

where the arrows show the direction of implication� Note that the ordering of expected

values does not imply anything about stochastic ordering� nor does it imply anything

about about the expected values of any transformed random variables�

Once strict stochastic ordering has been lost due to partitioning� or transforming by a

step function� it cannot be recovered by further transformations� In practical terms� the


ner the partition )R� the less likely it is that strict stochastic ordering will be lost� and

the more likely it is that strict stochastic ordering will be maintained� This is of bene
t

when a strict ordering of transformed means is desirable�



Appendix D

Weighted sums across

stochastically ordered sets of

random variables

The aim of this appendix is to show that if there are multiple sets of stochastically ordered

random variables� where each set follows the same stochastic ordering� then weighted sums

of random variables taken across the sets are also stochastically ordered� The stochastic

ordering of the weighted sums is the same as the ordering within each of the sets� This

result is una�ected by any s�m�i� transforms that may be applied separately to each set�

The result is modi
ed when monotonic increasing step function transforms are applied

separately to each set� because strict stochastic ordering may be lost�

Like in Appendix C� the results in this appendix primarily deal with stochastic ordering

of random variables� but they can also be applied to sample sets of values� where each set

is sampled from a di�erent random variable� In that case� sample cumulative distribution

functions take the place of the cumulative distribution functions in the derivations and

results�

The material here follows on from the contents of Appendix C� and subsumes and

incorporates the results that are presented there� The notation and interpretation is

consistent with what is in Appendix C� but is extended here to cover multiple sets of

random variables� The results in this appendix are applied in Chapter � to the theory of

GOC analysis� particularly when it is extended to cover di�erent observers who may use

di�erent decision axes and may have di�erent transfer functions�

The main result in this appendix� Theorem �� is about weighted sums of stochastically

ordered random variables� the proof of which takes up most of Section D��� Section D��

presents corollaries that are general extentions to Theorem �� Section D�� extends the

results to include weighted sums of s�m�i��transformed random variables�

�
�
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D�� Weighted sums of stochastically ordered random vari�

ables

Let there be two sets of random variables� fU��� U��� U��� � � � g and fU��� U��� U��� � � � g�
two sets of x�values� fx��� x��� x��� � � � g and fx��� x��� x��� � � � g� and two types of mixture

processes� �� and ��� There are two groupings of variables� values and functions� each

of which is referred to as a division� In the context of GOC analysis� each division is

associated with an individual observer� where� for the same stimulus set� each observer

has his or her own decision axis� unique noise distributions and form of unique and common

noise mixing�

The U �variables may or may not be identically distributed� both within sets and across

divisions� The x�values are real�valued and are not random variables� although they may

be interpreted as sample values from some random variable �X	� The x�values are generally

di�erent from each other within a set� and may or may not be identical across divisions

�for the same index values	� The two mixture processes may or may not be the same as

each other�

Let fY��� Y��� Y��� � � � g and fY��� Y��� Y��� � � � g be two sets of Y�variables that are de�

rived from the x�values� U �variables and mixture processes according to

Y��� � x��� �� U��� �D��	

where � � � or � denotes the division� and � � � � � � � � denotes the index�value within

each set� The jth and the kth Y�variables for the 
rst division are Y��j � x��j �� U��j

and Y��k � x��k �� U��k� while those for the second division are Y��j � x��j �� U��j and

Y��k � x��k �� U��k� The Y�variables may or may not be identically distributed across

divisions for the same second index value �� They may also be identically distributed

within divisions� although they generally would not be� The Y�variables need not be

independent of each other either�

Theorem � Let a� and a� be any two positive constants� If Y��j
st
� Y��k and Y��j

st
� Y��k	

then �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	�

Proof� Let

�j � a�Y��j � a�Y��j �D��	
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be the jth weighted sum of random variables� where the summation is taken across divisions

for a 
xed set�index value� j� Similarly� let

�k � a�Y��k � a�Y��k

be the equivalent random variable for the set�index value k� The conclusion of Theorem �

is that �j

st
� �k�

The cumulative distribution function for �j is

Fj
�		 � P �a�Y��j � a�Y��j � 		 �D��	

� P

�
Y��j � �a�

a�
Y��j �

	

a�

�

�

Z
�

y���

Z
�
a�
a�

y� �
a�

y����
dFY��j

�y�	 dFY��j
�y	

�

Z
�

y���
FY��j

�
�a�
a�
y �

	

a�

�
dFY��j

�y	 �D��	

�
Z
�

y���
FY��k

�
�a�
a�
y �

	

a�

�
dFY��j

�y	 �D��	

�

�
FY��k

�
�a�
a�
y �

	

a�

�
FY��j

�y	

�
�

y���

�
Z
�

y���
FY��j

�y	 dFY��k

�
�a�
a�
y �

	

a�

�
�D��	

� ���� �	� ��� �	% �

Z
�

y���
FY��j

�y	 d

�
�FY��k

�
�a�
a�
y �

	

a�

��
�D��	

�

Z
�

y���
FY��j

�y	 dHY��k
�y	 �D��	

where

HY��k
�y	 � �FY��k

�
�a�
a�
y �

	

a�

�
�D��	

is a left�continuous� bounded� monotonic increasing function of y� It takes on values

between �� and � inclusive� and lim
y���

HY��k
�y	 � �� and lim

y��
HY��k

�y	 � �� Continuing
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from Equation D��� then

Fj
�		 �

Z
�

y���
FY��j

�y	 dHY��k
�y	 �D���	

�
Z
�

y���
FY��k

�y	 dHY��k
�y	 �D���	

�
h
FY��k

�y	HY��k
�y	
i
�

y���
�
Z
�

y���
HY��k

�y	 dFY��k
�y	 �D���	

� ���� �	� �����	% �
Z
�

y���
FY��k

�
�a�
a�
y �

	

a�

�
dFY��k

�y	 �D���	

� P �a�Y��k � a�Y��k � 		 �D���	

� Fk
�		�

This shows that Fj
�		 � Fk

�		 holds for all 	 � R� which implies that �j

st
� �k�

Equation D��� follows from Equation D��� by noting that Equation D��� is identical in

form to Equation D��� except that the subscript k has replaced the subscript j in both the

integrand and the integrator�� Working forwards from Equation D��� to Equation D���

is essentially the same as working backwards from Equation D�� to Equation D���

The function HY��k
�y	 was introduced in Equation D��� although it could also have

been used in Equations D�� and D��� Using HY��k
�y	 in place of �FY��k

�
�a�

a�
y � �

a�

�
is

not absolutely necessary� but it may help to show that Equations D�� and D�� are non�

negative in value� Let a � a�
a�

� � and b � �
a�
� for brevity of notation� Dropping the

limits� the subtraction of
R
FY��j

�y	 dFY��k
��ay � b	 in Equation D�� is equivalent to the

addition of
R
FY��j

�y	 d��FY��k
��ay� b		 in Equation D��� because the outer negative sign

may be carried through to the integrator� The sign of a Riemann�Stieltjes integral is

determined by the sign of the integrand and the directionality of the integrator� The

directionality refers to whether the integrator is monotonic increasing or monotonic de�

creasing� The integrand in Equations D�� and D��� FY��j
�y	� is a non�negative �sometimes

positive	 function and the directionality of the integrator� HY��k
�y	 � �FY��k

��ay � b	� is

also non�negative �sometimes positive	� This is because� by the properties of cumulative

distribution functions� FY��k
��ay � b	 is non�increasing �and sometimes decreasing	� and

so HY��k
�y	 is non�decreasing �and sometimes increasing	�

If the random variable associated with either the integrand or the integrator �or both	

in Equations D�� to D��� is continuous� then the integrand or integrator is a continuous

function� and since both the integrand and the integrator are monotonic and bounded�

�For a Riemann�Stieltjes integral of the form
R
F �y
 dG�y
� F �y
 is the integrand and G�y
 is the

integrator	
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then the Riemann�Stieltjes integrals involved are well�de
ned �Rudin� ����� Thms� ���

and ���	�

If all of the random variables involved in Theorem � are discrete� then both the inte�

grand and integrator functions are piecewise continuous� meaning they have discontinuities

in R� Nevertheless the proof of Theorem � uses well�de
ned Riemann�Stieltjes integrals�

If the integrand and the integrator functions were both only left�continuous or both only

right�continuous at shared points of discontinuity� then the upper and lower sums that �in

the limit	 de
ne the integral would have di�erent values �which is to say� the Riemann�

Stieltjes integral would not exist	� However� in the integrals used in Equations D�� through

to D���� one function is always left�continuous and the other is always right�continuous�

and so the integrals are well�de
ned� precisely because they share no common left and no

common right discontinuities �Burkill " Burkill� ����� Thm� ����	� This is also a necessary

condition in order for integration by parts to hold in Equations D�� and D��� �Burkill "

Burkill� ����� Thm� ����	�

Considering general continuous� discrete� or mixed random variables once again� the

inequality between Equations D�� and D�� holds because Y��j
st
� Y��k by assumption�

which is to say that FY��j
�y	 � FY��k

�y	 holds for all values of the argument� and so

FY��j
��ay � b	 � FY��k

��ay � b	 as well� The fact that the direction of the arguments�

of FY��j
and FY��k

in Equations D�� and D�� are opposite to the direction of the variable y

means only that the integrands are a non�increasing functions� not that they are negative�

valued� By de
nition� FY��j
and FY��k

are both non�negative �sometimes positive	 functions

that have positive value over non�zero intervals in R� If an inequality exists between Equa�

tions D�� and D��� then it must be in the direction indicated above� The same argument

can also be put forward for the inequality between Equations D��� and D���� because the

integrator� HY��k
�y	� is a monotonic increasing function and because FY��j

�y	 � FY��k
�y	�

Summary� Fj
�		 � Fk

�		 for all 	 � R� so �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	� What

remains to be shown is that a strict inequality� Fj
�		 � Fk

�		� holds for all values of 	

over some non�zero interval� implying that the weighted sums of random variables follow a

strict stochastic ordering� Conditions under which Fj
�		 � Fk

�		 are given below� which

lead to a description of conditions under which Fj
�		 � Fk

�		 holds�

Equality versus strict inequality between Equations D�� and D��

There may be values of 	 for which Fj
�		 � Fk

�		� In order for that to happen� then the

non�strict inequalities in Equations D�� and D��� must both be equalities� Equality would

occur in Equation D�� if Y��j � Y��k� and would occur in Equation D��� if Y��j � Y��k� but

�If arguments of c	d	f	�s have been dropped� then this implictly means that relationships are considered
for all possible values of the argument over a given domain� including a linear rescaling of the argument
�i	e	 �ay � b
	 If no domain is speci�ed� then the domain is implictly the entire real number line	
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these possibilities are excluded by assumption since Y��j
st
� Y��k and Y��j

st
� Y��k� However� it

is also possible that Equations D�� and D�� are equal� and that Equations D��� and D���

are equal� even when the integrands from one line to the next follow a strict inequality

over a non�zero interval� This can occur because the result of the integrals depend on the

integrator as well as the integrand�

Consider just the relationship between Equations D�� and D�� for any given value

of 	� FY��j
�y	 � FY��k

�y	 holds� by assumption� for y values over some non�zero interval�

regardless of the form of Y��j and Y��k� Consider a simpli
ed version of Equations D��

and D��� in which the strict inequality� FY��j
��ay � b	 � FY��k

��ay � b	� holds only over

a single interval of y values� denoted C� �where a � a�
a�

� � and b � �
a�
	� Let the

bounds of the interval be c� and c�� where c� � c� and where c� and c� could be 
nite

or in
nite� In that case� C� � �c� c�% if at least one of Y��j and Y��k is discrete� and

C� � �c� c�	 if both Y��j and Y��k are continuous� There is inclusion at the end of the

interval in the discrete case because� although FY��j
�y	 and FY��k

�y	 are right�continuous

functions� FY��j
��ay� b	 and FY��k

��ay� b	 in the integrals are left�continuous functions�

meaning the start of the interval C� is excluded while the end is included� If either

of Y��j or Y��k is a mixed random variable� then if the interval of y values over which

FY��j
��ay� b	 � FY��k

��ay� b	 ends with a discontinuity� then c� is included� otherwise it

is excluded� The complement to C� is denoted as C
� which is the union of intervals over

which y is such that FY��j
��ay�b	 � FY��k

��ay�b	� Since C� � C
 � R and C� � C
 � ��
then Equations D�� and D�� may be reformulated asZ

y�C��C


FY��j
��ay � b	 dFY��j

�y	 �
Z
y�C��C


FY��k
��ay � b	 dFY��j

�y	� �D���	

By de
nition� FY��j
��ay � b	 � FY��k

��ay � b	 for all y � C
� which implies thatZ
y�C


FY��j
��ay � b	 dFY��j

�y	 �

Z
y�C


FY��k
��ay � b	 dFY��j

�y	� �D���	

Subtracting the integrals in Equation D��� from those in Equation D��� leavesZ
y�C�

FY��j
��ay � b	 dFY��j

�y	 �
Z
y�C�

FY��k
��ay � b	 dFY��j

�y	� �D���	

The non�strict inequalities in Equations D��� and D��� hold in general� For any speci
c

case� however� the integrals in Equation D��� are either equal� or there is a strict�inequality

between them� Which of these two possibilities holds depends only on the integrals taken

over the interval C�� and not those taken over C
� This is because the integrals in

Equation D��� are always equal �by the de
nition of C
	�

Since FY��j
��ay � b	 � FY��k

��ay � b	 for all y � C�� then whether or not there is an

equality in Equation D��� does not depend on the integrands� FY��j
and FY��k

� Rather� it
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depends on the form of the integrator� FY��j
�y	� in the interval C�� �Note that the integrator

function remains the same throughout this development�	 The integrator� FY��j
�y	� is a

monotonic increasing function� and it either increases over the interval C� or it remains

at a constant value over all of C�� Each case is considered in turn�

If FY��j
�y	 is a constant for all y � C�� thenZ

y�C�

FY��j
��ay � b	 dFY��j

�y	 �

Z
y�C�

FY��k
��ay � b	 dFY��j

�y	

� � �D���	

�Clarke� ����� Thm� ��ii	� p� ���	� This implies that if the interval C� falls entirely

within an interval over which the integrator� FY��j
�y	� is constant� then there is equality

in Equation D���� which in turn implies equality in Equation D���� and hence equality

between Equations D�� and D�� for any given value of 	� �In such a case� the value that

Equations D�� and D�� take on depends on the value of Equation D���� which may be zero

or positive�	

On the other hand� if FY��j
�y	 is not a constant over the entire interval C�� then FY��j

�y	

increases within C�� This� and the fact that FY��j
��ay�b	 � FY��k

��ay�b	 for all y � C��

is su�cient forZ
y�C�

FY��j
��ay � b	 dFY��j

�y	 �

Z
y�C�

FY��k
��ay � b	 dFY��j

�y	 �D���	

to hold� as is shown below� Whenever Equation D��� holds� then there is a strict inequality

in Equation D���� and hence between Equations D�� and D���

If FY��j
�y	 increases in C�� then either it has at least one discontinuity with a positive

jump �change in function value	� or it has an increasing continuous section� or both� If

FY��j
�y	 increases continuously� in C�� then Equation D��� becomesZ

y�C�

FY��j
��ay � b	fY��j�y	 dy �

Z
y�C�

FY��k
��ay � b	fY��j�y	 dy �D���	

where f denotes a probability density function� which is non�negative� and must be

positive over the portion or portions of C� over which FY��j
�y	 is increasing� Since

FY��j
��ay � b	 � FY��k

��ay � b	 for all y � C�� then there is a strict inequality in Equa�

tion D���� and so Equation D��� holds for increasing FY��j
when Y��j is continuous�

If FY��j
�y	 has a discontinuity at y � c within C�� then the jump value is positive

and equals P �Y��j � c	 � �� The contribution from this jump to the left�hand side of

�FY��j�y
 may be increasing over all of C
� � �c�� c�
� or only over parts of C

�	 The result is the same
in either case	
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Equation D��� is

lim
��

FY��j
��ac� b	

�
FY��j

�c	� FY��j
�c� �	

�
� FY��j

��ac� b	P �Y��j � c	

� FY��k
��ac� b	P �Y��j � c	 �D���	

since FY��j
��ac � b	 � FY��k

��ac � b	 for any c � C�� Note that Equation D��� is the

contribution from the jump at c to the right�hand side of Equation D���� The same strict

inequality holds for any and all jumps in C�� and so Equation D��� holds for increasing

FY��j
when Y��j is discrete�

Equation D��� also holds for increasing FY��j
when Y��j is a mixed random variable� in

which case� the Riemann�Stieltjes integral in Equation D��� may be evaluated separately

for continuous sections and discontinuous jumps within C��

Summary� A derivation showing that �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	 was given� and

the existence of the Riemann�Stieltjes integrals in the derivation was discussed� particularly

for the discrete case� A non�strict inequality between Equations D�� and D�� holds in

general� but for any particular case� it is either a strict inequality� or just an equality� A

simpli
ed situation was introduced in which the integrands� FY��j
and FY��k

� are such that

FY��j
��ay � b	 � FY��k

��ay � b	 holds true over a single interval of y values� C�� In that

case� whether Equations D�� and D�� are equal in value or whether they follow a strict

inequality depends on the nature of the integrator� FY��j
�y	� over the interval C�� If the

integrator is constant over the entire interval C�� then Equations D�� and D�� are equal�

If the integrator increases somewhere in the interval C�� then there is a strict inequality

between Equations D�� and D�� for any given value of 	� This result holds regardless of

the form of the random variables involved�

Continuing with the proof� it remains to extend the results beyond the simpli
ed

situation� then to extend the results to also cover Equations D��� and D���� and 
nally to

show why �j

st
� �k rather than �j

st
� �k�

Generalising from the simpli�ed situation

The interval C� was originally de
ned �p� ���	 based on a simpli
ed situation where

FY��j
��ay � b	 � FY��k

��ay � b	 held only over single interval of y values� C�� In general�

there may be any number of such intervals� say C�

�
 C�

�
� etc� Like before� de
ne C
 to be

the complement in R of the union C�

�
�C�

�
� � � � Note that the integrals in Equations D��

to D���� taken from y � �� to�� may be restated as integrals over y � C
�C�

�
�C�

�
�� � �

It can be seen that Equation D��� still holds� by the de
nition of C
� This implies that

whether Equations D�� and D�� are equal or whether they follow a strict inequality is

determined by integrals like those in Equation D���� which are calculated separately over
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C�

�
 C�

�
 etc� For the �th such interval� the relationship to consider isZ

y�C�

�

FY��j
��ay � b	 dFY��j

�y	 �
Z
y�C�

�

FY��k
��ay � b	 dFY��j

�y	� �D���	

Like before� it is the form of the integrator� FY��j
�y	� over C�

� that determines the con�

tribution of Equation D��� to Equations D�� and D��� Across C� intervals� if FY��j
�y	

remains constant over C�

� for every ��� then there is an equality in Equation D��� for

every � �where the integrals are all equal to �� like in Equation D���	� In that case� there

is an equality between Equations D�� and D��� On the other hand� if there is even a

single interval� C�

� � for which FY��j
�y	 increases in C�

� � then there is a strict inequality

in Equation D���� which implies a strict inequality between Equations D�� and D��� and

hence Fj
�		 � Fk

�		 holds for the given value of 	�

The inequality between Equations D��� and D���

The emphasis so far has been on the relationship between Equations D�� and D��� Identical

arguments also hold for the relationship between Equations D��� and D���� The main

change in the proof for those equations has to do with the de
nition of C�� The integrands

in Equations D�� and D�� are left�continuous functions� so in the discrete case� C� �

�c� c�% included the upper cuto� in the interval C�� The integrands in Equations D���

and D��� are right�continuous functions� and hence� in the discrete case� C� � �c� c�	

should include the lower cuto� in the interval C�� �The de
nition of C� should also be

changed accordingly if the integrands are mixed random variables�	 Note that C� � �c� c�	

is still used in the continuous case and that the continuity or otherwise of the integrator

in Equations D��� and D��� does not a�ect the de
nition of C�� Equations analogous

to Equations D��� to D��� can be constructed based on Equations D��� and D��� rather

than on Equations D�� and D��� As before� any number of intervals C�

�
 C�

�
� � � can be

de
ned and if the integrator� HY��k
�y	� is constant over all such intervals� then there is an

equality between Equations D��� and D���� otherwise there is a strict inequality�

In order for Fj
�		 � Fk

�		 to hold for a given value of 	� only one of Equations D��

and D��� need have a strict inequality� while the other equation may have either an equality

or a strict inequality�� For this reason� Equations D��� and D��� are left for now� although

they are important later in Corollary ���

Strict inequalities over non�zero intervals

The e�ect of 	 in Equations D�� to D��� is to change the relative positions of the integrand

and the integrator functions� for example FY��k
and FY��j

respectively in Equation D��� The

�Although FY��j�y
 may take on a di�erent value for di�erent C
�

� 	
�The intervals over which there is a strict inequality between Equations D	� and D	� are not necessarily

the same as the intervals over which there is a strict inequality between Equations D	�� and D	��	
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scaling of the argument of FY��k
by the constants a� and a� does not matter here� only that

	 shifts the relative locations of the functions��

Although Fj
�		 � Fk

�		 may hold for some 	 �as shown earlier	� it cannot hold for

all 	� Consider Equations D�� and D��� As 	 systematically increases from ��� then the

monotonic decreasing integrands� FY��j

�
�a�

a�
y � �

a�

�
and FY��k

�
�a�

a�
y � �

a�

�
� systematically

shift together from left to right while the monotonic increasing integrator� FY��j
�y	� remains


xed in place �because 	 is not a parameter of the integrator	� As the integrands shift to

the right� so too does any non�zero interval of y values over which

FY��j

�
�a�
a�
y �

	

a�

�
� FY��k

�
�a�
a�
y �

	

a�

�
 �D���	

and there must be at least one such interval� because Y��j
st
� Y��k by assumption�

Equation D��� may be rearranged as

FY��j

�
�a�
a�

�y � �	

�
� FY��k

�
�a�
a�

�y � �	

�


where � � �
a�

is the horizontal shift of the integrand functions for a given parameter

value� 	� Choose any non�zero interval� D�



� �c� c�	� over which

FY��j

�
�a�
a�
y

�
� FY��k

�
�a�
a�
y

�
�D���	

holds for all y � �c� c�	 �where Equation D��� is Equation D��� when 	 � �	� Let

D�

� � �c�� � c�� �	 � �c�� �
a�
 c�� �

a�
	 be the horizontal translation of D�



� Although the

location of D�

� depends on 	� its length is always jD�

� j � c� � c�� which does not depend

on 	�

The integrator in Equations D�� and D��� FY��j
� must increase somewhere within R�

Choose any interval of increase� say I� � ��� ��%� where �� � �� � �� ��� and possibly

�� � �� if FY��j
�y	 is discontinuous at ��� For some small enough value� 	�� D

�

��
is all just

to the left of I�� The right�hand side of D�



is at y � c� and the left�hand side of I� is at

y � ��� To shift D�



so that its right�hand side matches the left�hand side of I�� then �

must be such that c��� � �� �i�e� � � ���c�	� and so 	� � a�� � a�����c�	� Similarly� for

some large enough value� 	�� D
�

��
is all just to the right of I�� The left�hand side of D�



is

at y � c� and the right�hand side of I� is at y � ��� To shift D�



so that its left�hand side

matches the right�hand side of I�� then � must be such that c� � � � �� �i�e� � � �� � c�	�

and so 	� � a�� � a���� � c�	�

As 	 systematically increases from 	� to 	�� the general interval� D�

� systematically

shifts right from D�

��
to D�

��
� and all the while� D�

� overlaps with I�� at least partly if

�The parameter 
 also does this implicitly in Equations D	�� and D	�� �which is made explicit by the
de�nition of HY��k

� given in Equation D	�
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not in full� From the de
nitions of D�

� and of I�� and from the argument given for

Equation D���� thenZ
y�D�

�
�I�

FY��j

�
�a�
a�
y �

	

a�

�
dFY��j

�y	 �

Z
y�D�

�
�I�

FY��k

�
�a�
a�
y �

	

a�

�
dFY��j

�y	 �D���	

holds for all 	 such that 	� � 	 � 	�� The length of this continuous interval of 	 values is

	� � 	� � a���� � c�	� a���� � c�	

� a� ���� � ��	 � �c� � c�		

� a�
�jI�j� ��D�

��

��� �D���	

� �

since
��D�

��

�� � c� � c� � �� a� � � and jI�j � �� � �� � �� In order to shift the general

interval D�

� from D�

��
to D�

��
� then D�

� must move across the width of I� plus the width

of D�

��
� which is what shown in Equation D����

The left and right�hand sides of Equation D��� contribute to Equations D�� and D��

respectively� Since the interval of integration in Equation D���� y � D�

� � I�� is a subset

of the interval of integration in Equations D�� and D��� then there is a strict inequality

between Equations D�� and D�� for any given 	 � �	� 	�	� This length of this interval is

	�� 	� � �� and therefore Fj
�		 � Fk

�		 holds over a non�zero interval of 	 values� Since

Fj
�		 � Fk

�		 holds for all 	 � R �Equations D�� through D���	� then �j

st
� �k� which

is to say that �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	� This completes the proof of Theorem ��

Q�E�D�

D�� Corollaries to Theorem 

Theorem � applies to when there are only two divisions� Hence the index � in Equation D��

was equal to either � or �� Theorem � can be easily extended to more than two divisions�

and to cover conditions involving non�strict stochastic ordering� Seven corollaries are

given� Corollaries ��� and �� extend the results of Theorem � to cover more general

situations where there are than two divisions and more than two Y�variables per division�

Corollary �� deals with the expected values of the weighted sums that result from this

extension of the theorem� Corollaries �� to �� deal with the e�ect that non�strict stochastic

ordering �within each division	 has on the strict stochastic ordering of the weighted sums

of Y�variables� In the corollaries� letm be the total number of divisions� wherem � � could

be 
nite or in
nite �trivially� m � � is also possible	� and let a�� a� � � � am be any positive

constants� Under this extension� say that the de
nition in Equation D�� still applies for

� � � � � � � m� Of course� if a� � � for all �� then any weighted sum of random variables
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becomes a plain sum� and if a� � �
m

for all �� then the weighted sum is an arithmetic

mean�

Corollary �� If Y��j
st
� Y��k for all � � � � � � � m	 then�� mX

���

a�Y��j

�A st
�

�� mX
���

a�Y��k

�A �D���	

holds for any m � ��

Proof by induction� Suppose that Y��j
st
� Y��k for all � � � � � � � m� For m � �� Equa�

tion D��� holds because �a�Y��j�a�Y��j	
st
� �a�Y��k�a�Y��k	� by Theorem �� By assumption�

Y����j
st
� Y����k holds for all � � � � � � � �m � �	� so if

P�
��� a�Y��j

st
�
P�

��� a�Y��k� is true�

then by Theorem ��
�
a���Y����j �

P�
��� a�Y��j

�
st
�
�
a���Y����k �

P�
��� a�Y��k

�
is also true�

which is to say that
�P���

��� a�Y��j

�
st
�
�P���

��� a�Y��k

�
is true� If Equation D��� holds for

m � �� then it also holds for m � � � �� and since Equation D��� holds for m � �� it

therefore holds for all m � � � � � � � which completes the proof�

Corollary �� If the Y�variables in each of m divisions form a strictly stochastically or�

dered set	 and the same ordering holds within each set	 then the weighted sums across

divisions follow the same ordering� Without loss of generality	 if Y���
st
� Y���

st
� � � � holds

for all divisions	 � � � � � � � m	 then�� mX
���

a�Y���

�A st
�

�� mX
���

a�Y���

�A st
�

�� mX
���

a�Y���

�A st
� � � � �D���	

Proof� In Equation D�� �p� ���	� the �th Y�variable in the �th division is Y���� where

� � � � � � � m denotes the division� and � � � � � � � � denotes the index�value within each

division� By assumption� the stochastic ordering within each division �ordered according

to the same second index values� �	 is the same for all divisions� Corollary �� follows

then from the application of Corollary �� to sets of Y�variables taken across divisions and

de
ned by successive overlapping pairs of � values �� and �� then � and �� � � � 	� where

each set of Y�variables consists of all m Y�variables� one per division� that share the same

second index value� ��

Note that Equations D��� and D��� are only guaranteed to hold if the stochastic

ordering is the same across divisions� If the stochastic ordering is di�erent across divisions�

or if there is no stochastic ordering within some divisions or within parts of some divisions�

then the equations may hold� but they do not necessarily hold�
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Corollary �� Without loss of generality	 if Y���
st
� Y���

st
� � � � holds for all divisions	

� � � � � � � m	 then

E

�� mX
���

a�Y���

�A � E

�� mX
���

a�Y���

�A � E

�� mX
���

a�Y���

�A � � � � �D���	

Corollary � in Appendix C showed that the stochastic ordering of a set of random vari�

ables results in the numerical ordering of their expected values� Corollary �� follows

from Corollary � applied to the weighted sums that result from Corollary �� �particularly

Equation D���	�

The next two corollaries are concerned with non�strict stochastic ordering between the

jth and the kth Y�variables in each of two divisions�

Corollary �� If Y��j
st
� Y��k and Y��j

st
� Y��k	 then �a�Y��j � a�Y��j	

st
� �a�Y��k � a�Y��k	�

Proof� This has already essentially be shown in the proof of Theorem �� In particular�

Equations D�� through to D��� showed that P �a�Y��j � a�Y��j � 		 � P �a�Y��k � a�Y��k � 		

for all values of 	� which is equivalent to showing that �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	�

Corollary �� If either �a Y��j
st
� Y��k and Y��j

st
� Y��k	 or �b Y��j

st
� Y��k and Y��j

st
� Y��k	

then �a�Y��j � a�Y��j	
st
� �a�Y��k � a�Y��k	�

Proof� The di�erence between Corollaries �� and �� is whether the resulting weighted

sums are strictly or non�strictly ordered� Since strict ordering implies non�strict ordering�

but not vice versa �Appendix C� p� ���	� then Equations D�� through to D��� �in the proof

of Theorem �	 still hold under either of conditions �a	 or �b	�

Under condition �a	� if Y��j
st
� Y��k� then either Y��j

st
� Y��k� or Y��j � Y��k� If Y��j

st
�

Y��k holds in condition �a	� then Corollary �� reduces to Theorem �� which proves the

conclusion in Corollary ��� If Y��j � Y��k holds in condition �a	� then FY��k
�y	 � FY��j

�y	 for

all y� which implies that the non�strict inequality in Equation D��� can be replaced by an

equality without a�ecting the rest of the proof of Theorem �� Since the rest of the proof

is una�ected� then the conclusion of Theorem � �with a strict ordering of weighted sums	

remains unchanged Hence� strict stochastic ordering of weighted sums occurs when Y��j �

Y��k as well as when Y��j
st
� Y��k �i�e� under condition �a	 in Corollary ��� Furthermore�

condition �b	 is merely a restatement of condition �a	� because the 
rst indices � � � and

� � � are arbitrary �i�e� it does not matter which division is labelled 
rst and which is

labelled second	� Hence� the same result applies as in condition �a	�

The results in Corollaries �� and �� can be extended to when there are more than two

divisions and� as before� it is a question of strict versus non�strict order in the result� An
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extension of Corollary �� is presented 
rst� so it can be used to demonstrate the extension

to Corollary ���

Corollary �� Assume there are m � � divisions	 and that non�strict ordering Y��j
st
� Y��k

holds for all � � � � � � � m� If Y��j
st
� Y��k also holds for at least one value � � f� � � � � mg

�i�e� there is strict ordering in at least one division�	 then
�Pm

��� a�Y��j

�
st
�
�Pm

��� a�Y��k

�
�Equation D���� holds�

Proof by induction� Without loss of generality� assume that strict stochastic order�

ing occurs between the jth and kth Y�variables in the 
rst division �� � �	� that is

Y��j
st
� Y��k� For all of the other divisions �� � � � � � m	 Y��j

st
� Y��k holds� and possi�

bly Y��j
st
� Y��k� For the second division�

�P�
��� a�Y��j

�
st
�
�P�

��� a�Y��k

�
holds� either

by Theorem � �if Y��j
st
� Y��k	 or by Corollary �� �if Y��j

st
� Y��k	� This shows that

Equation D��� holds for m � � divisions� By assumption� Y����j
st
� Y����k holds for all

� � � � � � � �m � �	� so if
�P�

��� a�Y��j

�
st
�
�P�

��� a�Y��k

�
is true� then by Corollary ����

a���Y����j �
P�

��� a�Y��j

�
st
�
�
a���Y����k �

P�
��� a�Y��k

�
is also true� which is to say that�P���

��� a�Y��j

�
st
�
�P���

��� a�Y��k

�
is true� This implies that if Equation D��� holds for

m � �� then it also holds for m � � � �� and since Equation D��� holds for m � ��

it therefore holds for all m � � � � � � � This completes the proof�

Assuming non�strict stochastic ordering between the jth and kth Y�variables for each

division� Corollary �� shows that if there is even one division which also has strict stochas�

tic ordering� then the stochastic ordering of the weighted sum across all divisions is also

strict� This holds true regardless of whether the ordering is strict or non�strict in the rest

of the divisions� It also holds if Y��j � Y��k holds for some divisions since Y��j � Y��k implies

Y��j
st
� Y��k�

Corollary �� Assume there arem � � divisions	 and Y��j
st
� Y��k holds for all � � � � � � � m�

The weighted sums	
�Pm

��� a�Y��j

�
and

�Pm
��� a�Y��k

�
	 in Equation D��� only follow a

non�strict stochastic ordering if the j�versus�k pairwise stochastic ordering is non�strict in

all of the contributing divisions� Since Y��j
st
� Y��k holds for all �	 then the weighted sums

follow the non�strict ordering�� mX
���

a�Y��j

�A st
�

�� mX
���

a�Y��k

�A �D���	

only if Y��j
st
� Y��k does not hold for any of the divisions	 � � � � � � � m�

Corollary �� is the complement of Corollary ��� Corollary �� follows from repeated
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application of Corollary �� to an increasing sum for each of the jth and kth Y�variables�

along the same lines as in the proof of Corollary ��� Y��j
st
� Y��k holds for all � and if at

any point� as Y�variables from more divisions are combined� there is even one division for

which Y��j
st
� Y��k holds� then Equation D��� holds� otherwise Equation D��� holds�

Corollaries �� and �� imply that the stochastic ordering of a sequence of weighted

sums of random variables �Equation D���	 and the numeric ordering of their associated

expected values �Equation D���	 hold for any arbitrary combination of strict and non�

strict inequalities in the ordering sequence� This result holds� subject to the conditions

given in Corollaries �� and ��� if the ordering sequence is the same for all of the divisions

involved� For any given successive pair of second index values� � and � � � �� and ��

� and �� � � � 	� the division with strict ordering does not have to be the same for di�erent �

values� This implies that Equation D��� may hold even when there is no single division

that has strict stochastic ordering among all of its Y�variables�

D�� E�ect of transforms on weighted sums of stochastically

ordered random variables

The results presented so far in this appendix deal with properties of weighted sums of

Y�variables� as de
ned for each division on p� ���� This section deals with the weighted

sums of s�m�i� transforms� and monotonic increasing step function transforms� of stochasti�

cally ordered random variables� In keeping with the notation in Chapter � and Appendix C�

Y�variables are transformed into R�variables by using s�m�i� transforms� and R�variables

are transformed into Q�variables by using step function transforms�

Strictly monotonic increasing transforms

Suppose that there are m � � divisions and that there is an s�m�i� transform for each

division� Speci
cally� let h� be the s�m�i� transform for the �th division� The h transforms

may be the same or may be di�erent across divisions� Let

R��� � h��Y���	

� h��x��� �� U���	  �D���	

which de
nes a set of R�variables for each division� For the �th division� the set is

fR��� R��� R��� � � � g� By Corollary � in Appendix C� if the underlying set of Y�variables is

a stochastically ordered set� then so is the set of R�variables� and the stochastic ordering

is the same for both sets� By Corollary �� the ordering of the expected values of the

R�variables within each division follows that of the expected values of the Y�variables�

Stochastic ordering of Y�variables may or may not exist within each division and even



D� Weighted sums across stochastically ordered sets of random variables ���

if it does� it may or may not be the same across divisions� If such stochastic ordering

does exist within each division and it is the same across all divisions� then the stochastic

ordering of the R�variables within each division is also the same across all divisions and

follows that of the Y�variables� Furthermore� Theorem � and Corollaries �� to �� can

also be applied to the R�variables �as well as to the Y�variables	� which implies that any

weighted sums of R�variables will also follow the same stochastic ordering as that of the

underlying Y�variables� If there are m divisions� and if Y���
st
� Y���

st
� � � � holds for all

divisions� � � � � � � � m� then R���

st
� R���

st
� � � � also holds for all divisions� and�� mX

���

a�R���

�A st
�

�� mX
���

a�R���

�A st
�

�� mX
���

a�R���

�A st
� � � � �D���	

and

E

�� mX
���

a�R���

�A � E

�� mX
���

a�R���

�A � E

�� mX
���

a�R���

�A � � � � �D���	

hold� by Corollaries �� and ��� respectively�

The weighting constants� a�� a�� a� � � � � for the R�variables need not be the same as the

weighting constants� a�� a�� a� � � � � for the Y�variables in order for this to hold� although

they could be�

Monotonic increasing step function transforms

Assume there are m � � divisions and that there is a monotonic increasing step function

transform for each division that may be applied to the R�variables� as described for a

single division in Section C�� in Appendix C� Speci
cally� let �� be the transform for the

�th division� The � transforms may be the same or may be di�erent across divisions� Let

Q��� � ���R���	  �D���	

where R��� is as de
ned in Equation D���� Equation D��� de
nes a set of Q�variables for

each division� For the �th division� the set is fQ��� Q��� Q��� � � � g� and the results presented

in Section C�� apply here to each division� If the �th division has a strictly stochastically

ordered set of Y�variables� then the related Q�variables also form a stochastically ordered

set� although the ordering is not necessarily always strict �Corollary � in Appendix C has

further details	� In other words� if Y���
st
� Y���

st
� � � � holds then Q���

st
� Q���

st
� � � � holds�

by Corollary � �via intermediate R�variables	� Furthermore� if Y���
st
� Y���

st
� � � � holds for
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all divisions� � � � � � � � m� then the Q�variables are such that�� mX
���

a�Q���

�A st
�

�� mX
���

a�Q���

�A st
�

�� mX
���

a�Q���

�A st
� � � � �D���	

is guaranteed to hold� Equation D��� follows from Corollary �� being applied to the Q�

variables based on successive overlapping pairs of the second index value� � �i�e� � and ��

then � and �� � � � 	� Consequently�

E

�� mX
���

a�Q���

�A � E

�� mX
���

a�Q���

�A � E

�� mX
���

a�Q���

�A � � � � �D���	

Strict stochastic ordering may or may not apply between each weighted sum in Equa�

tion D���� depending on conditions within each division �Section C�� in Appendix C	 and

also across divisions �from Corollaries �� and �� applied to sets of Q�variables instead of

Y�variables	�

The weighting constants a��a��a�� � � � for the Q�variables need not be the same as those

for the R�variables or those for the Y�variables� although they could be�

D� Summary

The primary result derived in this appendix was Theorem �� which showed that given

two stochastically ordered sets �divisions	 of random variables� each of which has the

same ordering� then weighted sums of random variables taken across divisions are also

stochastically ordered� Although this may seem an intuitive result� the proof of it was

quite involved� The theorem is a very general result� It applies to stochastically ordered

random variables� regardless of whether they are continuous� discrete or mixed� regardless

of their speci
c distributional forms� and regardless of assumptions about correlations or

independence among the random variables� Special cases covered by weighted sums of

random variables include plain sums and arithmetic means�

Section D�� presented corollaries to Theorem �� that extended the general results of the

theorem to weighted sums taken over an arbitrary number of divisions� and when there are

an arbitrary number of random variables per division� The general weighted sums follow

the same stochastic ordering that holds within each division� and the expected values of

the weighted sums follow a similar �numerical	 ordering� Conditions under which either

strict or non�strict ordering of weighted sums occurred were given� It was shown that if

any strictly ordered pair of random variables contributes to a pair of weighted sums of

�strictly or non�strictly	 stochastically ordered random variables� then the pair of weighted

sums must also be strictly ordered�
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Section D�� showed how Theorem � and its corollaries applied to weighted sums of

s�m�i��transformed stochastically ordered random variables� The results held� even if the

s�m�i��transform was di�erent for each division� Section D�� also showed that stochas�

tic ordering held for weighted sums of step function transforms of stochastically ordered

random variables�



Appendix E

Non�linear least�squares regression

of the FORA

The following is a development of the least�squares regression of FORA equations of the

form of Equation ��� �p� ���	� Below� yi denotes the ith point on an empirical FORA

�i�e� the average empirical measure value for a combination�size of i	� and Ai denotes the

regression estimate of yi� Although the equations are developed with A as the measure

in mind �hence the use of A� as a mnemonic	� they could be derived from any measure

of sensitivity� Anywhere that A may appear below� it can be replaced by the measure of

interest�

Given a set of data from m replications� let

y� � the 
rst mean�A value

y� � y� � ��

y� � y� � �� � ��
���

ym � y� �

mX
j��

�j 

where ��� �� � � � denote successive increments in the empirical FORA� Suppose that

�j � 
j	 for some empirical constants 
 and �� The constraint 
 � � is desirable in

order for the predicted values of A to increase as the number of replications increases�

Furthermore� � � �� is also desirable so that the regression series is constrained to

converge as m tends to �� particularly for measures of performance such as A that are

constrained to take on 
nite values�

���
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According to Equation ���� the predicted values are

by� � A�by� � A� � 
�	by� � A� � 
�	 � 
�	

���bym � A� � 
�	 � 
�	 � � � �� 
m	�

In general� the predicted value of the FORA after i replications is

by i � A� � 

iX

j��

j	 i � ��

Fitting a regression model of this form means that

yi � by i � be i
�

������
A� � be � i � �

A� � 


iX
j��

j	 � be i i � �

where

be i �

������
y� �A� i � �

yi �
��A� � 


iX
j��

j	

�A i � ��
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Applying a least�squares criterion to 
t such a regression function to an empirical

FORA involves 
nding values A�� 
 and � �
 � � � � ��	 that minimise the total

squared error�
Pm

i�� be �i � The total squared error is

mX
i��

be �i � �y� �A�	
� �

mX
i��

��yi �
��A� � 


iX
j��

j	

�A�A�

� y�� � �A�y� �A�
� �

mX
i��

y�i � �
mX
i��

yi

��A� � 

iX

j��

j	

�A� � � �

� � ��
mX
i��

��A�
� � �A�


iX
j��

j	 � 
�

�� iX
j��

j	

�A��A
�

mX
i��

y�i � �A�

mX
i��

yi �

mX
i��

A�
� � �


mX
i��

yi

iX
j��

j	 � � � �

� � �� �A�


mX
i��

iX
j��

j	 � 
�
mX
i��

�� iX
j��

j	

�A� � �E��	

Note that equal weighting is given to all of the data points� yi� If unequal weightings were

appropriate instead�� then they should be applied to Equation E�� at this point�

Equation E�� is a function de
ned in a ��dimensional parameter space in which the

data values� yi� are 
xed� and A�� 
 and � vary� The global minimum of the value of

Equation E�� is found somewhere in this parameter space� but where it lies is not clear�

The next step is to 
nd equations for the mimimum taken with respect of each of the

three variables� This means working out the partial derivatives of
Pm

i�� be �i with respect

to 
� � and A� in turn� setting each to zero� simplifying if possible and solving for 
� �

and A� respectively� First with respect to 
� from Equation E�� it can be seen that

�

�


mX
i��

be �i � ��
mX
i��

yi

iX
j��

j	 � �A�

mX
i��

iX
j��

j	 � �


mX
i��

�� iX
j��

j	

�A� � �E��	

Setting this to zero� dividing by �� and collecting terms gives

mX
i��

�yi �A�	
iX

j��

j	 � 

mX
i��

�� iX
j��

j	

�A� � �E��	

�Possibly to compensate for statistical factors that may a�ect FORA regression� as was discussed in
Section 	�	�	
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Similarly from Equation E��� di�erentiating the total squared�error with respect to � gives

�

��

mX
i��

be �i � ��

mX
i��

yi

iX
j��

j	 ln�j	 � �A�

mX
i��

iX
j��

j	 ln�j	 � � � �

� � �� �
�
mX
i��

�� iX
j��

j	

�A�� iX
j��

j	 ln�j	

�A � �E��	

Setting this to zero� dividing by ��
 and collecting terms gives

mX
i��

�yi �A�	
iX

j��

j	 ln�j	 � 

mX
i��

�� iX
j��

j	

�A�� iX
j��

j	 ln�j	

�A � �E��	

Di�erentiating Equation E�� with respect to A� gives

�

�A�

mX
i��

be �i � ��
mX
i��

yi � �

mX
i��

A� � �


mX
i��

iX
j��

j	� �E��	

Setting this to zero and dividing by �� gives

mX
i��

�yi �A�	 � 


mX
i��

iX
j��

j	� �E��	

In order to 
nd a minimum� Equations E��� E�� and E�� need to be solved simultane�

ously for A�� 
 and �� Finding such a point does not guarantee that the point found is in

fact a minimum� Whether it is a minimum or not could be found by deriving second order

partial�derivatives� which are not presented here� It is preferable that all of the second

order partial�derivatives of Equation E�� are positive� because that would guarantee that

the triplet �A� 
 �	 was a minimum �Courant� ����	� However� this is not necessarily the

case� A quick check shows that all of the second order partial�derivatives are guaranteed

to be positive except for ��

�
�	

mX
i��

be �i �where ��

�
�	
� ��

�	�

	� and ��

�	�

mX
i��

be �i � Whether these

latter derivatives are positive or otherwise depends on the data points� yi� and the pa�

rameter triplet� Pragmatically� Equations E��� E�� and E�� can be solved simultaneously�

and the result used nevertheless� From the data sets analysed in Chapters �� � and ��

this approach seems su�cient to achieve good 
ts to empirical FORAs� indicating that a

minimum is found rather than a maximum�
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Note the expression �yi � A�	 in the left�hand sides of Equations E��� E�� and E�� is

what 

Pi

j�� j
	 �for � � i � m	 approximates� namely the increments in performance�

If the data points are exactly of the form in Equation ���� then the left�hand sides of

Equations E��� E�� and E�� are exactly equal to the right�hand sides of the same equations

and� the sum of the squared residuals in Equation E�� is zero�

Assuming that a particular parameter triplet �A� 
 �	 results in a minimum� then

Equation E�� will equal zero and Equation E�� will hold� If so� then this gives a simple

expression for A� in terms of only 
� �� and the data points� yi� A rearrangement of

Equation E�� gives�

mX
i��

A� �
mX
i��

yi � 

mX
i��

iX
j��

j	

� y� �

mX
i��

��yi � 


iX
j��

j	

�A 

which implies that

A� �
�

m

��y� � mX
i��

��yi � 


iX
j��

j	

�A�A � �E��	

It can be seen that if the log�log�plot is exactly linear and Equation ��� holds exactly� then

Equation E�� reduces to

A� �
�

m

��y� � mX
i��

��yi � iX
j��

�j

�A�A
�

�

m

�
y� �

mX
i��

y�

	

� y�� �E��	

Similarly� expressions for 
 in terms of only A�� �� and the data points� yi� can be

derived from Equations E��� E�� and E��� The three expressions �which are not given

here	 are all di�erent and not as simple as Equation E��� There does not seem to be an

obvious simpli
cation that gives an expression for ��

�Note the lower limits in the sums across i	



Appendix F

Computational aspects of all

combinations analysis

Some of the computational details of all combinations analysis and of FORA regression

are described here� Much of this material relates to a computer program called Pctrial�

which was written to perform various analyses described in this thesis� It was developed

primarily for ACA� for calculating FORAs and estimating FORA asymptotes� Code for

calculating mean ROC curves� transform�average GOC curves and transfer functions was

also integrated into the program�

The Pctrial computer program� Pctrial performs ACA� computes an empirical

FORA for each of the measuresA� d�� D� and P �C	� and estimates asymptotic performance

for each measure� It can also run multiple random resamplings of sets of replications from

a larger data set� calculate FORAs and asymptotes and collate results across resamplings�

as reported in Section ����

Pctrial was written in Borland Pascal ��� using the ���bit Borland IDE �the program

development environment	� and operates as a DOS protected mode program on an IBM�

compatible personal computer� It made use of two code units developed by Linton Miller

called BigArrays and PPMDump� BigArrays allowed circumvention of the Borland

Compiler�s �� kilobyte limitations� PPMDump saved graphics screens to 
le� Pctrial is

not general�purpose� A moderate amount of redevelopment and dedicated code is needed

for each new data set and the program is dependent on the Borland libraries�

Miller �����# cited in Lapsley Miller� ����	 independently wrote his own ACA program�

It was written in C and implemented on Unix systems� Results from Miller�s program

cross�checked successfully against results from Pctrial� Most of the experimental FORAs

reported in detail in Chapters �� � and � were calculated using Pctrial� except those in

Section ��� which came from Miller�s program�

���
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GOC analysis� The transform�average GOC curves presented in Chapter � were cal�

culated using the generalised GOC algorithm described in Section ������ This was im�

plemented in Pctrial using an insert�sort algorithm �Aho� Hopcroft� " Ullman� ����	�

Apart from the transform�average GOC curves� and the use of arithmetic mean ratings

in Chapter �� all other GOC analyses in this thesis� including the FORAs in Chapters �

to �� were computed using sums of integer ratings under the conventional GOC algorithm

outlined in Section ������ This was primarily because of speed� Pctrial calculated GOC

curves using an index�sort algorithm �or bin�sort# Aho et al�� ����	 using sums of integer�

ratings as the sorting�key� Index�sorting is the fastest type of sorting algorithm� requiring

only O�n	 steps to sort a set of size n� The restriction on using an index�sort is that the

sorting�key must be integer�valued� since array indices are integer�valued� The computa�

tion time required to obtain any single GOC curve� such as the GOC curve in Figure ����

is negligible under either GOC algorithm �Section �����	� If millions of GOC curves are

calculated� as was the case in Chapters �� � and �� then the computation time per GOC

curve is important�

Calculation of A� Some measures of sensitivity� including A� can be calculated for a

GOC or ROC curve without calculating the curve itself� As noted in Sections ��� and ������

empirical ROC and GOC curves can be calculated by cumulating tallies of the number

of times each rating or sum�of�ratings occurred� The cumulative tallies are divided by

the number of stimuli per event in order to derive empirical hit and false alarm rates�

If the aim of data analysis is to work out the area under the curve� but not the curve

itself� much computing time can be saved because hit and false alarm rates do not need

to be calculated explicitly� In Borland Pascal at least� it is several times faster to perform

arithmetic on integer�typed variables than on �oating�point variables� For speed� Pctrial

used integer additions and multiplications to arrive at an integer�valued� scaled version

of A� Ic� The area under the curve was then given by A � Ic���nSNnN	� where nSN and nN

are the number of stimuli per event for the SN and N events respectively�� The e�ciency

in calculating A also has bene
ts for calculating d� and D� when the latter measures are

derived as transforms of A�

All combinations analysis� There is a major redundancy in ACA that can be used to

substantially reduce computation time� The redundancy has to do with calculating GOC

measures by using complementary combinations� It was 
rst mentioned with respect to

partial�ACA in Section ������ and is illustrated here by means of an example�

Assume m � � replications were run in an experiment and these are numbered from �

to �� GOC analysis requires calculating the sum�of�ratings� for each stimulus for each

�Ic is similar to� but not necessarily identical to� twice the Mann�Whitney U statistic �Bamber� ����
	
The potential discrepancy between the two values has to do with tied rating values	

�The description here is in terms of sums of raw ratings� but could apply equally well to sums or averages
of transformed ratings in transform�averaged GOC analysis	
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complementary

combinations of size � combinations of size �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� �

� �

� �

� � � � � �

� � � � � �

Table F��� A list showing combinations of size 
 taken from the set of integers from � to �
along with their complementary combinations of size �� The combinations of size 
 are in lex�
icographic order� while their complementary combinations are in reverse lexicographic order�

combination of replications taken from the data set� Assume that GOC curves for all

combinations of size � � � are calculated� Table F�� lists combinations of size � in lexico�

graphic order� Each subset of size � has a complementary set composed of the � remaining

replications� Note that the list of complementary combinations is an exhaustive list of

combinations of size �� which is given in reverse�lexicographic order� The general rule is

that each possible combination of size � taken from a set of size m is complementary to a

combination of size m� ��

The only exception to the general rule is when � equals the total number of replica�

tions�m� in which case there is only � combination �the set of all integers from � to m	 and

it has no complement� There is only one GOC curve of combination�size m and it requires

that the total m�replication sum of ratings per stimulus be calculated for all stimuli� In

Pctrial� the sums for this particular GOC curve are calculated 
rst and stored in an

array before the rest of the ACA is done� The sum of ratings per stimulus for a comple�

mentary combination of size m�� is equal to the total sum of ratings per stimulus �stored

in the array	 minus the sum of ratings for the combination of size �� For the example in

Table F��� given the sum for all � replications� if the sum for a combination of size � is

calculated� then the sum for a combination of size � can be calculated by performing one

subtraction rather than � additions� This is a saving of two arithmetic operations at the

expense of extra storage of the six�replication sums� The saving is small when m is small�

but for larger values �such as m � �� for Taylor et al��s �����	 experiment in Chapter �	�

the savings are considerable� The end result is that sensitivity measures for two GOC
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rst half of the complementary

combinations of size � combinations of size �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Table F��� All combinations of size � taken from a set of integers from � to � The �rst ��
combinations are shown in the left�hand column� while their complementary combinations are
shown in the right�hand column�

curves can be calculated at a time rather than just one� It is important to remember that

the summation and subtraction is done on a per stimulus basis�

There is a special case when m is an even number and � � m
� � Table F�� shows a

listing of all combinations of size � taken from a set of size �� The 
rst column gives

the 
rst �� out of �C� � �� combinations in lexicographic order� The second column

lists complementary combinations� which are the second �� out of �� combinations given

in reverse�lexicographic order� As before� sums�of�ratings from combinations in the 
rst

column are subtracted from rating total�sums to give the sums for the second column�

This results in a saving when m is even �there is no special saving to be had if m is odd	�

Other e�ciencies in ACA� Complementary combinations aside� other e�ciencies are

possible when computing ACA� In ACA� all combinations of replications must be cal�

culated� usually one at a time in lexicographic order� Much running time can be saved

when a sum�of�ratings from a previous combination can be reused to calculate the sum�

of�ratings for a subsequent combination� There are many ways to do this� but Miller

������ personal communication	 recommends dynamic programming methods for reasons

of e�ciency �and hence speed	�
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Computing FORA regression parameters� As described in Sections ����� and ����

the non�linear least�squares FORA regression of the form of Equation ��� requires 
nding

a parameter triplet �A� 
 �	 that minimises the sum of the squared residuals� which is

achieved by simultaneously solving Equations E��� E�� and E�� given in Appendix E� The

simultaneous solution was achieved in Pctrial by implementing a minimization search

routine called the Variable Metric Method� which is described in Nash ������ Chpt� ��	�

The algorithm uses a mixture of gradient descent and linear search methods� and generally

executes very quickly�

The Variable Metric Method provides only one particular method for solving for ex�

trema� Other algorithms may converge on slightly di�erent solutions for the same data set�

which would result in somewhat di�erent estimated asymptote values� Results may also

depend on the programming language and compiler� and on the �oating�point precision

that is used�

Computing the Riemann zeta function� Once a parameter triplet� �A� 
 �	� has

been found via the Variable Metric Method� it remains to calculate the asymptote� The

asymptote is given in Equation ��� as A� � A��
 �����	� �	� where ��x	 is the Riemann

zeta function� This function has two series expansions which are

��x	 �

�X
j��

j �x x � � �F��	

�
�

�� ���x

�X
j��

���	j��j �x �F��	

�Gradshteyn " Ryzhik� ����� Equations ����� ��	 and ��		� Equation ��� �which states

that A� � A��

P
�

j�� j
		 uses the series in Equation F�� to calculate A� by substituting

�� for x in the argument� where the condition x � � equates to � � ��� The 
rst term

in the series in Equation F�� is always equal to �� which is not part of the series in

Equation ���� and therefore � is subtracted from ����	 in Equation ����

The series terms in Equation F�� are positive� hence the partial sums of the series

approach the asymptote from below� This makes it hard to tell how close any 
nite partial

sum is to the asymptote� The terms in Equation F�� are of alternating sign� and the partial

sums oscillate around the asymptote� The absolute di�erence between the asymptote and

the partial sums of Equation F�� decreases as more terms are added� Together with the

alternating sign of the terms� this means that the asymptote can be approached to any

desired tolerance �which was set to � � ���� in Pctrial	� Furthermore� Equation F��

converges more quickly than Equation F�� and using Equation F�� to calculate A� makes

it possible to work out in advance the number of terms required to achieve a given accuracy�

For a given number of terms� it is even more accurate to take the average of the last two

partial sums in the series� because one of these terms is always above the asymptote while

the other is always below� so that their average is better than either term individually�



Appendix G

FORA values and regression

parameters

Tables of FORA values and regression parameters for the various data sets presented

in Chapters �� � and � are given here� The contents of each table depends on what

is covered in the main text� Each table gives values for the 
rst and last points on each

FORA� regression parameter values A�� 
 and � and the asymptote based on these values��

Theoretical performance values are given where known� The square of the correlation

coe�cient� r�� is also given� All values of D� are expressed in bits �units of information	�

�A� represents the value of the �rst point on a regression�FORA for any measure of sensitivity� either
A� d�� D� or P �C
� as appropriate	

���



G� FORA values and regression parameters ���

G
O
C

G
O
C

R
eg
re
ss
io
n
p
ar
am
et
er
s

lo
g�
lo
g

M
ea
su
re

�
�
�

�
�
��

A
sy
m
p
�

T
h
eo
ry

A
�




�

r�

A

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

d
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

D �

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

P
�C
	

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

T
a
b
l
e
G
��
�

F
O
R
A
va
lu
es
a
n
d
re
g
re
ss
io
n
p
a
ra
m
et
er
s
fo
r
fo
u
r
m
ea
su
re
s
o
f
se
n
si
ti
v
it
y
fo
r
T
ay
lo
r
et
a
l�
�s
��
	
	
�
�
co
n
ti
n
u
o
u
s
ra
ti
n
g
sc
a
le
ex
p
er
im
en
t

p
re
se
n
te
d
in
C
h
a
p
te
r

�
C
o
m
b
in
a
ti
o
n
�s
iz
es
	
�
�
a
n
d


�
a
re
th
e
�
rs
t
a
n
d
la
st
p
o
in
ts
o
n
th
e
F
O
R
A
�
re
sp
ec
ti
v
el
y�
E
st
im
a
te
d
a
sy
m
p
to
te
s
a
re

b
a
se
d
o
n
th
e
g
iv
en
va
lu
es
o
f
th
e
re
g
re
ss
io
n
p
a
ra
m
et
er
s�
A
�
�


a
n
d
�
�
a
n
d
r�
is
th
e
sq
u
a
re
o
f
th
e
co
rr
el
a
ti
o
n
co
e 
ci
en
t
fo
r
ea
ch
m
ea
su
re
�
T
h
e

th
eo
re
ti
ca
l
va
lu
e
fo
r
ea
ch
m
ea
su
re
is
a
ls
o
g
iv
en
�



G� FORA values and regression parameters ���

R
ep
li
ca
ti
on

N
o�
of

A
ve
�
A
A
ve
�
A

R
eg
re
ss
io
n
p
ar
am
et
er
s

lo
g�
lo
g

O
b
se
rv
er

se
t

F
ig
u
re

re
p
s
�m
	

�
�
�

�
�
m

A
sy
m
p
�

A
�




�

r�

�

A
ll

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

�s
t
��

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

�n
d
��

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

�r
d
��

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�
"
�

��
ea
ch
�

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A
ll
�

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�



�

A
ll
�

��
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

T
a
b
l
e

G
��
�

F
O
R
A
va
lu
es
a
n
d
re
g
re
ss
io
n
p
a
ra
m
et
er
s
fo
r
W
h
it
m
o
re
et
a
l�
�s
��
	
	
�
�
S
IF
C
a
m
p
li
tu
d
e
d
is
cr
im
in
a
ti
o
n
ex
p
er
im
en
t
p
re
se
n
te
d
in

C
h
a
p
te
r
�
�
T
h
e
�
g
u
re
in
w
h
ic
h
a
F
O
R
A
a
p
p
ea
rs
a
n
d
th
e
n
u
m
b
er
o
f
re
p
li
ca
ti
o
n
s
in
v
o
lv
ed
�
m
�
a
re
g
iv
en
�
C
o
m
b
in
a
ti
o
n
�s
iz
es
	
�
�
a
n
d
m

a
re

th
e
�
rs
t
a
n
d
la
st
p
o
in
ts
o
n
th
e
F
O
R
A
�
re
sp
ec
ti
v
el
y�
E
st
im
a
te
d
a
sy
m
p
to
te
s
a
re
b
a
se
d
o
n
th
e
g
iv
en
va
lu
es
o
f
th
e
re
g
re
ss
io
n
p
a
ra
m
et
er
s�
A
�
�



a
n
d
�
�
a
n
d
r�
is
th
e
sq
u
a
re
o
f
th
e
co
rr
el
a
ti
o
n
o
f
th
e
lo
g
�l
o
g
d
a
ta
p
o
in
ts
fo
r
ea
ch
m
ea
su
re
�
N
o
th
eo
re
ti
ca
l
va
lu
es
a
re
g
iv
en
b
ec
a
u
se
th
e
th
eo
ry
is

n
o
t
k
n
ow
n
�

�
A
ll


�
re
p
li
ca
ti
o
n
s
fr
o
m
O
b
se
rv
er
�
a
n
d
th
e
�
rs
t


�
re
p
li
ca
ti
o
n
s
fr
o
m
O
b
se
rv
er


�o
u
te
r
p
o
in
ts
a
n
d
es
ti
m
a
te
d
in
n
er
p
o
in
ts
��

�
O
u
te
r
p
o
in
ts
o
n
ly
�
h
en
ce
r�
fo
r
F
ig
u
re
�
��
�b
�i
s
o
m
it
te
d
�
si
n
ce
a
n
y
co
rr
el
a
ti
o
n
is
sp
u
ri
o
u
s�

�
O
u
te
r
p
o
in
ts
a
n
d
es
ti
m
a
te
d
in
n
er
p
o
in
ts
�



G� FORA values and regression parameters ��	

d
at
a

G
O
C

G
O
C

R
eg
re
ss
io
n
p
ar
am
et
er
s

M
ea
su
re

se
t

�
�
�

�
�
��

A
sy
m
p
�

T
h
eo
ry

A
�




�

A

p
b
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

A

d
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

A

��
r

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

d
�

p
b
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

d
�

d
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

d
�

��
r

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

D �

p
b
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

D �

d
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

D �

��
r

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

P
�C
	

p
b
b

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

P
�C
	

d
b

��
��
��

��
��
��



��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

P
�C
	

��
r

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

T
a
b
l
e

G
��
�

F
O
R
A
va
lu
es
a
n
d
re
g
re
ss
io
n
p
a
ra
m
et
er
s
fo
r
L
a
p
sl
ey
M
il
le
r
et
a
l�
�s
��
	
	
�
�
d
is
cr
et
e
ca
se


IF
C
ex
p
er
im
en
ts
p
re
se
n
te
d
in
S
ec
ti
o
n
�
��
�

V
a
lu
es
a
re
g
iv
en
fo
r
a
ll
fo
u
r
m
ea
su
re
s
o
f
se
n
si
ti
v
it
y�
T
h
e
d
a
ta
se
ts
a
re
d
en
o
te
d
�
p
b
b
�
fo
r
p
u
sh
�b
u
tt
o
n
b
in
a
ry
�d
ec
is
io
n
�
�
d
b
�
fo
r
d
er
iv
ed
b
in
a
ry
�

d
ec
is
io
n
a
n
d
�

�
r�
fo
r

�
�p
o
in
t
ra
ti
n
g
sc
a
le
�
C
o
m
b
in
a
ti
o
n
�s
iz
es
	
�
�
a
n
d

�
a
re
th
e
�
rs
t
a
n
d
la
st
p
o
in
ts
o
n
th
e
F
O
R
A
�
re
sp
ec
ti
v
el
y�
E
st
im
a
te
d

a
sy
m
p
to
te
s
a
re
b
a
se
d
o
n
th
e
g
iv
en
va
lu
es
o
f
th
e
re
g
re
ss
io
n
p
a
ra
m
et
er
s�
A
�
�


a
n
d
�
�
a
n
d
th
e
th
eo
re
ti
ca
l
va
lu
e
fo
r
ea
ch
m
ea
su
re
is
a
ls
o
g
iv
en
�

F
O
R
A
s
b
a
se
d
o
n
A
w
er
e
p
re
se
n
te
d
in
F
ig
u
re
�
��
�
L
o
g
�l
o
g
p
lo
t
r�
va
lu
es
a
re
d
is
to
rt
ed
b
y
th
e
fa
ct
th
a
t
th
e
th
e
d
a
ta
p
o
in
ts
fa
ll
in
to
tw
o
d
is
ta
n
t

re
g
io
n
s�
F
o
r
th
is
re
a
so
n
�
r�
is
n
o
t
g
iv
en
h
er
e�
T
h
er
e
is
n
o
P
�C
�
a
sy
m
p
to
te
fo
r
th
e
d
er
iv
ed
b
in
a
ry
�d
ec
is
io
n
F
O
R
A
�
b
ec
a
u
se
�
�
�
�
�	
�
�
�
w
a
s

g
re
a
te
r
th
a
n
�
�
�
a
n
d
th
e
re
g
re
ss
io
n
�F
O
R
A
co
u
ld
n
o
t
co
n
v
er
g
e�



G� FORA values and regression parameters ��


G
O
C

G
O
C

R
eg
re
ss
io
n
p
ar
am
et
er
s

O
b
se
rv
er

�
�
�

�
�
��

A
A
sy
m
p
�

A
�




�

r�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

T
a
b
l
e
G
��
�

F
O
R
A
va
lu
es
a
n
d
re
g
re
ss
io
n
p
a
ra
m
et
er
s
fo
r
L
a
p
sl
ey
M
il
le
r
et
a
l�
�s
��
	
	
�
�
co
n
ti
n
u
o
u
s
ca
se


IF
C
ex
p
er
im
en
ts
p
re
se
n
te
d
in
S
ec
ti
o
n
�
�

�

C
o
m
b
in
a
ti
o
n
�s
iz
es
	
�
�
a
n
d
�

a
re
th
e
�
rs
t
a
n
d
la
st
p
o
in
ts
o
n
th
e
F
O
R
A
�
re
sp
ec
ti
v
el
y�
E
st
im
a
te
d
a
sy
m
p
to
te
s
a
re
b
a
se
d
o
n
th
e
g
iv
en
va
lu
es

o
f
th
e
re
g
re
ss
io
n
p
a
ra
m
et
er
s�
A
�
�


a
n
d
�
�
a
n
d
r�
is
th
e
sq
u
a
re
o
f
th
e
co
rr
el
a
ti
o
n
co
e 
ci
en
t
fo
r
ea
ch
o
b
se
rv
er
�
T
h
es
e
F
O
R
A
s
w
er
e
p
re
se
n
te
d
in

F
ig
u
re
�
�
�
V
a
lu
es
a
re
g
iv
en
fo
r
A
o
n
ly
�
a
n
d
n
o
th
eo
re
ti
ca
l
va
lu
e
is
g
iv
en
b
ec
a
u
se
th
e
th
eo
ry
is
n
o
t
k
n
ow
n
�



G� FORA values and regression parameters ���

R
eg
re
ss
io
n
p
ar
am
et
er
s

lo
g�
lo
g

O
b
se
rv
er

M
ea
su
re

S
N
R
�d
B
	

�
�
�

�
�
�

A
sy
m
p
�

A
�




�

r�

�

A

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

A

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

�

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

�

d
�

��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

��
��
��

T
a
b
l
e

G
��
�

F
O
R
A
va
lu
es
a
n
d
re
g
re
ss
io
n
p
a
ra
m
et
er
s
fo
r
th
e


IF
C
a
m
p
li
tu
d
e
d
is
cr
im
in
a
ti
o
n
ex
p
er
im
en
t
in
S
ec
ti
o
n
�
��
�
C
o
m
b
in
a
ti
o
n
�s
iz
es
	
�
�

a
n
d
�
a
re
th
e
p
er
fo
rm
a
n
ce
va
lu
es
fo
r
th
e
�
rs
t
a
n
d
la
st
F
O
R
A
p
o
in
ts
�
re
sp
ec
ti
v
el
y�
E
st
im
a
te
d
a
sy
m
p
to
te
s
a
re
b
a
se
d
o
n
th
e
g
iv
en
va
lu
es
o
f
th
e

re
g
re
ss
io
n
p
a
ra
m
et
er
s�
A
�
�


a
n
d
�
�
a
n
d
r�
is
th
e
sq
u
a
re
o
f
th
e
co
rr
el
a
ti
o
n
co
e 
ci
en
t
fo
r
ea
ch
o
b
se
rv
er
�
V
a
lu
es
a
re
g
iv
en
fo
r
A
a
n
d
d
�

o
n
ly
�
N
o

th
eo
re
ti
ca
l
va
lu
e
is
g
iv
en
b
ec
a
u
se
th
e
th
eo
ry
is
n
o
t
k
n
ow
n
�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


