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Abstract

Ambiguity is amgjor difficulty for natural language processing (NLP) systems.
The longer that ambiguities in a sentence remain unresolved, the more work an NLP
system may perform in considering aternative interpretations of the sentence. Thus,
for efficiency, an NLP system should resolve ambiguities as early as possible in
processing.

Thisthesisdescribes L * parsing—an algorithm for table-driven parsing, designed
to permit efficient processing of natural language by facilitating the early resolution
of ambiguity. The algorithm isageneralisation of GLR parsing that allows grammar
rules to be used whenever they may provide useful syntactic information to an NLP
system.

L parsing defines ageneral framework for specifying avariety of parser control
strategies. Different control strategies can be expressed by specifying exactly when
grammar rules are to be used. This thesis presents one possible control strategy,
designed to provide syntactic information that enables useful semantic and pragmatic

processing, and describes a method of compiling this strategy into a parse table.
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Chapter 1

| ntroduction

Ambiguity isamajor difficulty for natural language processing systems. Ambiguity can be found
in al aspects of natural language, and can arise from many different sources. Even unambiguous
sentences are constructed from ambiguous parts. Thus, a natural language processing (NLP)
system must resolve ambiguity when processing a sentence.

To process natural language efficiently, ambiguity must be resolved as early as possible in
processing. Ambiguities cause inefficiency because an NLP system must consider alternative
interpretations of a sentence. The longer an ambiguity remains unresolved, the more work a
system may perform in considering alternative interpretations.

Resolving ambiguity requires wide and varied types of knowledge, any of which can be called
on to help resolve a particular ambiguity. Storing this knowledge in a number of modules is
one possible organisation of an NLP system. A module consists of knowledge and algorithms
relating to one aspect of natural language. A module take inputs from other parts of the system,
applies the algorithms of the module, possibly building internal structures as part of the process,
and produces outputs that can then be used by other parts of the system. Modularity is desirable
in an NLP system because it allows the system to be flexible and expandable. A sentence can
be analysed in different ways by different modules, according to the different knowledge and
algorithms contained within.

Interaction between modules is vital because different knowledge sources are required for
resolving ambiguity in different situations. The pointswheninteraction occursaffect the efficiency
of the NLP system as awhol e, because they affect when ambiguities can be resolved. If amodule
performs al its processing before communicating with other parts of the system, not only will it

consider more possibilitieslocally, but it will also present more possibilities for other parts of the



system to process as well.

One type of knowledge used in natural language processing is syntactic knowledge. Syntax
describes how words group into phrases, which in turn form larger phrases, and so on, forming the
sentences of alanguage. Syntactic knowledge is usually encoded as a grammar—a set of rules
describing the patterns used in the language. Most NLP systems contain a module for analysing
a sentence according to a particular grammar. This module will be referred to as the syntactic
module. The process of syntactic analysisis known as parsing, and the program that performs a
syntactic analysisis called a parser. Input to the the parser is a sentence expressed as a string of
words. Output from the parser is an analysis of the ways rules of the grammar can be applied to
construct the sentence.

This thesis describes a framework for defining efficient parsers for an NLP system. These
parsers can betailored to improve the interaction of a syntactic module with other parts of an NLP
system, allowing efficient resolution of ambiguity.

The rest of this chapter examines these issues in further detail. Section 1.1 examines the
problem of ambiguity in more detail. Section 1.2 presents some evidence for interaction of
modules in an NLP system. Section 1.3 examines the structure of the syntactic module and
describes past work. Section 1.4 outlines the new method proposed by this thesis. Section 1.5

defines some terms and notation. Section 1.6 provides an overview of the rest of thisthesis.

1.1 Ambiguity of natural language

Ambiguity in natural language comes in many different forms. A sentence may be globally
ambiguous, where the entire sentence has more than one possible interpretation. A sentence may
also contain local ambiguity, where a part of the sentence is ambiguous in isolation, but is not
ambiguous as part of the complete sentence. Loca ambiguities are a problem in NLP because
they may cause a system to waste time investigating them.

There are many forms of global and local ambiguity. For example, the ambiguity may be

structural, lexical, or referential. Structural ambiguities are exemplified in sentences 1-3.

(1) 1 saw aman with the telescope.
(2) 1 likefluffy cats and dogs.

(3) Theoil filter pump was black.



Sentence 1 can mean that either | did the seeing with a telescope, or the man that | saw had a
telescope. Similarly, sentence 2 is ambiguous because the word “fluffy” can refer to either the
word “cats’, or the phrase “cats and dogs’. In sentence 3, the compound noun phrase “oil filter
pump” can be analysed as either [[oil filter] pump], or [oil [filter pump]].

Lexical ambiguities arise from words having more than one possible interpretation, as in

sentences 4-5b.

(4) Judi went to the bank.
(58) The box isin the pen.

(5b) The penisin the box.

Sentence 4 has two possible interpretations, depending on whether the word “bank” is taken
to mean “a financia ingtitution” or “the side of a river”. Similarly, sentences 5a and 5b are
ambiguous because of the word “pen”, which can be interpreted as either “fenced area” or
“writing instrument”.

Referential ambiguity is also common, asin sentences 6a—7.

(6a) The city council refused the demonstrators a permit because they feared violence.
(6b) The city council refused the demonstrators a permit because they advocated violence.

(7) Five students ate four dlices of pizza.

In sentences 6a and 6b, “they” could conceivably refer either to the city council or the demonstra-
tors. In sentence 7, it is ambiguous whether five students ate four slices of pizza each, or whether
five students ate atotal of four dices of pizza between them.

Ambiguities multiply with longer, more complex sentences. For example, sentence 8 has over

a hundred syntactic parses (Jacobs, Krupka, and Rau, 1991).

(8 A form of ashestos once used to make Kent cigarette filters has caused a high percent-
age of cancer deaths among a group of workers exposed to it more than 30 years ago,

researchers reported. (Wall St. Journal)

Toresolveambiguitiesrequiresmany different formsof knowledge. To resolvetheambiguities
in sentences 14 requires knowledge about the context of discourse. For example, if the fact that

| was carrying atelescope has been previously established, then the likely meaning of sentence 1

3



is that through atelescope, | saw a man. The ambiguity in sentences 5a and 5b can be resolved
by reasoning about the function of pens and boxes in the world, their size, and possible spatia
relationships. In sentence 5a, the meaning of the word “pen” can be interpreted as “fenced area’
because it is far more likely for a fenced area to contain boxes. In sentence 5b, the meaning of
the word “pen” can be interpreted as “writing instrument” because only awriting instrument can
be enclosed in abox. The ambiguity of sentences 6a and 6b can be resolved using the knowledge
that city councils are generally fearful of demonstrators being violent, and not vice versa.

Local ambiguities are exemplified by sentences 9b—9a.

(98) Flying planes are dangerous.

(9b) Flying planesis dangerous.

Having only read “Flying planes’, there is a local ambiguity in whether this phrase is a noun
phrase meaning “planes which are flying” (sentence 9a) or a verb phrase meaning “the act of
flying planes’ (sentence 9b).

Some sentences exhibit an extreme form of local ambiguity that causes people reading the
sentence to assume one parse, and to backtrack when later information shows that this assumption

was wrong. Sentences 10a-10b are examples of these so-called garden path sentences.

(10a) The officers taught at the academy were very demanding.

(10b) The courses taught at the academy were very demanding.

The garden path effect of sentence 10a results because the verb “taught” is ambiguous: it
could be interpreted as a simple past tense verb, or as a past-participle. Under the simple past
tense interpretation, “taught” isthe main verb of the sentence, and the reader infers “ The officers
taught somebody at the academy”. Under the past-participle interpretation, “taught” is the verb
of areduced relative clause, and the reader infers “ The officers who were taught by somebody at
the academy”. Having processed only the words “ The officers taught”, the reader has insufficient
information to choose between these two interpretations. In the absence of additional contextual
clues, people tend to choose the first interpretation, even though it is incorrect, and change their
decision only when they reach the real main verb “were’ later in the sentence (Frazier, 1987). In
contrast, if the subject noun “officers’ is changed to “ courses’ asin sentence 10b, then the garden

path effect is removed.



1.2 Interaction of syntax and semanticsin an NLP system

There is psycholinguistic evidence for the interaction of syntax and semantics (Crain and Steed-
man, 1985; Stowe, 1991; Taraban and McClelland, 1988; Tyler and Marslen-Wilson, 1977). Crain
and Steedman (1985) performed anumber of experimentswith humansto show that context could
affect the interpretation of garden path sentences. In one experiment, subjects were presented

with sentence pairs such as 11aand 11b.

(11a) The teacherstaught by the Berlitz method passed the test.

(11b) The children taught by the Berlitz method passed the test.

Subjects judged sentence 11b as grammatical significantly more often than sentence 11a. Crain
and Steedman claimed that the semantic difference between the two sentences (namely that
teachers are more likely to teach, and children are more likely to be taught) accounts for these
judgments.

Stowe (1991) performed similar experiments by measuring the word-by-word reading times
of sentences such as 10a and 10b. These experiments established that semantic information such
as the animate nature of the subject influenced the results of syntactic analysis.

The practical benefit of interaction between syntax and semantics is demonstrated empirically
by NLP systems such as SCISOR (Rau and Jacobs, 1988), PUNDIT (Lang and Hirschman, 1988),
and KERNEL (Palmer, Passonneau, Weir, and Finin, 1993). For example, Lang and Hirschman
describe the SPQR module of the PUNDIT text-processing system. The purpose of SPQR isto
use domain-specific knowledge to improve the accuracy and efficiency of the parser by ruling
out syntactically-correct but domain-inconsistent parses. Their experimental results show that
parsing with SPQR reduces the average number of parses found by 30% and reduces the average

parse time by 35%.

1.3 Past work on syntactic analysis

The syntactic module of an NLP system consists of two elements. a grammar and a parsing
algorithm. The grammar describes the sentences of alanguage. The parsing algorithm describes

a computational mechanism for analysing a sentence according to a grammar.



1.3.1 Grammarsof natural language

Much research in linguistics is concerned with encoding the syntax of natural language as a
grammar. Many types of grammar have been suggested for this purpose. A popular class of
grammars are phrase structure grammars, which describe alanguage by aset of rules. Theserules
describe how larger phrases areformed from sub-phrases. Examples of phrase structure grammars
include context-free grammars (CFG), linguistic string grammars (Sager, 1981), generalised
phrase structure grammars (GPSG) (Gazdar, Klein, Pullum, and Sag, 1985), and head-driven
phrase structure grammars (Pollard and Sag, 1987). Perrault (1984) provides a good survey of a
number of the main types of grammar.

Context-free grammars have been widely used as a basis for many computational systems,
because, even though they cannot model all features of natural language (Shieber, 1987), they
can model a useful subset of language. Context-free grammars have the advantages that they
are simple, they provide an analysis of parse structure in an explicit manner, and there isalarge
amount of knowledge and experience in dealing with them. A common method to improve CFGs
is to augment them with constraints, such as functional unification grammar (FUG) (Kay, 1982),

PATR (Shieber, 1992), and DCG (Pereira and Warren, 1980).

1.3.2 Parsing algorithms

There have been many different parsing algorithms proposed for parsing with different grammars.
A particularly popular method for parsing phrase structure grammars has been chart parsing (Kay,
1986), one of the earliest versions of which was created by Earley (1970). Chart parsing allows
a number of different control strategies to be implemented, and has a worst case performance
of O(n®) where n is the length of the input sentence. The basic data structure of a chart parser
is the active chart, which represents al the partial parses it has created as edges in the chart.
Control strategies of achart parser are dictated by the order that new edges are added to the chart,
and the order in which existing edges are processed. An agenda provides general mechanism
for controlling the processing of edges (Kaplan, 1973). The fact that the chart stores all past
derivations the parser has constructed allows the parser to avoid unnecessarily repeating work.
Introductions to chart parsing can be found in Winograd (1983) and Gazdar and Mellish (1989).
A problem of chart parsersisthe overhead of dynamically constructing the chart while parsing.

A promising line of research in an attempt to resolve this problem is table-driven parsing, which



seeks to reduce the overhead in parsing by pre-compiling a parse table (Lang, 1974; Schabes,
1991; Leermakers, 1989; Nederhof, 1993).

One particular method that has been designed for use in natural language processing is the
generalised LR (GLR) parser (Tomita, 1985, 1986, 1987a, 1988; Tomitaand Ng, 1991). The GLR
parser has been shown to be efficient in comparison with other parsing algorithms (Shann, 1991),
and is used as part of the machine trandation project at CMU (Nirenburg, Carbonell, Tomita, and
Gooman, 1992; Tomita, 1987b). However, the GLR parser suffers because of its strict bottom-up
control strategy that does not allow effective interaction with other modules of an NLP system.

The parser only reduces when all constituents of a grammar rule have been seen in the input.

1.4 Thelx parsing algorithm

This thesis describes the new L parsing algorithm for context-free grammars, which is designed
to improve the efficiency of an NLP system by facilitating the early resolution of ambiguity.
It does this by allowing grammar rules to be used wherever so doing is likely to allow useful
semantic or pragmatic processing.

The Lx parser is a table-driven parser, for reasons of efficiency. It is implemented as an
extension to the GLR agorithm, by introducing eager reductions. An eager reduction is similar
to abottom-up reduction except it iscarried out before all members of the right hand side of arule
have been parsed. The eager reduction creates an incomplete derivation, because the derivation
may be missing some of its children. These children may then be derived from later input and
combined into the incomplete derivation. A basic familiarity with LR parsing is assumed in the
description of the Lx parser. An extensive description of LR parsing can be found in (Aho and
Ullman, 1977).

L parsing defines a general framework for creating parsers with different control strategies.
Control strategies are expressed by specifying the circumstances in which eager reductions are to
be performed, in a method similar to the announce points of Abney and Johnson (1991).

The L algorithm has been implemented in Lisp (Steele Jr., 1990), and tested on awide range
of grammars specifically designed to exercise thefeatures of the algorithm. Diagramsof the parser
stack presented throughout this thesis have been generated automatically from the implemented
L* parser. Some of the research described in this thesis has also been presented at a number of

conferences (Miller and Jones, 1992; Jones and Miller, 1992, 1993, 19944, 1994b).
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1.5 Definitionsand Notation

This section introduces definitions and notation used throughout the rest of this thesis.

A string is a sequence of symbols. For example, if a, b, ¢ and d are symbols, then abed and
bdc arestrings. Theempty string iswrittene. Thelength of astring s (written as|s|) isthe number
of symbolsin the string. For example |abed| = 4.

A prefix of a string is any number of leading symbols in the string. For example, the string
abc has prefixese, a, ab, and abe.

An alphabet is afinite set of symbols.

A language is a possibly infinite set of strings of symbols from an alphabet.

A context-free grammar (CFG) describes the strings of a language recursively in terms of a
set of primitive symbols called terminals and aset of variables called nonterminals. Nonterminals
are defined by a set of grammar rules, which specify that a nonterminal can be formed by taking
the concatenation of a sequence of terminals and nonterminals. Grammar rules are of the form
X — a, wherethe left-hand side (LHS) X isanonterminal and the right-hand side (RHS) aisa
(possibly empty) sequence of terminals and nonterminals.

Formally, a context-free grammar is denoted G = (N, T, R, S), where N is a set of nonter-
mina symbols, T isa set of terminals (such that N N T' = {}), R isaset of grammar rules, and
the nonterminal S isthe start symbol.

A grammar rule describes how a nonterminal can be expanded as a sequence of terminals
and nonterminals. The expansion of the nonterminal X by the grammar rule X — «y is written
aXp = ayB. A sequence of these expansions form a derivation: a3 == a, means that
a; derives a,, by 0 or more expansions. An incomplete (rightmost) derivation is an expansion
aX == af where X — (v isagrammar rule.

In natural language, the individual words of the language are categorised into a number of
syntactic classes known as preterminals. For example, “John” isanoun. It is possible for aword
to be more than one type of preterminal. For example, the word “book” can be either a verb or
anoun. The CFG is written with these preterminals as the terminal symbols of the grammar,
athough individual words can still also appear as terminalsin the grammar rules.

A special sentinel symbol $¢ (IV U T) isadded to the end of the input string to facilitate easy

end-of-string processing.



An example of a CFG isthe following:

() S — NPVP

(2) NP — DetN
3) NP — N Grammar 1.1

(4 VP — VNP

This CFG isavery simple grammar that generates sentences such as*“ Judi atethe apple’. The
words of this sentence are pre-classified as preterminals, making the sentence“N V Det N”. The
nonterminals of this grammar are S, NP, and VP, with S being the start symbol. Rules 2 and 3
describe two different ways an NP may be constructed, either as the expansion “N” or “Det N”.

Throughout this thesis, examples will be given to explain and illustrate points being made.
The examples will involve a number of different context-free grammars, some of which will
be arbitrary and have no immediate relation to natural language processing. These CFGs are
presented because they are simple. They do, however, exemplify situations that arise in more
complex grammars of natural language.

The following conventions in writing arbitrary grammars apply:

- Theletters S, V, W, X, Y, and Z denote nonterminals, with S being the start symbol.

- Theletters A, B, C, D, E, and F denote terminal symbols.

- Theitdic letters K, L, and M denote symbolsthat can be either terminals or nonterminals.

- The lowercase greek letters a, 3, 7, and ¢ denote strings of symbols (either terminals or

nonterminals).

1.6 Outlineof thisthesis

- Chapter 2 provides an introduction to GLR parsing.

- Chapter 3 describesthe new L* parsing framework and amethod for compiling L* parse tables
for parsers defined within this framework.

- Chapter 4 examines the basic actions of L parsing and demonstrates their use with a simple
example.

- Chapter 5 examines extensions to the basic L algorithm to make it a practical algorithm for
natural language processing.

- Chapter 6 addresses the problem of compactly representing the parses of an L parser.

- Chapter 7 presents a summary of the new Lx parsing method, and concludes with a discussion

of ongoing and possible future work.






Chapter 2

GLR Parsing

This chapter provides an introduction to GLR parsing. Section 2.1 provides an overview of the
GLR parsing process. Sections 2.2 and 2.3 examine the data structures used in GLR parsing.
Section 2.4 illustrates the GLR algorithm by tracing the execution of the algorithm on a simple

example. Finaly, section 2.5 presents aformal specification of the GLR algorithm.

2.1 Overview of GLR parsing

GLR parsingisan extension of L R parsing that can copewith arbitrary context-freegrammars. The
approach was developed by Tomita (1986) specifically for efficient parsing of natural language.
A GLR parser is a shift-reduce parser: elements of the right-hand side of a grammar rule are
shifted one by one onto a stack as they are recognised in the input. Complete right-hand sides
are then reduced, or replaced by their corresponding left-hand sides. A GLR parser is aso a
table-driven parser. All actions for the parser to perform are pre-compiled and stored in a parse
table which is then accessed during parsing to determine the parse actions to perform next.

A GLR parse table is constructed automatically from a context-free grammar by the same
method used to construct an LR parse table (DeRemer, 1971). However, the restriction that each
cell of an LR parse table contain only a single parse action is removed. Instead, a cell of aGLR
parse table can contain multiple parse actions. ThisenablesaGLR parser to parse with ambiguous
grammars.

A GLR parser processes input from left to right, one word at a time, executing reduce and
shift actions until an accept or error action is reached. If more than one action is specified at any

point in a parse, any reduce actions are executed before shifts. All possible parses are pursued in
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paralel, using two main data structures. a graph-structured stack and a packed shared forest. To
avoid confusion, an element of the graph-structured stack will be referred to as a vertex, and an

element of the packed shared forest will be referred to as a node.

2.2 TheGraph-Structured Stack

The graph-structured stack is an extension of an LR stack that allows a GLR parser to deal with
nondeterminism in a parse. Nondeterminism results from multiple actions in a cell of the parse
table. In addition to the standard push and pop operations of an LR stack, the graph-structured

stack has two new operations to handle nondeterminism: splitting and rejoining.
2.2.1 Splitting

When there is more than one action to be performed at a stack top, the stack is split into multiple

branches, one for each different result. For example, consider the following stack:

| [A—{E}—{c]

The stack grows from left to right, so A is the bottom of the stack, and C is the top of the stack.
Given the grammar rules

(1) X » BC

@ Y - BC Grammar 2.1

the B C at the top of the stack can bereducedtoan X by rulel oraY by rule 2. Upon performing
these reductions, the parser splits the stack, with one branch for each alternative. The resulting

stack after the reductions has two new stack tops X and Y.
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2.2.2 Regoining

If at some stage in the parse, the same vertex is to be pushed onto more than one stack top, then
the corresponding branches of the stack are rejoined. For example, if F is shifted onto both stack

tops X and Y from the previous figure, the resulting stack is

2.3 ThePacked Shared Forest

A packed shared forest compactly represents all the possible parses of an input sentence. The

forest is constructed so that al common subtrees are shared, and are represented only once in

the forest. Subtrees that represent different parses of the same input substring are packed into a

common root node that has multiple lists of children, one for each parse. This operation is called
local ambiguity packing.

Continuing the example from the previous figure, if grammar 2.1 also contains the four rules

3 V = F

(4 W F

5) Zz - XV
6 Z - YW

Grammar 2.2

then there are two possible derivations of Z, both of which cover the string “B C F”, but which

are structured differently:

4 Z

/\ /\
AN AN
B C F B C F
These two parses of Z can be packed together into a single node because the two parses both

cover the same input substring. The forest node Z is referred to as a packed node, and has two

lists of children, one corresponding to the expansion by rule 5, and the other corresponding to the
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expansion by rule 6. Also observe that B, C, and F are all shared among different parses—they

have multiple parents in the forest.

z

X Y \% W
B C F
The decision to perform local ambiguity packing can be made using the configuration of the
graph-structured stack. Local ambiguity packing is appropriate when two or more reductions to
the same nonterminal are specified at the same input word and result in the same vertex. In this

case the derivations resulting from the two reductions should be packed together in asingle forest

node.
For the above example, the stack before the reduction to Z by rules 5 and 6 will look like this:

Both reductions create avertex labelled Z. Therefore the two derivations created by the reductions

are packed together in a single forest node, and the resulting stack will ook like this:
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STATE ACTION
N Det Pep V $ PP NP S VP
0 sl s3 g4 g2
1 r3 3 r3
2 acc Q12
3 sll
4 6 g8 g7
5 sl s3 910
6 sl s3 g9
7 rl rl
8 r5 5 15
9 S5, r7 r’. g8
10 s5,1r6 r6 6 g8
11 r4 4 r4
12 r2 r2

Table 2.1; SLR(1) parse table for grammar 2.3.

2.4 An example of parsing with the GLR algorithm

To illustrate the GLR agorithm, this section presents a trace of the GLR algorithm parsing a

simple sentence using grammar 2.3.

1)
(2)
3)
(4)
Q)
(6)
()

S — NPVP

S — SPP

NP— N

NP — Det N Grammar 2.3
NP — NPPP

PP — Prep NP

VP— V NP

This grammar is ambiguous because a PP may attach either to an S (by rule 2), or to an NP

(by rule 5). For example, the sentence “John saw a man in the park” has two possible parses,

corresponding to the two different attachments of the PP “in the park.”

(1) [John saw [a man [in the park]|s|wls

(2) [John saw [a man],,[in the park],],

The two parses give rise to different interpretations. Parse 1 means that a man who was in the

park was seen by John. Parse 2 means that John, who was in the park, saw a man.

Table 2.1 shows a parse table for grammar 2.3. The table isindexed by state number st and
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grammar symbol L. An entry ACTION[st, L] isaset of parse actions. A blank entry represents a

parse error. Actions are written as follows:
e “s n” means shift and go to state n.
e “r n” meansreduce by the n-th grammar rule.
e “gn,” meansgo to state n.
e “acc” means accept.

To illustrate the GLR agorithm in detail, the state of the parser at each step is shown in a

diagram with three components:

e The graph-structured stack.

The graph-structured stack is a collection of vertices, each of which has an an associated
state (an integer) and a parse forest node. Vertices are drawn with their state number inside
them, and their associated parse forest node above them. Vertices that represent stack tops
are drawn as circles. All other stack vertices are drawn as squares. The stack grows from
left to right. Pending parse actions are entries from the parse table, and are placed to the
right of the stack tops.

e The parse forest.

Nodesin the parse forest are labelled with a grammar symbol and a subscript to distinguish
different nodeswith the same grammar symbol. Packed nodesaredrawn asabox containing

the different possible parses for the symbol of the node.

e The current word.

The word the parser is currently processing is shown in a box at the right hand edge of the

diagram.

The remainder of this section presents a detailed trace of the GLR agorithm parsing the
sentence “ John saw aman in the park”.

Initially the parse forest is empty, and the stack contains only the single vertex with the
start state of 0. The first word is “John,” which is an N, so the first set of parse actions is
ACTIONIO, N] = {s1} (first diagram of figure 2.1). The parser therefore performs a shift action
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@ sl John

s arn

NP,
NP, /
1
John

NP,
NP, V, /
O c B
John saw

Figure 2.1: Trace of the GLR algorithm parsing “John saw a man in the park”.

that creates anew stack vertex with state 1 and forest node N;. The newly created vertex is pushed
onto the stack, becoming the new stack top; hence it is drawn as acircle. The original vertex is
redrawn as a square (second diagram of figure 2.1).

The next word to processis “saw,” whose lexical category is V. The parse actions to perform
are determined by the table entry ACTION[1, V] = {r3}, so the parser performs a reduction by
rule 3. The vertex labelled with N; at the top of the stack correspondsto the RHS of rule 3, and is
popped off, to be replaced by anew vertex with state 4. The state of this new vertex is determined
by ACTION[O, NP] ={g4}. The parser uses state O to index the ACTION table because it is
at the top of the stack after N; has been popped off. A new forest node NP; is also created,
corresponding to the LHS of rule 3, and has asits child the single node N; that was popped off the
stack (third diagram of figure 2.1). At the new vertex with state 4, the next actions to perform are
given by ACTION[4, V] = {s6}. Consequently, the verb “saw” is shifted onto the stack, creating
anew vertex with state 6, and a new forest node V; (fourth diagram of figure 2.1).

Thefollowing words*“a’ and “man” are shifted onto the stack as shown in the first and second
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NP,
NP, A Det , /
GO o

4
L N, V, Det,
John saw a
NP,
NP, A Det , N, /
[l (6 | [ O e o o in
0 4 6 3 11) r4
D I N I r N, V, Det; N, [in]

John saw a man

NP,
NP, v, NP, / NP,

0 6 @ 17, s5 ° /\‘
L N, V, Det; N,
John saw  a man

NP, vV, NP, NP, ¢ VP,
0 4 6 @35 //>\NP
2 -
-In
VP, N, V, Det; N,
rl John sasw  a man

Figure 2.2: Trace of the GLR agorithm parsing “John saw aman in the park” (cont.).

diagram of figure 2.2, making “in”, with lexical category Prep, the next word to process. The
next actionisACTIONJ[11, Prep] = {r4}, so Det; and N, are reduced to NP, by rule 4, creating a
new stack vertex with state 9 and associated forest node NP (third diagram of figure 2.2). At this
point there are multiple parse actions to perform, because ACTION[9, Prep] = {r7, s5}. The
GLR agorithm specifiesthat al reductions are processed before any shifts at aword, so the parser
executes a reduce by rule 7, leaving the vertex with state 9 still active with an unprocessed shift
action. The reduction causes the stack to split, creating a new stack top with state determined by
ACTION[4, VP] = {g7} (fourth diagram of figure 2.2).

The parse actions to perform at this new vertex are ACTION[7, Prep] = {r1}. Again, the
parser processes this reduction immediately, before performing the shift. The reduction by rule 1

createsthenew forest node S; from NP, and VP4, and anew stack vertex with state 2 (first diagram
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NP, Vv, NP,
O NP, ¢/ VP
0 4 6 9) s5 1 "
s5 N, V,; Det; N,

John saw a man

NP,

o VP,

NP,

L]
N, V, Det; N, Prep,
John sasw a man in

NP, Vv, NP, Prep, Det,
s11 NP, ¢/ VP

N; V, Det; N, Prep, Det,
Johnsaw a man in the

NP, V, NP, Prep , Det , N,
NP

NP,
[ [ ] [

N, V, Det; N, Prep, Det, N,
John sasw a man in the park

Figure 2.3: Trace of the GLR agorithm parsing “John saw a man in the park” (cont.).

of figure 2.3). At this new vertex, ACTION[2, Prep] = {s5}. The only outstanding actions are
now the s5 actions at the vertices with states 2 and 9, so the parser shifts the Prep “in” onto the
stack. Both the shift actions create a vertex with the same state (being state 5) and associated
forest node (being Prep; ), so the stack isrejoined and only a single new stack vertex with state 5
and associated forest node Prep; is created (second diagram of figure 2.3).

Next, the words “the” and “park” are shifted onto the stack (third and fourth diagrams of

figure 2.3). Thisbringsthe parser to the end of the input sentence, so the next input word becomes
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S1

NP, Vv, NP, Prep , NP5

NP, ¢ VP.

N, V,; Det; N, Prep, Det, N,
John sasw a man in the pak

Sy

pd
R
-
<
-
pd
o
~)

PP,

@rS NP, o VP PP,

N, V,; Det; N, Prep, Det, N;
John sasw a man in the pak

NP, A NP, PP,
0 4 6 9 @ r5

L L L=

S,

acc
N, V,; Det; N, Prep, Det, Nj
John sasw a man in the pak

Figure 2.4: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

the sentinel $. A reduction by rule 4 creates NP3 from Det, and N3, leaving the stack as shown
in the first diagram of figure 2.4. The next action to perform is ACTION[10, $] = {ré6}. There
is only one path of length 2 starting from NP3 in the stack (Prep; NP3), so only the single new
parse forest node PP; is created. However, there are two stack vertices joined to the end of
this path, namely the vertices with states 2 and 9. As the goto values for these two states differ
(ACTIONI9, PP] = {g8} and ACTION[2, PP] = {g12}), two new stack verticesare created. The
vertex with state 8 is pushed onto the branch of the stack with the vertex with state 9 at the end.
Similarly, the new vertex with state 12 is pushed onto the vertex with state 2. The same forest
node PP, is associated with both these new vertices (second diagram of figure 2.4).

The actions to perform now are ACTION[8, $] = {r5} and ACTION[12, $] = {r2}. The
reduction by rule 2 is processed next, creating a new stack vertex with state 2 and new forest
node S, (third diagram of figure 2.4). Because ACTION[2, $] = {acc}, the node S, represents
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A NP,
P I O
0 4 6 9)r7
NP, f VP PP

s, 1

1
NP, NP,

acc

N, V; Det; N, Prep, Det, N4
Johnsaw a man in the pak

N, V, Det; N, Prep, Det, N,
Johnsasw a man in the pak

N, V, Det; N, Prep, Det, N,
John saw a man in the park

Figure 2.5: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

a complete parse of the sentence “John saw the man.” The parse is not yet finished, however,
becausethereisstill an outstanding reduction by rule 5 to be processed. Performing thisreduction
createsthe new node NP4, and new vertex with state 9 (first diagram of figure 2.5). Thisisfollowed
by a reduction by rule 7, creating VP, (second diagram of figure 2.5). At this point, the next
action isACTION[7, $] = {r1}. Executing this reduction creates an S from NP; and VP,. The
table entry ACTIONIO, S] = {g2} determinesthe state of the vertex resulting from the reduction.
Thereisaready a stack top with state 2 and associated parse forest node S, so instead of creating

anew forest node, the parser performslocal ambiguity packing, and adds the new derivation from

21



thisreduction into forest node S,. The only remaining action now isacc, so the parseisfinished,

and the final parse forest isrooted at node S, (third diagram of figure 2.5).

25 TheFormal GLR Algorithm

Input

A parse table ACTION[state, symbol] for the context-free grammar G = (N, T, R, S) and an
input string z € T*. Entries in the parse table are sets of parsing actions. Each action has the
form*“shift s”, “reducer”, “goto s”, or “accept”. N isaset of nonterminas, T is a set
of terminals, R is aset of grammar rules of theform X— a, where X € Nanda € (NUT)™,

and S isthe start symbol. The state sg is designated as the start state.

Output

The root node of a packed shared parsetreefor z if z € L(G), otherwise an error indication.

Data Structures

A vertex in the graph-structured stack isatuple (s, n, S), where s isastate, n isaforest node,
and S isthe set of successor verticesin the stack. For notational convenience, the elements of a
vertex v can be referenced using the functions State(v), Node(v), and Successors(v).

A node in the packed shared forest isatuple (X, D), where X € N, and D isaset of lists
of child forest nodes. The elements of anode n can be referenced using the functions Nonterm(n)
and Derivs(n).

A path is a contiguous sequence of verticesvy, ..., v inthestack. That is, fori = 2,...,k,
v; € Successors(v;_1).

FRONTIER stores a set of pairs (v,a), where v is avertex and a is a parse action yet to be
performed at v. The vertices within the pairs of thislist form the active stack tops.

CURRENT-V isaset of al vertices created by shifts or normal reductions while parsing an
individual word, providing the set of vertices to check for packing.

w denotes the current input symbol.
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Main L oop

- Add aterminator symbol $ to the end of the input
string z
- w < Thefirst symbol of z
- o + (8o, NIL, {})
. CURRENT-V ¢« {wvo}
- Call Schedule(vg, w)
- Loop
- Call Reduce()
- Call Shift()
- If FRONTIER = {(v, “accept”)} then halt and
return Node(v)
- |If FRONTIER = {} then halt and signal an error

Reduce()
Perform all reductions licensed by an individual word.

- While 3z € FRONTIER of the form
(v, “reduce X—a" ) :
- Remove z from FRONTIER
- P < {p| pisapath of length |a| starting at v in
the stack}
- Vp € P, cal Reduce-Path(p, X— «)

Reduce-Path(vy,..., v, X—a)

Perform a reduction by the rule X — a aong the path vy, .

consisting of the nodes of vertices vy, . . ., vg.

- d + ((Node(vg), ..., Node(v1)))
- IT < A partition of Successors(vg) by goto value on
symbol X
- If 3v € CURRENT-V sit.
Successors(v) € IT A Nonterm(Node(v)) = X
- Add d to Derivs(Node(v))
Else
- n' (X, {d})
- Vg €11
- v (s,n',m)
- Add v' to CURRENT-V
- Call Schedule(v', w)
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- Initialise the stack

- Perform reductionsfollowed by shiftsun-
til acceptance or rejection.

.., v in the stack, creating a new derivation

- Pack using an existing vertex in
CURRENT-V whose nonterminal and
|eft-context match the current reduction.

- Create anew forest node

- Create new vertices containing this node,
one for each element of T1



Shift()
Shift the next terminal symbol onto all the stack tops, creating a new node for it in the parse forest, and
schedule any actions triggered by the shift.

- n— (w,{} - Create a new node for the shifted input

- w < The next symbol of the input string symbol.

- CURRENT-V «+ {}

- 8§ < {(v,a) € FRONTIER | a =“shift s"} - Sistheset of dl shift actionsto perform.

- FRONTIER + FRONTIER — §

- IT « A partition of S according to goto state of the - Each m, € I consists of elements of the

shift actions form (v, “shift s" ).

- Vmg €11 - Cresate a new vertex for each member of

-V {v]|(v,a) € 7} IT.

- v+ (8,n,V)
- Add v, to CURRENT-V
. Call Schedule(v,, w)

Schedule(v, L)
Add to FRONTIER all possible actions to be performed at vertex v.

- Va € ACTION[State(v), L]
. Add (v, a) to FRONTIER

a
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Chapter 3

Building Tablesfor Lx Parsing

Close interaction between modules of an NLP system isimportant for the efficient resolution of
ambiguity. This chapter examines a method of building parsersto facilitate this interaction. Sec-
tion 3.1 describes how top-down and bottom-up parsers act in amodular NLP system. Section 3.2
then describes the new Lx parsing framework for defining table-driven parsers, and presents a
particular parser within the framework that is designed to be efficient in a modular NLP system.
Section 3.3 describes building tables for LR parsing, to provide a background for section 3.4,
which describes a method of compiling L+ parse tables. Section 3.5 addresses the problem of

left-recursion. Section 3.6 presents aformal algorithm for building L* parse tables.

3.1 Parsingin amodular system

The ambiguity of natural language means that an NLP system must search through alarge set of
partial interpretations of a sentence for one that is syntactically, semantically, and pragmatically
plausible. For this search to be efficient, it must be as focused as possible, using all available
information as early as possible in processing (Birnbaum, 1986). In a syntactic context, this
means it is desirable that a parser generate syntactic hypotheses (partial parses) as early as
possiblein processing. These syntactic hypotheses can then help guide the system’s search for an
interpretation of the sentence. Hence, the accuracy of the syntactic hypotheses directly affectsthe
efficiency of the search. In particular, incorrect hypotheses will misdirect the system and cause
it to perform extra useless work. There is a trade-off between the desire to generate syntactic

hypotheses early, and the desire to make them accurate. The earlier that hypotheses are generated,
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the less information they are based on and therefore the more likely they are to be incorrect.

There are two standard styles of parsing—top-down and bottom-up (Aho and Ullman, 1977).
A top-down parser generates syntactic hypotheses very early in processing a sentence because it
expands grammar rules before parsing the symbols of the rule. The hypotheses are not strongly
based on the actual input to the parser, however, so they may beinaccurate and therefore misdirect
the search.

In contrast, a bottom-up parser generates more accurate syntactic hypotheses, because it only
generates these hypotheses once all input covered by the hypotheses has been processed. Hence
a bottom-up parser does not allow all available information to be applied as early as possible in

processing. For example, consider the sentences

(1) The officerstaught at the academy were very demanding.

(1b) The courses taught at the academy were very demanding.

Sentence lais a garden path sentence: humans initially assume the verb “taught” to be the main
verb of the sentence, and only change that assumption when they read “were” later in the sentence.
In contrast, with the subject noun changed from “officers’ to “courses’, as in sentence 1b, the
garden path effect isremoved. Thisis because of the knowledge that courses can only be taught
and cannot teach. In the interests of efficiency, this knowledge should be applied as soon as
the verb “taught” is read, so that only the reduced relative clause parse is pursued, however, a

bottom-up parser does not do this.

) S — NPVP
2 RCl — VP

(3) NG — DetN

4 NP — NG

(5 NP — NGRCI Grammar 3.1
6) VP — VPP

(7) VP — V AdvAdj

8 PP — PrepNG

Consider how a bottom-up parser processes sentence 1b according to grammar 3.1. Firgt, it
reads “the courses’ as a Det and N, which it reduces to an NG by rule 3, then an NP by rule 4.
Next it reads “taught” asaV. At this point, enough input has been processed to use the knowledge
that courses cannot teach to rule out the interpretation that has “taught” as the main verb of

the sentence. This knowledge can be applied when the parser attempts to construct a complete
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sentence with “taught” as the main verb, by areduction using rule 1. However, before reducing
by rule 1, a bottom-up parser must first parse “ at the academy” as a PP and attach it to the VP by
areduction using rule 6. It follows that the knowledge that courses cannot teach is not applied as
early as possible in processing, and therefore causes the system more work.

The deficiencies of top-down and bottom-up parsers described above arise because of the strict
control strategy of the parsers. A top-down parser always proposes application of a rule before
any members of the rule have been processed. A bottom-up parser only proposes reduction by a

grammar rule once all constituents of the rule have been parsed.

3.2 Eager reduction

A more general method of parsing is to alow reduction by a grammar rule when the first k&
symbols of the rule have been processed. The value of k can differ for different grammar rules.
This allows rules to be reduced at the point which produces syntactic hypotheses that best focus
the search of the NLP system.

This approach defines aframework in which avariety of control strategies for a parser can be
specified, depending on when grammar rules are applied. This framework covers both top-down
and bottom-up parsers. If every ruleis applied before any RHS symbols have been parsed, the
result is atop-down parser. If every ruleisapplied only after all RHS symbols have been parsed,
the result is a bottom-up parser.

One way of implementing this approach is to modify a bottom-up parser to alow partia or
eager reductions. An eager reduction issimilar to abottom-up or full reduction except itiscarried
out before all members of the RHS of arule have been parsed. The eager reduction creates an
incomplete derivation, where the derivation resulting from the reduction is missing some of its
children. These children may then be derived from later input and combined into the incomplete
derivation. Theresult isan Lx parser, so called because the parser reads input from Left-to-right,
but allows derivations to be constructed in any fashion—the “«” represents a wildcard.

An eager reduction introduces a predictive component into a bottom-up parser. Having seen
some portion of the RHS of a grammar rule, an L parser will predict that the rule is applicable,

and will reduce without waiting to see the complete RHS of the rule as a bottom-up parser would.
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Any method that reduces by arule after only seeing aprefix of the rule may propose syntactic
analyses that are inconsistent with the larger sentence and that are not completely justified by the
input, as in top-down parsing. Thus in an entirely syntactic context, such a method can never
perform better than a bottom-up parser. However, in the context of a larger NLP system, this
method hasthe potential for greater efficiency becauseit allowsthe earlier resolution of ambiguity
on semantic or pragmatic grounds.

Because eager reductions introduce more hypotheses into an NLP system, it is important
they are proposed only when they are likely to provide useful information that can improve the
efficiency of the system. In particular, eager reductions should be performed when the resulting
syntactic hypotheses are likely to afford the greatest semantic leverage, that is the earliest points

at which semantic processing can perform useful work with the resulting syntactic hypotheses.

3.2.1 Semantic heads and semantic attachment

One approach for determining the useful points for eager reduction in a grammar is to consider
when useful semantic work happens and how this can be triggered by syntactic processing.

A common method for representing the semantics of a phrase isto use aframe-based system.
A frame has a number of dlots, each of which has a number of constraints on the values that may
fill that slot.

For example, consider the following frame:

teach is-a action with
teacher: human
student: human
subject-matter: course
Thisframe represents the action of teaching. It specifiesthat “teach” isan action. There are three
things associated with teaching—the teacher, the student, and the subject matter. These are the
dots of the teach frame. Both the teacher and the student are constrained to be humans, and the

subject matter is constrained to be a course.
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Individual instances of the teaching frame are created to represent specific situations. For
example, the following frame might represent the semantics of the sentence “John teaches the

officers marching”:

teach-5 inst-of teach with

teacher := john-7
student := officers-2
subject-matter := marching-101

The frame teach-5 is an instance of the teach frame, with the teacher ot having the value
john-7, the student dot being officers-2, and the subject-matter being marching-101.
Each of the dot fillersisitself an instance of aframe. For example, john-7 may be an instance
of themale frame.

Whenever aslot of aframeisfilled with a particular value, checks are performed to determine
that the value meets all the constraints on the slot. For example, when john-7 fillsthe teacher
dot of teach-5, the constraint that j ohn-7 ishuman should be checked. If these constraints are
violated, then the particular meaning can be discarded. Thus useful semantic work can be done
when the slots of aframe are filled.

The semantic head of a phrase is the word whose lexical entry is used to construct the top-
level frame in arepresentation of the meaning of the phrase. In the above example, “teaches’ is
the semantic head of the sentence “ John teaches the officers marching” because teach-5 isthe
top-level frame of the representation for this sentence.

Words whose lexical entries specify values that fill sots of a frame are said to semantically
attach to the head. For example, “the officers’ semantically attaches to “teaches’ because
thevalue of ficers-2 fillsthe student dot of teach-5. Useful semantic work occurs when
semantic attachments are established, because constraints on the slot are checked when asemantic
attachment is established. Hence one case where an eager reduction can be beneficial is when it

causes a semantic attachment.

3.2.2 Syntactic heads and syntactic attachment

Unfortunately, a syntactic parser cannot determine whether a reduction will generate a semantic
attachment, because the semantic representations necessary to make such a decision are not
available to the parser. This problem can be solved, however, by defining a syntactic correlate

to the semantic head and semantic attachment described in section 3.2.1. The syntactic head (or
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just head) of agrammar rule is an element of the RHS of that rule, chosen so as to dominate the
semantic heads of aslarge a proportion of the phrases derivable fromit aspossible. A nonterminal

Y of therule X — Y3 dominates the semantic head a; of aphraseay,...,a, if

X = a¥YB
:’;> ad'a;f'8
— Q1y...,0n
The head of arule can be indicated by annotating the symbol in the rule with a subscripted h.
For example, if VP isthe head of the rule S — NP VP, then thisis written S — NP VP,. Each
grammar rule has a unique head. There may be no explicit annotation on agrammar rule. Inthis
case, the last element of the rule istreated asthe implicit head of the rule.
Semantic attachments established by filling the slots of a frame can be mapped into the
syntactic domain using the concept of syntactic attachment. All non-head elements of agrammar
rule syntactically attach to the head of therule. There are two kinds of attachment. For agrammar

ruleX — a Yy, 8, dl symbolsin « left-attach to Y, and al symbolsin 3 right-attach to Y.

3.2.3 When to eagerly reduce

The definitions of syntactic head and syntactic attachment provides a purely syntactic notion of
when areduction islikely to facilitate semantic processing. Therefore, the parser should perform
an eager reduction upon processing the syntactic head of arule whenever doing so will cause a
syntactic attachment with no further consumption of input.

For example, given the grammar rule
1) X > YZya
the parser should perform an eager reduction after parsing Z, because doing so will generate an
attachment between Y and Z. This differs from a bottom-up parser, which would delay until «
had been completely parsed before performing a reduction by rule 1.

It may also be the case that an eager reduction only indirectly causes an attachment. For

example, given the grammar rules

1) X = YZ,
2 Z = ALB

thereisaleft-attachment of Y to Z, which can be established once the head of Z isparsed. Eagerly
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reducing by rule 2 once A has been parsed constructs a Z, which can then be used in a reduction
by rule 1, to generate an attachment between Y and Z. Thus, eagerly reducing by rule 2 generates
an attachment by rule 1.
Whether or not an eager reduction generates an attachment may depend on context. For
example, consider the following grammar:
1) S — XYy

2 Y = X,C

The first expected symbol isan X, by rule 1. This X left-attachesto Y (the head of rule 1), but
this attachment cannot be made until the head of Y is parsed. Hence an eager reduction by rule 3
does not generate an attachment between X and Y in this case, so rule 3 should be processed in
normal bottom-up fashion, waiting until both A and B are parsed before performing a reduction.
After X is parsed, the parser works towards parsing a Y. Eagerly reducing after seeing the head
of rule 2 generates an attachment of X to Y by rule 1. In this case, an eager reduction by rule 3
creates an X which can be in turn eagerly reduced by rule 2 to create a Y, to which the first X
left-attaches by rule 1. Thusan eager reduction by rule 3 should be carried out by the parser inthis
case. This demonstrates that in the context of parsing an S, eagerly reducing by rule 3 generates
no attachment, whereas in the context of parsing a'Y, an eager reduction by rule 3 will generate

an attachment.

3.3 Building LR parsetables

The specification of when to eagerly reduce must be stated in aform that can be used in atable-
driven parser. This means compiling the chosen eager reduction strategy into the parse table. To

explain how thisis done, it isfirst necessary to understand how an LR parse table is constructed.

3.3.1 LR finiteautomata

An LR parse table encodes a finite automaton that recognises the valid items for a viable prefix
of agrammar. A viable prefix isapartia derivation that can aways be extended into a complete
parse. When used in conjunction with a stack, the result is a push-down automaton that parses

the grammar. States of the automaton contain sufficient information to decide when to reduce.

31



Conceptually, a suitable finite automaton can be constructed in a two step process. Firstly,
a nondeterministic finite automaton (NFA) is defined that recognises the viable prefixes of a
grammar. Secondly, the subset construction method (Aho and Ullman, 1977) is applied to this
NFA to define a deterministic finite automaton (DFA) from which the LR parse table can be
constructed.

The NFA is constructed from a grammar G = (N,T, R, S), where N is a set of non-
terminal symbols, T is a set of terminals (such that N N T = {}), R is a set of grammar
rules, and S is the start symbol. To allow detection of the completion of a parse, the gram-
mar G is augmented by adding a new production S’ — S, creating the augmented grammar
G' = (N, T,RU{S" — S},5"). S"isanew symbol notin N UT.

Formally, the NFA recognising viable prefixes of a grammar is defined by a 5-tuple
(Q,1,8,q0,Q"), where @ is the set of states of the NFA, I is the set of input symbols, ¢ is
the transition function, go is the start state, and Q'(C Q) is the set of accepting states. A finite
automaton can be represented by a directed graph called a transition diagram. The states of
the finite automaton are the vertices of the graph. For each element of the transition function
g2 € §(q1, a), thereisadirected arc from state ¢; to state ¢» labelled with symbol a.

The states of the NFA are the items of agrammar. An LR(0) itemis defined to be a grammar
rule, together with a dot at some position of the RHS of the rule. For example, the possible items

for the grammar rule S — NP VP are

[S— - NPVP]
[S— NP - VP|
[S— NPVP ]

Intuitively, an item represents how far the parser is through parsing a grammar rule. For
example, theitem [S — - NP VP indicates that the parser expects a string derivable from NP VP
next in the input. Similarly, the item [S — NP - VP] represents the case where the parser has
derived an NP from the input, and is expecting to find a VP next.

The NFA M recognising viable prefixesfor agrammar G' isM = (Q, NUT, §, qo, @), where
the set of states @ of the NFA is the set of LR(0) items for G’, the initia state qp is the item

[S — - S|, and the transition function § is defined as:

Lé(X—=a- LB, L)={X—=aL-pgd}
2 6(X—=a-YB,e)={[Y = -9]|Y =~ € R}
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Intuitively, rule 1 corresponds to the situation where the parser isin astate where it has so far
recognised o fromthe grammar rule X — a L 3. If L isthen derived, the portion of thisgrammar
rule recognised can be extended to a L, represented by the item where the dot has been moved
over the L. Rule 2 correspondsto the case where the parser is expecting to see Y next intheinput,
and Y derives v, so it must also be expecting to see v next in the input.

For example, consider the following grammar:

(1) S — NPVP
(2 VP — VNP Grammar 3.2
(3 NP — N

The transition diagram of the NFA recognising viable prefixes for grammar 3.2 is shown in
figure 3.1. The arc from [S— - NPVP] to [S— NP - VP] is an example of rule 1 of the
transition function, with X =S, a =€, L = NP, and 8 = VP. Similarly, thearcfrom [S— NP - VP
to [VP — - V NP] isan example of rule 2 of the transition function, with X =S, a = NP, Y = VPR,
B=¢ andy=V NP

A DFA that recognises viabl e prefixes can be constructed by applying the subset construction
algorithm to the NFA. After inputs ay,...,a,, the DFA isin a state that represents the set of
possible states in the NFA that can be reached with input ag, - ..,a,. For example, the DFA
constructed from the NFA in figure 3.1 isshown in figure 3.2. The start state (state 0) of the DFA
is constructed by taking the start state of the NFA [S' — - §] and adding the states[S — - NP VP
and [NP — - N]J, because both these states can be reached by e-transitions from the start state of
the NFA.

In practice, the two steps of creating the NFA and then applying the subset construction
algorithm are combined into a single procedure for building a DFA.

There are more sophisticated finite automaton constructi on techniques that augment the defini-
tion of an LR(0) item with lookahead: items now include information about the terminal symbols
that can possibly follow them. The number of symbols used for lookahead is described by the
number of the item. An LR(0) item means the item includes O lookahead symbols. An LR(1)

item includes one symbol of lookahead in each item, and is of the form [X — «, ], wheret isa
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Figure 3.1: LR(0) NFA for recognising viable prefixes of grammar 3.2.

terminal symbol that may follow the item. For example, with the grammar rules

1 S — XY
2 X — AB
3 Y —>CD

the LR(1) itemsfor rule 2 would be
[X—= - AB, C]

[X— A B, C]
[X— AB-, C]




0 s > .58

S — . NP VP S >S. |2

NP — - N

NP

S— NP . VP VP
3 S>> NPVP. |5
VP = . V NP

VP> V . NP NP
4 VP> V NP .| 6
NP = - N

NP—> N-. | 1

Figure 3.2: LR(0) DFA for recognising viable prefixes of grammar 3.2.

Because Y dways follows X by rule 1, and C is always the first symbol of Y by rule 3, C isthe
only terminal symbol that follows X. Hence C isthe lookahead of the LR(1) itemsfor X — A B.
The lookahead symbols can be used when the parse table is constructed to better determine which

parse actions to perform for a given input.

3.3.2 Building LR parsetablesfrom finite automata

An LR parse table can be constructed from a DFA that recognises viable prefixes. The parsetable
specifies the set of actions to perform in some state when a given string of lookahead symbolsis

next in the input. A longer lookahead provides a better determination of the actions to perform
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for agiven input, but can increase the size of the parse table dramatically. Varying the length of
lookahead defines the family of LR parse tables, where the length of lookahead is given by k in
the description LR(k). Parse tables constructed from a DFA of LR(0) items are a special case.
Although the items of the DFA contain no lookahead, by using the function FOLL OW(X), some
lookahead can till be used in constructing the parsetable. A parse table constructed from a DFA
of LR(0) items is known as an SLR(k) table, where the k in this case refers to the number of
symbols given by the FOLLOW function.

The auxiliary functions FIRST and FOLL OW used when building SLR tables are defined as:

e FIRST(a) isthe set of terminals that begin strings derived from a.
e FOLLOW(X), for anonterminal X, isthe set of terminals that can directly follow X.

For example, consider the following grammar:

1 S —» XY
20 X - AB
3) Y > CD
(4 Y - EF

Then FIRST(X) = {A}, because X always startswith an A by rule 2, and FOLLOW(X) = {C, E},
because aY awaysfollows an X by rule 1 and thefirst symbol of aY iseither aC (by rule 3) or
an E (by rule 4).

The parse table encodes the states of the DFA as rows of the table. Goto and shift actions
encode the transition function of the DFA. Shift actions represent transitions by terminal symboals,
and goto actions represent transitions by nonterminal symbols. Reduce actions apply grammar
ruleswhen the symbols of the right-hand side have been derived from theinput. The accept action
specifies that the parser should indicate successful completion of the parse.

To generate the actions for a state I of the DFA:
1. If theitem[S' — S -] € I, add the action accept to ACTION[I, $].

2. For dl itemsof theform [X — « -] € I, add the action reduce X — a to ACTION[I, z]
for every z € FOLLOW(X).

3. For§(I,t) = J, wheret isatermina symbol, add the action shift J to ACTION[I, ¢].
4. Fordé(I,X) = J,whereX isanonterminal symbol, addtheactiongoto JtoACTION[I, X].
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Table 3.1 shows the SLR(1) parse table constructed from the DFA in figure 3.2 by rules 1-4
above. Thetableisindexed by state number st and grammar symbol L. An entry ACTION|[st, L]

isaset of parse actions. A blank entry represents a parse error. Actions are written as follows:
e “s n” means shift and goto state n.
e “r n” meansreduce by the n-th grammar rule.
e “gn” meansgoto state n.
e “acc” means accept.

To exemplify the process of table construction, consider constructing the table row for state 4
of the DFA shown in figure 3.2. By rule 3, the action s1 is added to ACTION[4, N], because
d(4,N) =1, and N isatermina. Similarly, the action g6 is added to ACTION[4, NP] by rule 4,

because §(4, NP) = 6, and NP is a nonterminal.

STATE ACTION

N V. $ S VP NP
0 sl g2 g3
1 r3 r3
2 acc
3 A g5
4 sl g6
5 rl
6 r2

Table 3.1: SLR(1) parse table for grammar 3.2.

3.4 Building L * parsetables

The Lx parse table should be compiled so that eager reductions are specified whenever they will
cause a syntactic attachment with no further consumption of input. Thus the table builder needs a
method of eval uating whether or not performing an eager reduction in agiven state would generate
an attachment. This is a problem when building the parse table from an LR finite automaton.

Whether an attachment results from applying a grammar rule depends on context not encoded in
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an LR item. Thus the table builder cannot correctly determine all the places to generate eager
reductions.

A solution to this problem isto augment an LR(0) item by adding a boolean flag that indicates
whether or not the item comes from a context where reduction by the rule of the item creates
an attachment. An Lx(0) itemiswritten [S— NP VP, a], where a is a boolean flag that has the
value T if the item comes from a context where reducing by the rule of the item will create an

attachment, and F otherwise. For example, therule S — NP VP has 6 possible L*(0) items

[S— - NPVP A [S— - NPVPT]
[S— NP . VP [S— NP . VPT]
[S— NPVP -, f [S— NPVP -, 1]

Augmenting anitem to include abool ean flag encoding attachment information can be applied

to the entire family of LR(k) items.

3.4.1 CreatingthelLx NFA

The L* NFA isdefined in asimilar way to the LR NFA described in section 3.3. However, the
states of the L+ NFA are the Lx(0) items of a grammar.

For an augmented grammar G' = (N,T,RU {S’ — S}, S’), the Lx NFA M recognising
viable prefixesfor G' isdefined by the 5-tuple M = (Q, NUT, §, qo, Q), where the set of states Q
is the set of L(0) items for G’, the initia state qq is the item [S' — - S, F], and the transition
function § is defined by the following rules. For notational convenience, 3, means that the head
of the rule is contained within the non-empty sequence of symbols 3. Also, a is a variable

representing the boolean attachment flag of an item.
L §(X > -Lp.a), L) = {X » a L- B, a]}
2. 5(X - Y fral,e)={Y =+ 7.F|Y +yeR}
3.6(X—>aL - YaBal,e)={Y—=-7T|Y—=~eR}
4. 8(X = Y Boal, ) ={[Y »- 7.a] | Y =y €R}
5. 5(IX —an - Y B.al, & ={[Y = 7.7 |Y 5y € R}

Rule 1 applies in the situation where the parser isin a state when a intherule X - a L 3

has aready been recognised, and L has just been derived. Rules 2-5 apply when the parser is
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expecting to see Y next in the input, and Y derives v, so the parser must also be expecting to see
~ next in the input.

The setting of the attachment flag for each of the above rulesis described in detail asfollows:

1. Moving the dot through a rule does not change the context of where the item comes from,

therefore the setting of the attachment flag remains unchanged.

2. The head of the grammar rule comes after Y, so parsing Y does not establish any new
attachments to elements of the RHS of this rule. Hence parsing -y in order to derive Y

causes no attachments, so the attachment flag of theitems|[Y — - ~, F] isnot set.

3. Thesymbolsin aL left-attach to the head Y, so parsing Y generates an attachment. Hence
parsing~y toderivea¥ causesan attachment, so the attachment flag of theitems[Y — - ~, T]

IS set.

4. Although the head of the rule has been parsed, there are no symbols before Y in the
rule X — Y}, 8 to left-attach to the head Y, so no new attachments are created by parsing
Y. However, if reducing the rule X — Y 8 indirectly causes an attachment by another
grammar rule, then parsing Y alows this attachment to be established. Thus the setting of
the attachment flag for theitems[Y — - v, a] isthesameasthe setting for [X — - Y}, 3, a].

5. Parsing Y causes aright-attachment of Y to the head of therulein a. It followsthat parsing

v toderiveaY causes an attachment, so the attachment flag of theitems[Y — - ~, T] isset.

For example, consider constructing the Lx NFA for grammar 3.2, annotated with syntactic

heads as follows:

(1) S — NPVP,

(20 VP — VL NP Grammar 3.3

(3) NP — N

Figure 3.3 shows the NFA resulting from applying rules 1-5 above. For the purposes of

exposition, the rule of the transition function used to create each link in the NFA is shown
in italics beside the link. For example, the arc from [S— - NPVP, F] to [S— NP - VP, F is
created by rule 1, with X =S, a =¢, L = NP, 8 = VP. Similarly, thearc from [S — NP - VP, F] to
[VP— - VNP,T]iscreated by rule 3, with X =S, a=¢,Y =VP, 8 =¢,andy =V NP,
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Figure 3.3: L« NFA for recognising the viable prefixes of grammar 3.3.

Comparing this NFA with the LR NFA of figure 3.1, there is one major difference. In the
LR NFA, the states for parsing an NP (namely [NP — - N] and [NP — N -]) were previously
linked to both [S— - NPVP] and [VP — V - NPJ. Inthe L* NFA, however, there are separate
states for parsing the NP of [S— - NP VP| and the NP of [VP — V - NP]. Parsing the NP of
[S— - NP VP] generates no attachment, so the attachment flag of the items [NP — - N, F] and
[NP— N -, F] isnot set. Parsing the NP of [VP — V - NP] generates a right-attachment of the

40



NP to the V already parsed, so the attachment flag of theitems[NP — - N, TJ and [NP— N -, T]
is set. Thisexemplifies how the context-dependent nature of attachments affects the NFA.

The addition of the boolean attachment flag doubles the number of potential statesinthe NFA.
However, not necessarily all itemswill be used inthe NFA, because some rules may never be used

both in a context where they would generate an attachment and a context where they would not.

3.4.2 Constructing an L+ DFA from an NFA

An Lx DFA can be constructed from an Lx NFA by subset construction, using the same method
asfor LR items. Thereis one specia casein this construction. At some point in the parse, itis
possible that arule can be used both in a context where reducing it will generate an attachment,
and a context where no attachment will result. For example, consider the following grammar:
1) S — AXa
(2) X = Y

(3) X — YB
@4 Y — z,C

Grammar 3.4

Parsing aY generates an attachment in the context of rule 2, but not in the context of rule 3. This
results in two different states for the rule Y — Z; C in the NFA shown in figure 3.4. The arc
from [X — - Yp, T|tO[Y — - Z, C, T] isadded by rule 4 for determining transitions, presented
in section 3.4.1, whereas the arc from [X — - Y By, 7| to [Y — - Z;, C, F] is added by rule 2.
Although the two items have the same rule and position, the setting of the attachment flag is
different.

This creates acomplication when constructing the DFA from this NFA. Because the two items
Y = Z,C,Tland[Y — - Z;, C, F] can both be reached from the NFA state [S — A - X, F] by
e-transitions, both items will be included in the same state of the DFA by the subset construction
algorithm. The problem is that the first item indicates that an eager reduction by rule 4 should
be performed after parsing just Z because an attachment will result, whereas the second item
indicates that the entire rule should be parsed before reducing by rule 4, because no attachment
will result. Thusthe same rule will be parsed in two different ways, when it should only be done
once.

The DFA should contain a single item for any rule, so that the rule is processed only once.

The attachment flag of thisitem should be set if there is any context where an eager reduction in
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Figure 3.4: L+ NFA for recognising the viable prefixes of grammar 3.4.

this state would create an attachment. Theitem [Y — - Z;, C, T| representsthe fact that thereisat
least one context wheretheruleY — Z;, C will generate an attachment when reduced. Therefore,
only theitem [Y — - Z;, C, T] isincluded in the state of the DFA.

Applying this principle during subset construction, the Lx DFA resulting from the NFA
of figure 3.4 is shown in figure 3.5. In particular, note that state 2 contains only the item

[Y — - Z;, C, 7] rather than both theitems [Y — - Z;, C, T]and [Y — - Z;, C, F].
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Figure 3.5: L% DFA for recognising the viable prefixes of grammar 3.4.

3.4.3 Constructing L* parse tables from finite automata

Oncethe DFA has been constructed, it must be converted into a parse table with actions specifying
when to perform eager reductions. Thisisachieved by introducing anew eager-reduce parse
action. An eager-reduce action specifieswhich grammar ruleto reduce by and how many symbols
of the right-hand side of the rule to use.

An eager reduction creates an incomplete derivation with some symbols of the RHS missing.

As these missing symbols are parsed, the parser must incorporate them into the incomplete
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Figure 3.6: L+ DFA for recognising the viable prefixes of grammar 3.3.

derivation. Thisis specified using anew combine parse action. A combine action specifies that
the symbol just parsed should be combined into an incompl ete derivation created from a previous
eager reduction by a particular grammar rule.

After performing an eager reduction, the parser carries out any further reductions triggered
by the newly created nonterminal. A question immediately arises. exactly which reductions
should be carried out? A GLR(k) parser would use lookahead to select only those reduce actions
consistent withthe k input symbol sthat immediately follow the substring covered by thereduction.
Unfortunately, these lookahead symbols are not available when an eager reduction is performed,
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asthe parse associated with the eagerly reduced ruleis not yet complete. To replace the k symbol
lookahead in this case, the dummy symbol EAG is introduced. The EAG column of the parse
table contains the set of cascaded reductions to perform at a state st after an eager reduction.
All entriesin the EAG column are eager reductions because all the cascaded reductions have the
incomplete originally eagerly reduced derivation as a descendant. Unlike other blank entriesin
the table (which signify a parse error), a blank in the EAG column means there are no cascaded
reductions to be performed in this state.
To generate the actions for state I of a DFA.:

1. Shifts, gotos, reduces, and accepts are generated as for anormal LR table.

2. For each item of theform [X — oy, - B,a] € T
where ap = v My, AN a=T
oo ap=vyLM, N a=F

o ap,=Ly M N a=F
e If B isnot empty, add the action eager-reduce n-k to ACTION[I, z] for every
z € FIRST(8), wheren =X — a; Band k = |a.

e If M isanonterminal, add the action eager-reduce n-k to ACTION[I, EAQ],

wheren =X — ap Sand k = |a].

3. For each item of theform [X — oy, - K 3, a]
where ap = v AN a=T
o ap=vLé, AN a=F

or apb=L, M~y AN a=F

e Add theaction combine n to ACTION[I, K], wheren =X — ap K B.

Rule 1 adds the LR parsing actions to the parse table. Rule 2 adds eager-reduce actions. Rule 3

adds combine actions. Looking at rules 2 and 3 in detail:

2@ If ap, = v My A a = T, then the item [X — ap, - 3, a] comes from a context where
reducing by the rule of the item will cause an attachment (because the attachment flag is
true), so once the head of the rule is parsed, the rule should be eagerly reduced. The dot is
immediately after the head, indicating the head must have just been parsed. Thus an eager
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2(b)

2(c)

3(a)

3(b)

3(c)

reduction should be generated if the end of the rule has not already been reached (3 is not
empty). If the head is a nonterminal, it may have been created by eager reduction, so an
eager reduction for the EAG symbol should be generated.

If ap, =y L M A a=F, thentheitem [X — a4 - B, a] does not come from a context
where reducing by the rule of the item will cause an attachment (the attachment flag is
false), but the symbolsin L |eft-attach to the head of therule. Thedot isimmediately after
the head, indicating the head must have just been parsed. Thus an eager reduction should
be generated if the end of the rule has not already been reached (3 is not empty). If the
head is a nonterminal, it may have been created by eager reduction, so an eager reduction
for the EAG symbol should be generated.

Ifap, =L M A a=F,thentheitem[X — a3, - B, a] doesnot comefrom acontext where
reducing by the rule of theitem will cause an attachment (the attachment flag is false), but
M right-attaches to the head of the rule. M is the first symbol that right-attaches to the
head and the dot is immediately after M. Thus an eager reduction should be generated if
the end of the rule has not already been reached (3 is not empty). If M isanonterminal, it
may have been created by an eager reduction, so an eager reduction for the EAG symbol
should be generated.

Ifap, =, A a=T,thentheitem[X — ap - K B, a] comesfromacontext wherereducing
by the rule of the item will cause an attachment, and the head of the rule has already been
parsed, so the rule must have been eagerly reduced. Thus a combine action should be
generated for each of the remaining symbols of the rule. The next symbol to be parsed is

K, so acombine action by therule X — a3 K @ for K is generated.

If a, = v L é, N a = F, then the head of the rule of the item [X — a3, - K 3, a] has
been parsed, along with the symbols in v L which left-attach to the head, so the rule must
have been eagerly reduced. Thus a combine action should be generated for the remaining
symbols of the rule. The next symbol to be parsed is K, so a combine action by the rule

X — ap K g for K isgenerated.

If ap, = Lp, M v A a = F, then the head of the rule of the item [X — a; - K 3, a] has
been parsed, along with the symbolsin M~ which right-attach to this head, so the rule must
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have been eagerly reduced. Thus a combine action should be generated for the remaining
symbols of the rule. The next symbol to be parsed is K, so a combine action by the rule

X = ap K (@ for K isgenerated.

The L parse table resulting from applying these rules to the DFA in figure 3.6 is shown in
table 3.2. Thetableisindexed by state number st and grammar symbol L. Anentry ACTION[st, L]
is aset of parse actions. A blank entry represents a parse error, unless it is the EAG entry, in
which case a blank represents the fact that there are no cascaded reductions appropriate in this
state.

STATE ACTION

N V $ EAG VP NP S
0 sl g3 g2
1 r3 r3
2 acc
3 A4 g5
4 6, e2-1 g7, c2
5 ri el-2
6 r3 r3
7 r2 e2-2

Table 3.2: L%(1) parse table for grammar 3.3.

Actions are written as follows:

e “s n” means shift and go to state n.

e “r n” meansreduce by the n-th grammar rule.
e “gn,” meansgo to state n.

e “e n-k” means eagerly reduce by the n-th grammar rule using only the first k symbols of
the RHS.

e “c n” means combine the grammar symbol L into an incomplete derivation created by an

eager reduction by grammar rule n.

e “acc” means accept.
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To illustrate the process of table construction, consider constructing the table row for state 4
of the DFA. The actions s6 and g7 are added by the rules for adding actions to LR parse tables.
Rule 2 for generating actions can be applied to theitem [VP — Vj, - NP, T], with X = VR, a =V,
and 8 = NP. As 8 # ¢, the action e2-1 is added to ACTION[4, N], because VP — V;, NP is
grammar rule 2, |V| = 1, and FIRST(NP) = {N}. V isnot a nonterminal, so no entry is added to
EAG. Rule 3 can also be applied to theitem [VP — Vj - NP, T|, with X = VR, a =V, K = NP,
and 3 =e. The action c2 is added to ACTION[4, NP], because K = NP, and VP — V;, NP is

grammar rule 2.

3.5 Left recursion

Grammars containing left-recursion can create problems with eager reduction. For example,
consider the grammar rule NP — NPy, PP. If the parser eagerly reduces this rule after seeing the
head, it will create an NP to which this rule can again be applied, creating a third NP, and so
on ad infinitum. More generally, define arelation ¢ such that M ¢ L if and only if L — M, 8.
Then agrammar is head-left-recursiveif L ¢+ L. The parser will loop, infinitely proposing eager
reductions, for any head-left-recursive grammar. For example, consider the following grammar:
1 S
2 X
3 Y z
4 z Xp WF

(5 Z - B

A X,
Y,C

_)
_)
: Grammar 3.5

When processing the sentence “A B C D E F, the parser will reduce B to Z by eager reduction
using rule 5. It canthen createaY by areduction using rule 3, which can then be eagerly reduced
to ax X by rule 2, which can in turn be eagerly reduced to an Z by rule 4, and so on ad infinitum.

To avoid infinite recursion, an L parser must accommodate some method of dealing with
head-left-recursive loopsin agrammar. The standard method of dealing with the similar problem
of left-recursion in top-down parsing is to rewrite the grammar (Hopcroft and Ullman, 1979).
However thisis an undesirable approach for L parsing because, in natural language processing,
grammar structure has more significance than smply a way of recognising the sentences of a

language.
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A preferable approach isto delay performing eager reductions that would otherwise cause the
parser to enter aloop. For example, ingrammar 3.5, if rule 4 isnot eagerly reduced until after W is
processed, then the parser does not enter aloop. Thisis because, to create aW, the input symbols
D and E must be processed, so the loop is only processed as many times as justified by the input,
rather than infinitely. Loops can be detected during parsing, however, delaying processing eager
reductions to avoid these |oops introduces significant complexity and overhead.

A simpler method of avoiding loops is to construct the parse table so that eager reductions
do not cause head-left-recursive loops. When constructing the parse table, a minimal set of rules
which should not be eagerly reduced immediately after their head should be identified. Eager
reductions by these rules must only be performed after input is processed. This avoids sending
the parser into an infinite loop.

Identifying the rules in which eagerly reduction should be delayed is equivalent to finding
cycles in a graph constructed from the grammar. The vertices of the graph are the terminals
and nonterminals of the grammar. There is a directed edge from L to M if M ¢ L. Cyclesin
this graph can be detected using a simple graph search algorithm such as depth-first search. The
outline of an algorithm for identifying the rules in which eager reduction should be delayed is
given in section 3.6.2.

Having identified the rulesin which eager reduction should be delayed, the parse table should
be constructed so that eager reductions are not generated immediately after the head of theserules.
Instead, an eager reduction should be generated after the next non-empty symbol of the rule is
processed. For example, when building the parse table for grammar 3.5 from the DFA shown in
figure 3.7, rule 4 isidentified asthe only rule in which eager reduction should be delayed. Instead
of generating an eager reduction by rule 4 in state 3, this eager reduction is delayed until the next
non-null symbol of the rule has been parsed. As W must be non-null, rule 4 should be eagerly
reduced after W is parsed. Thus, an eager reduction by rule 4 is generated in state 8 instead. The
resulting parse table is shown in table 3.3.
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11| Z> Xy, WF . ,T
Figure 3.7: Lx DFA for grammar 3.5.
STATE ACTION
A C D E F $ EAG S X Y Z W
0 |[sl g2
1 6 g3 94 a5
2 acc
3 9 rkt el-2 g8
4 e2-1 e2-1
s/, c2
5 r3 e3-1
6 5
7 r2 r2
8 e4-2 e4-2
sl1, c4
9 s10
10 6
11 r4

Table 3.3: L parse table for grammar 3.5.
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The rules for constructing the Lx parse table, avoiding left recursion, are as follows. To

generate the actions for state I of aDFA:

1. Shifts, gotos, reduces, and accepts are generated as for anormal LR table.

2. For eachitem of theform [X — oy, - B,a] € I
where ap = My A a =T and not delaying eager reduction by thisrule

or ap=vL M,
o ap=L, M A a=Tanddeaying eager reduction by thisrule
or apb=Ly,M AN a=F
e If B isnot empty, add the action eager-reduce n-k to ACTION[I, z] for every
z € FIRST(8), wheren =X — ap Sand k = |a.
e If M isanonterminal, add the action eager-reduce n-k to ACTION[I, EAQ],

wheren =X — ap fand k = |a].

3. For each item of theform [X — o, - K 3, a]
where ap = Ly vy A a =T and not delaying eager reduction by thisrule

or ap=+vLd
or ap=L, My A a=Tanddelaying eager reduction by thisrule
o ap=Ly M~y N a=F

e Add theaction combine n to ACTION[I, K], wheren =X — ap K B.
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3.6 Formal table-building algorithms

3.6.1 L=x TableBuilding Algorithm

Input
An augmented context-free grammar G' = (N, T, R, S). N isaset of nonterminals, T isa
set of terminals, R isaset of grammar rules of theform X— o, where X € Nanda € (NUT)*,

and S isthe start symbol.

Output
An Lx parse table ACTION[state, symbol] for the grammar G'.

Main Program

. Call Table(ltemSets(G"))

ItemSets(G)

Compute the set of all item sets of a grammar. The sets of item sets are the states of a DFA recognising
viable prefixes of the grammar.

- REPEAT
- C + {Closure([S"— - S, F)}
-VZecC
- VL st. Goto(I, L) # {}
- C+ CUGoto(I, L)
- UNTIL no more item-sets can be added to C
- RETURN C

Closure(Z)
Compute al the grammar rules that may possibly apply at a point in the parse

- REPEAT
- VIX—=a- Y0, fleT
-VY¥Y—-y)eqG
- fafe
- f'=KFlag(X - a - Y8, f])
Else
- f' =CFlag([X — o - Y, f])
AV = -y, f1EeT
- If f' =Tthen
T
Else
I+ TIUY—= -, f]
- UNTIL no moreitems can be added to Z
- RETURNZT
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Goto(Z, L)
Calculate the item set resulting from atransition by symbol L from item set Z

- T < {}
-VIX—a- LB, flel

- J—JUX=aL -6, f]
- RETURN Closure(J)

KFlag([X — a - Y3, f])
Cdlculate the flags for the item resulting from the closure of akernel item (an item where « is not empty).

- If thehead of X — aY @B isinaY or 3 isempty
- RETURNT
Else
- RETURN F

CFlag([X — Y8, f])

Calculate the flags for the item resulting from the closure of a complement item (an item where the dot is
at the start of therule).

- If Y isthehead of X — Y3 or 3 isempty
- RETURN f
Else
- RETURN F

Table(C)
Calculate the parse table from the canonical set of items.

. VI]' eC
- [S'—= S, fleZ;
- Add“accept” to ACTION[j, 9]
S [X>a- fleT;
- VY € Follow(X)
- Add“reduce X — a”" to ACTION[7, ]
- If[X— a - AB, f] € Z; ANGoto(Z;,A) =TI}
. Add“shift k" to ACTION[], A]
- X—>a-Xg, fle Z; A GOtO(Ij,X) =T
. Add“goto k" to ACTION[j, X]
- [ X— an-B, al € Zand (ap = YMpAa =T)V(ap = yLMpAa =F)V(ap = LyM Aa =F)
- If Bisnot empty
- Vz € First(8)
- Add “eager-reduce X — af, |a|” to ACTION[j, z]
- If M isanonterminal
- Add “eager-reduce X — af3, |a|” to ACTION[j, EAG]
- f[ X — o KB, a] € T and (ap, = ynAa = T)V (o, = yLopAa = F)V(ap = LpyMyAa = F)
- Add“combine X — aK3" to ACTION[7, K]
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3.6.2 Algorithm for detecting head-left-recursive loops

This section presents the outline of an algorithm for finding a minimal set of grammar rules in

which to delay eager reduction to avoid left recursion.

- Build agraph wherethe vertices of the graph are the terminalsand nonterminal s of the grammar.
Add adirected edgefrom Lto M if M ¢ L.
- Build a DFS spanning tree of the graph. Whenever a cycle is discovered, increment a cycle
counter at each vertex in the cycle.
- Create a set of all vertices with cycle count > 0.
- Repeat until this set is empty (thus no cycles remain)
- Remove avertex with the maximum cycle count, and add it to alist of rulesin which to delay
eager reduction.
- For each cycle of which thus vertex is a member, decrease the cycle count by one on all
members of the cycle.
- Remove all vertices with a cycle count of 0 from the set.
- Return the list constructed by this loop.



Chapter 4

L« Parsing

L* parsing is a generalisation of bottom-up parsing that allows a grammar rule to be reduced
before all members of the RHS have been derived from the input. The actions to perform during
parsing are stored in a pre-compiled parse table, as described in chapter 3. The L* parse table
includes two new parse actions not present in a standard GLR parse table—the eager-reduce and
combine actions. During parsing, the driver that executes the actions specified in the parse table
must execute these new eager-reduce and combine actions.

This chapter describes the basic method used to execute the two new actions. Section 4.1
examines the eager-reduce action, and section 4.2 examines the combine action. Section 4.3 then
presents a simple example to illustrate parsing with the two new actions, and section 4.4 presents
a formal specification of the basic L+ algorithm without packing. Chapter 5 then presents
improvements to the basic L algorithm that are needed to make it an efficient algorithm for

practical parsing. Chapter 6 extends the algorithm to perform local ambiguity packing.

4.1 Theeager-reduce action

Asexplained in section 3.2, an eager reduction isareduction by agrammar rule performed before
al members of the RHS of the rule have been parsed. An eager reduction is specified by an
eager-reduce action eager - reduce n-k, where n isthe grammar rule to reduce by, and k isthe
number of symbolsto usein the reduction. Eager-reduce actions are stored in the parse table.
Performing an eager reduction creates an incomplete derivation in the parse forest. The

derivation isincomplete because not all members of the RHS have been parsed when the derivation
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iscreated. For example, if the graph-structured stack includes the following stack top

and the parse table specifies an eager reduction by therule VP — V;, NP after parsing V, then the
parser creates anew branch of the stack for the result of the eager reduction and a new incomplete

forest node for VP, as shown in figure 4.1.

i—(\ : ) VP
N 7.
. :
N ’ ‘.
N /

VP Vv
Figure 4.1: Parse state after an eager reduction.

The length of the reduction path in the stack is one, rather than two as it would be for a full
reduction, because the eager reduction is performed after only seeing one symbol (V) of the RHS.
Also, the forest node VP resulting from the eager reduction is incomplete: it is missing a child

NP, because this NP has not been parsed at the time that the eager reduction is performed.

4.1.1 Cascaded reductions

To reap the benefits of an eager reduction, the parser should perform any further reductions
triggered by the nonterminal that resulted from the eager reduction. These are called cascaded
reductions. For example, with grammar 4.1, the parser will eagerly reduce by rule 2 after parsing
A to alow the left-attachment of X to the newly created Y by rule 1. To establish this attachment,
however, requires a cascaded reduction by rule 1.

2 Y = A,B Grammar 4.1

How should the parser access the parse table to determine which cascaded reductions to
perform? Normally, the parser uses |ookahead to access the table in order to perform only reduc-
tions consistent with theimmediately following symbols. However, these |ookahead symbols are
unavailable immediately after an eager reduction is performed, because the parse associated with
the eagerly reduced rule is not yet complete. To solve this problem, the dummy symbol EAG
was introduced in chapter 3. The EAG column of the parse table contains the set of cascaded
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reductions to perform at a state after an eager reduction. To perform a cascaded reduction, the
parser proceeds as usual, except it uses the EAG symbol rather than lookahead symbols to access
the parse table.

4.2 Thecombineaction

An eager reduction creates an incomplete derivation. The eager reduction is performed on the
assumption that the missing symbols of this incomplete derivation will be subsequently derived
from theinput. Aseach missing symbol isderived, it needsto beincorporated into theincomplete
derivation. Infigure 4.1, the VP is eagerly reduced without the parser having seen the NP. When
the NP is derived from the input, it must be added to the derivation of the VP,

A combine action of the form combine n specifies that the symbol just parsed should
be combined into an incomplete derivation created from an eager reduction by rule n. The
combineaction doesnot encodewhich derivation should be combinedinto, becausetheappropriate

derivation is created only during parsing.

4.2.1 Combinepointers

The Lx parser uses a data structure called a combine pointer to locate an incomplete derivation,
so that missing children can be combined into the derivation as they are parsed. There are three
parts to a combine pointer: an incomplete derivation, the grammar rule that was used to create
the incompl ete derivation, and the vertices in the stack that resulted from the eager reduction that
first created the incomplete derivation. A combine pointer iswritten [n — d : V], wheren isthe
grammar rule, d is the incomplete derivation, and V is the list of vertices in the stack. Combine
pointers are stored at stack vertices, and are created by eager reductions. As part of performing
a combine action, the combine pointers used in the action are moved to the vertex associated
with the symbol being combined into the incomplete derivation. Thus combine pointers are
always stored at the vertex in the stack whose associated forest node is the rightmost child of the
incompl ete derivation pointed to by the combine pointer.

When performing a combine action of the form combine n at a given vertex, the parser
locates the derivations to which the combine action should be applied by using the combine

pointers of theform [n — d : V] at that vertex.
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If there is a combine pointer of the form [n — d : V] at a given vertex, the parser does not
perform any eager reductions by rule n at that vertex, because the combine pointer indicates that

such eager reductions have already been previousy performed.

4.2.2 Completing reductions

After all missing elements of an incomplete derivation have been parsed and combined into the
derivation, the parser marks the derivation as complete. This is accomplished by performing a
completing reduce. Unlike other reductions, acompleting reduction creates no new stack or forest
structure—all appropriate structure has already been created by an eager reduction and subsequent
combines. All that a completing reduction does is mark the appropriate derivation as complete.
A completing reduction appears as a reduce action in the parse table, and is identified as a
completing reduction by the presence of appropriate combine pointers at the vertex where the
reduction is scheduled. The combine pointers point to derivations already created from eager
reduction by the grammar rule now scheduled for full reduction. The fact that a full reduction
has been scheduled (as opposed to an eager reduction) indicates that the end of the rule has been
reached, so the incomplete derivation previously created using the rule must be complete. The
combine pointersalso store alist of verticesthat resulted from the original eager reduction. These
arethe verticesthat the parser should establish asthe new stack tops resulting from the completing

reduce.

4.3 A smple example of parsing using the L algorithm

As an example of the L* algorithm, consider the problem of parsing the simple sentence “John
saw Mary” using the grammar 4.2. This grammar is the same as grammar 3.3 in chapter 3, and
this example traces parsing with table 3.2 constructed in that chapter.

1) S — NPVP,

@ VP — VNP Grammar 4.2

(3 NP — N,

A thumbnail sketch of the parser’s actions while parsing the sentence “John saw Mary” is
asfollows. First “John” is parsed as an NP asin ordinary GLR parsing. Next, the word “saw”
is pushed onto the stack. The parser then eagerly reduces by rule 2, and pushes the resulting
incomplete VP onto the stack. This immediately triggers a further eager reduction by rule 1,
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STATE ACTION

N V $ EAG VP NP S
0 sl g3 g2
1 r3 r3
2 acc
3 A g5
4 | s6,e2-1 g7,c2
5 ri el-2
6 r3 r3
7 r2 ez2-2

Table 4.1: L*(1) parse table for grammar 4.2.

creating an incomplete S. This Sisincomplete even though parse nodes for each of itsimmediate
children exist, becauseits child VP node is missing achild NP. The system next parses“Mary” as
an NP and combines it into the incomplete VP. A completing reduction by rule 2 then marks the
VP as complete, because all its children have now been parsed. Finally, a completing reduction
by rule 1 marksthe S as complete, because its child VP is now complete.

Toillustratethe L* algorithm in detail, the state of the parser at each step isshowninadiagram

with three components:

e The graph-structured stack.

The graph-structured stack is drawn in the same way as the diagrams of chapter 2, with
the addition that vertices are now drawn with their combine pointers below them. Vertices

created by eager reduction are drawn with dashed lines.

e The parseforest.

The parse forest is drawn in the same was as the diagrams of chapter 2, with the addition
that dashed lines joining forest nodes represent links created by eager rather than normal
reduction, and adotted lineindicatestheforward edge of anincompl ete derivation created by
eager reduction. As parsing proceeds, combine actionsincrementally extend the derivation.
When all RHS elements are in place, a completing reduction marks the forest node as

complete, depicted by changing the dashed lines to solid lines.

e The current word.

As in chapter 2, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.
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@ sl John

N, N,
0 —@ r3 John

Figure 4.2: Trace of the L algorithm parsing “ John saw Mary”.

Table 4.1 shows the L parse table (from table 3.2) for grammar 4.2. The table is indexed
by state number st and grammar symbol L. A blank entry represents a parse error, unlessit isthe
EAG entry, in which case a blank entry represents the fact that there are no cascaded reductions
appropriate in this state. An entry ACTION]st, L] is a set of parse actions, as described in
section 3.4.3.

Theremainder of thissection presents adetailed trace of the L* algorithm parsing the sentence
“John saw Mary”. The parser is initialised with a single vertex with state 0, shown in the first
diagram of figure 4.2. Initially the parse proceeds aswith GLR parsing, with “John” being pushed
onto the stack (second diagram of figure 4.2), and reduced to NP, by rule 3 (first diagram of
figure 4.3). Next “saw” is shifted onto the stack, leaving the parser in the state shown in the
second diagram of figure 4.3.

The next word to process is “Mary,” with lexical category N. The parse actions to perform
are given by ACTION[4, N] ={e2-1, s6}. Reductions are processed before shiftsasin GLR
parsing. Thus the parser next eagerly reduces by rule 2 using only one symbol in the reduction.
Performing this reduction creates a new forest node VP; and new stack vertex whose state is
determined using the parse table entry ACTION[3, VP] = {g5}. The parse tree for VP; isdrawn
using dashed and dotted linesto indicate that the parse of the V Pisincomplete, and the stack vertex
isdrawn with dashed lines indicating it was created by eager reduction. The eager reduction also
establishes a new combine pointer at the vertex with state 4. This combine pointer indicates that
the incomplete VP, was created by an eager reduction by rule 2, and indicates that the reduction
created the new vertex with state 5 in the stack (third diagram of figure 4.3).

Having just performed an eager reduction, the parser now performs any cascaded reductions
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1
NP, v, /
0 3 @ e2-1, s6 . Mary

N, V,
John saw
VP,
(5)el-2 NP, VP
- 7 ‘.‘
[
¢ Mary
NP, v, N, V,
0 3 @ s6 John saw
[2- VP, 5]

Figure 4.3: Trace of the L algorithm parsing “John saw Mary” (cont.).

stored in the EAG column of the parse table. Because ACTION[5, EAG] ={el1-2}, the parser
carries out a cascaded eager reduction by rule 1 and creates the new forest node S; from NP,
and VP4, and a new stack vertex with state determined from ACTIONIO, S] = {g2}. The entry
ACTION[2, EAQ] is blank, so the parser does nothing further at this vertex (first diagram of
figure 4.4).

No unprocessed reductionsremain for thecurrent word (“Mary”), sotheparser finally performs
the outstanding shift action sé at the vertex with state 4. The word “Mary” is shifted onto the
stack, making the sentinel $ the current word (second diagram of figure 4.4). The parser then
reduces N, at the top of the stack to NP, by rule 3. Thetable entry ACTION[4, NP] = {g7, c2}
is used to determine the state of the resulting vertex. The goto action specifies that the state of the
new vertex isstate 7. A combine action by rule 2 must also be performed. The combine pointer at

the vertex with state 4 identifies VP, as the node created by eager reduction by rule 2. The parser
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[, - NP, S, VP,
[1-S,;:2] it
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[2- VP, 5] John saw
S, VP, S
1 2 : 1 5 : .
[ - NP, ./ ‘. VP
[1-5S,:2] / »l
1
NP, Vy N, . °
0 3 4 @ r3 N, Vi N,
[2—)VP1:5] John saw Mary
S, VP, S
1 2 : 1 5 : .
- - - - NP, ./ *_ VP
[1-S,:2] ! M
' NP,
2
NP, Vv, NP, J \
0 3 4 @rZ Ny Vi N,

[2 VP, 5] John saw Mary

Figure 4.4: Trace of the L algorithm parsing “John saw Mary” (cont.).

therefore installs NP, as the rightmost child of VP, (third diagram of figure 4.4). The combine
pointer is aso moved to the vertex with state 7, so that the combine pointer is stored at the vertex
associated with the rightmost child of VP;.

At the new vertex with state 7, ACTION[7, $] = {r2}. There is a combine pointer created
by rule 2 at this vertex, so this reduction is a completing reduction, covering the same ground
as the eager reduction by rule 2 carried out earlier. The parser pops the RHS elements V; and
NP, off the stack, establishing the vertex with state 5 (identified by the combine pointer) as a
new stack top, and marks VP, as complete. This action is depicted by changing the dashed lines

to solid lines (first diagram of figure 4.5). Unlike other reductions, no new parse structure is
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Figure 4.5: Trace of the L* algorithm parsing “ John saw Mary” (cont.).

created for the completing reduction, because all relevant structure was constructed earlier by the
eager-reduce and combine actions. Having completed VP,, the parser next performs a second
completing reduction, thistime by rule 1, which indicatesthat S; isaso complete. A single stack
top remains, with state 2 (second diagram of figure 4.5). As ACTION([2, $] = {acc}, the parse

succeeds, with S; asthe root of the resulting parse tree.

4.4 Formal L= algorithm without packing

Input
A parse table ACTION[state, symbol] for the context-free grammar G = (N, T, R, S) and an
input string z € T™*. Entriesin the parsetable are sets of parsing actions. Each action hastheform

“shift §”, “reduce r”, “eager-reduce r—k”, “goto s”, “combine r”, or “accept”.
N isaset of nonterminals, T isaset of terminals, R isaset of grammar rules of theform X— a,
where X € Nanda € (N UT)™, and S is the start symbol. The state sq is designated as the

start state.

Output

A list of root nodes of a shared parse forest for z if z € L(G), otherwise an error indication.
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Data Structures

A vertex in the graph-structured stack is atuple (s,n,C,S), where s is a state, n is aforest
node, C is a set of combine pointers, and S is the set of successor vertices in the stack. For
notational convenience, the elements of avertex v can be referenced using the functions state(v),
Node(v), Combine-Ptrs(v), and Successors(v).

A node in the shared forest is atuple (X, d), where X € N, and d is a derivation, written
as alist of child forest nodes. The elements of a hode n can be referenced using the functions
Nonterm(n) and Children(n).

A combine pointer isatuple (r,d, V), wherer € R, disaderivation, andV isaset of vertices.
The elements of a combine pointer ¢ can be referenced using the functions Rule(c), Deriv(c), and
Vertices(c).

A path is a contiguous sequence of vertices v, ..., v, inthe stack. Thatis, for: = 2,...,k,
v; € Successors(v;_1).

FRONTIER stores a set of pairs (v, a), where v is a vertex and a is a parse action yet to be
performed at v. The vertices within the pairs of thislist form the active stack tops.

w denotes the current input symbol.

Main Loop

- Add aterminator symbol $ to the end of the input
string z
- w < Thefirst symbol of z
- g « (so,NIL, {},{}) - Initialise the stack
- Call Schedule(vg, w)
- Loop - Perform reductionsfollowed by shiftsun-
- Call Reduce() til acceptance or rejection.
- Cdl shift()
- If FRONTIER contains only pairs of the form
(v, “accept”) then halt and return
{Node(v) | (v, “accept”) € FRONTIER}
- If FRONTIER = {} then halt and signal an error.
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Reduce()
Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Non-eager-
reduce actions are processed first, followed by eager-reduce actions.

- While 3z € FRONTIER of the form - Process all outstanding non-eager reduc-
(v, “reduce X—a"): tions at stack tops.
- Remove z from FRONTIER
- C + {c € Combine-Ptrs(v) | Rule(c) = X—a} - Each element of C correspondsto aprevi-
- If C # {} then ous eager reduction that is now complete.
- Cal Completing-Reduce(v, C)
Else
- P <« {p|pisapath of length || starting at v in
the stack}
- Vp € P, cal Full-Reduce(p, X— a)
- While 3z € FRONTIER of the form - Process al outstanding eager reductions
(v, “eager-reduce r—k") : at stack tops.

- Remove z from FRONTIER

- P+ {p|pisapathof length k starting at v in
the stack}

- Vp € P, cdl Eager-Reduce(p, r)

Completing-Reduce(v, C)

Perform a completing reduction at vertex v. Asthis reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and all that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

- VeelC - C is aset of combine pointers that point
- Remove ¢ from Combine-Ptrs(v) to the vertices created earlier by an eager
- Vv’ € Vertices(c) reduction that is now being completed.

. Call Schedule(v', w)
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Full-Reduce(vs, . . . , vk, X— )

Non-eagerly reduce by therule X— «, creating anew forest node X whose children arethe nodes of vertices
v1, ..., V. COmbinethisnew nodeinto other partial derivations created previously by eager reduction, and
schedule any further actionstriggered by this reduction.

- n' < (X, (Node(vg), ..., Node(v1))) - Create anew forest node.
- TT + A partition of Successors(vg) by goto value on - v belongsto theset r, € TTif and only if
symbol X “goto s” € ACTION][State(v),X]. See
figure 4.6(a).
- Vs eIl - Create new vertices containing the new
- v (s, {},7s) forest node, one for each element of IT.
- Yv €y - Combine the newly created n' into pre-
- Ya € ACTION][State(v),w] St.a="combiner” vious eager reductions by rule » whose
- Cdl Combine(v, v, r) corresponding partial derivations have
- Call Schedule(v', w) Node(v) astheir rightmost element.
X
n, = Nonterm(Node(Vv;))
/\ n,= Nonterm(Node(v,))
ng - n,

Ttsz

Figure 4.6(b): Stack and new forest node after
full reduction.
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Eager-Reduce(vy, . . ., v, X— )
Eagerly reduce by the rule X — «, creating a new incomplete forest node X whose children are the nodes

of vertices vy, ...,v,x. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

cd (Node(vk), e Node(vl))

- n' + (X,d) - Create anew forest node.
e+ (X—a,d, {}) - Create anew combine pointer.
- IT < A partition of Successors(vg) by goto value on - v belongstothe set =, € ITif and only if
symbol X “goto s” € ACTION[State(v),X]. See
figure 4.7(a).
- Vg €11 - Create new vertices containing this new
- v (s,n),{},7s) node, one for each element of II.
- Add v’ to Vertices(c)
- Yv emg - Combine the newly created n' into pre-
- Ya € ACTION][State(v),w] St.a =“combiner” vious eager reductions by rule » whose
- Cal Combine(v,v',r) corresponding partial derivations have

Node(v) astheir rightmost element.
- Call Schedule(v', EAG)
- Add ¢ to Combine-Ptrs(v;)

n,= Nonterm(Node(v;))
n, = Nonterm(Node(Vv,))

\"

. 4@

k
m,,d -

Figure 4.7(a): Stack before eager reduction.

Figure 4.7(b): Stack and new forest node after
eager reduction.
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Combine(vy, v, r)

Combine Node(wv;) into partial derivations created by eager reduction whose rightmost element is currently
Node(vy). These derivations are identified by the combine pointers associated with vy.

- V¢ € Combine-Ptrs(vs) sit. Rule(c) =
- Add Node(v;) to the end of Deriv(c)
- Remove ¢ from Combine-Ptrs(vy)
- Add ¢ to Combine-Ptrs(v;)

?f n, = Nonterm(Node (V,))
,"1 . n;=Nonterm(Node(V;))
4 1
’ ' n .= Nonterm(Node(v,))
My Ny

n¢ N
v v

Combine—Ptrs (v,)={{(X~o,d,{v})}

Figure 4.8(a): Stack and forest node before
combine.
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- Move the combine pointers forward to v,
so that further combines (or completing
reductions) can be performed there.

X

. N, = Nonterm(Node(V,))
AN
SN n;=Nonterm(Node(V;))
N r;f ‘nt n .= Nonterm(Node(v,))
X
T
- _I
v
Ny n; n,
v v v

Combine—Ptrs (v,)={{X~c,d.{v})}

Figure4.8(b): Stack and forest nodeafter com-
bine.



Shift()

Shift the next terminal symbol onto al the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule

any actions triggered by the shift.
- (w,{})

- w « The next symbol of the input string
- 8+ {(v,a) € FRONTIER |a =“shift s"}
- FRONTIER +- FRONTIER — S
- IT + A partition of S according to goto state of the
shift actions
- Vms €11
- V+{v]|(v,a) € ms}
- vs +— (s,n, {},V)
- Yo € FRONTIER of the form (v, “combine r”")
stvey
- Remove z from FRONTIER
- Call Combine(v, vg,7)
- Call Schedule(vs, w)

I Vi
Sy
ors
Vo
T O Ss
e
Vs

Figure 4.9(a): Stack tops with outstanding
shift actions.

Schedule(v, L)

- Create a new forest node for the shifted

input symbol.

- Sistheset of all shift actionsto perform.

- Each wr, € II consists of elements of the

form (v, “shift s").

- Create a new vertex for each member of

IT.

- Combine the newly created n into pre-

vious eager reductions by rule » whose
corresponding partial derivations have
Node(v) astheir rightmost element.

Vo
S2
Vg Vs,

Figure 4.9(b): Stack after shifting.

Add to FRONTIER all possible actions to be performed at vertex v.

- A<« {a € ACTION|State(v), L] |
(a ="eager-reduce r-k" =
—Je € Combine-Ptrs(v) st.Rule(c) = r)
. Va € A, add (v, a) to FRONTIER

O
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- Schedule all actions except eager reduc-

tions that repeat an eager reduction car-
ried out earlier.






Chapter 5

L« Parsing Extensions

The Lx* algorithm described in chapter 4 can be extended in two ways. Section 5.1 presents an
extension that eliminates inefficiencies inherited from GLR parsing. Section 5.2 presents an ex-
tension that allowsthe L x parser to beinterfaced with amodular NLP system. Section 5.3 presents
an example of parsing with these extensions, and section 5.4 presents a formal specification of

the L algorithm including the two extensions.

5.1 Subtree Sharing

A GLR parser uses a packed shared forest to represent al possible parses of a sentence. Sharing
and packing are important because they provide a method of compactly representing the parse,
and they eliminate the repetition of work when building parse forests. Sharing resultsin subtrees
being parsed and represented only once if they are headed by the same nonterminal, cover the
same input substring, and have the same structure. Packing results in subtrees being put together
inasingleforest nodeif they are headed by the same nonterminal, cover the sameinput substring,
but have different structure. Further parses are then performed only once for the entire node,
rather than once for each member of the packed node.

The parser must recognise opportunities to share or pack parses. Where the parser failsto do
so, it will repeat work unnecessarily. For example, consider the possible parses of the sentence

“A B CD E” using grammar 5.1.
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(1) S— X,ZE
2 S— YZE,
B X — A
@ Y= A
(6) W— B, C

Grammar 5.1

The optimally packed shared parse forest for this sentenceis shown in figure 5.1. The L* parser,
however, does not produce this parse forest. Instead it produces the forest shown in figure 5.2.
There are two sources of non-optimality in this parse forest. The L parser creates two separate
nodes for S, instead of packing the two parses of S together into a single forest node. Thisis
because the L* algorithm as stated does not perform local ambiguity packing. This problem is
addressed in chapter 6.

W A
A BAC D E

Figure 5.1: Optimal parse forest for the sentence “A B C D E” with grammar 5.1.

X Y z, Z,
\/ W{m
A B C D

Figure 5.2: L« parse forest for the sentence “A B C D E” with grammar 5.1.

E
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STATE ACTION
A B C D E $ EAG S X Y Z W
0 s3 g2 94 09l
1 s11 013 012
2 acc
3 r4, r3
4 5 g/ g6
5 e6-1
s10, c6
6 e5-1 e5-1
9, c5
7 el-2 el-2
s8,cl
8 rl
9 r5
10 ré
11 sl6
12 s15
13 sl4
14 r2
15 r5
16 ré

The other source of non-optimality is the missed opportunities to share nodes in the parse
forest. Thenodesw; and W, areidentical: they have the same nonterminal and the same children.
Only one node for W should be created, and this node should be shared wherever needed. The

L« parser, however, creates the two separate forest nodes W; and W,. Thisin turn leads to two

Table 5.1: L* parsetable for grammar 5.1.

separate nodes Z; and Z, (one for each W), when only one node for Z should be created.

To see how these problems arise, it is useful to trace the actions of the parser in processing

this sentence. The parser employs the parse table shown in table 5.1.

1. The parser shifts A onto the stack, then reducesit to X; by rule 3, and Y; by rule 4.

2. The parser shifts B onto the stack, leaving the stack as shown in figure 5.3. Next, on the
upper branch of the stack, the parser eagerly reducesB; to W, by rule 6. Thisisfollowed by
a cascaded eager reduction by rule 5, creating the incomplete node Z;. A further cascaded
reduction by rule 1 then establishes the right-attachment of z; to the previously parsed X;,
creating S;. On the lower branch of the stack with Y followed by B, no eager reduction is

performed because no attachments would result from the eager reduction.
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Xy B,

X Y
E @ e6-1, s10, c6 ! !
\/
Al B 1

B1
sl6

7
117 X, )
C,
@ ré VY}
[6 - W,:6] ' .
Al Bl Cl
Cl

Figure 5.4: State of the L parser after processing “A B C” with table 5.1.

3. The parser shifts C onto both branches of the stack separately, and also combines C into
W3, which was created from eager reduction by rule 6. The stack at this point is shown in
figure 5.4. Next, the parser performs a completing reduction by rule 6 on the upper branch
of the stack, marking W; as complete. On the lower branch of the stack, the parser then

performs a separate reduction by rule 6, creating a second derivation of W.

4. The parser shifts D onto both branches of the stack, and also combines D into z;, on the
upper branch of the stack. This leaves the stack as shown in figure 5.5. Following this, the
parser performs a completing reduction by rule 5 on the upper branch of the stack. The

parser also performs a separate reduction by rule 5 on thelower branch of the stack, creating

a second derivation of Z.
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12 @rS A, B, C, D,
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.
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X, Z, E, .

0 4 7 @ r1 X, Y, Z, Z,
[1-S,:2]
Wl W2 “
Y, Z, E, /><\ ‘\\
1 13 @ r2 ;
Al Bl Cl Dl El

Figure 5.6: State of the L parser after processing “A B C D E” with table 5.1.

5. The parser shifts E onto the stack, and combines E into the incomplete node S; (as shown

in figure 5.6). A completing reduction by rule 1 on the upper branch of the stack, and a

reduction by rule 2 on the lower branch of the stack create the complete parses S; and S,

of the sentence“A B C D E”, as shown in figure 5.2.

The non-optimal sharing in the parse forest results from contextual distinctions in the states

of the parse table, which restrict the opportunities to share. Sharing only occurs when branches of

the stack are rejoined. Results from the common branch are shared by all the rejoined branches.

For example, infigure 5.7, if “A B” at the top of the stack isreduced to an X, this X can be shared

by both branches Y and Z. Branches of the stack are only rejoined, however, when the states

pushed onto those branches are equal, as shown in figures 5.8 and 5.9. Two states of the table

may not be equal as aresult of contextual differences encoded in the state, even though they both
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>
o}

____________ or e (@

____________ O« e )

Figure 5.9: The stack is not rejoined when states are not equal.

represent the parser being at the same point in processing the same set of grammar rules. When
two or more such states both occur in the stack at the sametime, they will be on different branches
that cannot be rejoined, and will therefore cause the same grammar rules to be applied separately
on each branch.

To see how such contextual distinctions arise, consider states 5 and 11 from the previous
example. These states both represent the same position in processing the same set of rules. This
can be seen by examining the DFA shown in figure 5.10, from which the parse table of table 5.1
was constructed. Both states consist of a single item containing the grammar rule W — By, C,
with the dot after the B. The two items (and therefore states) are not equal, however, because of a
difference in the setting of their attachment flag. This difference results from a difference in the

context from which the items were created. The attachment flag of the item [W — By, - C, 7] in
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12

15

Z_>WhD'yT

Z > W,-D.T

W%BhC'yT

W%Bh'cfr

X—=> A .,T

Y%A'y’:

W_>Bh'CaF

W — B, C - ,F

8 S-)XhZE’aF
E
70 S—>X,Z-E.F
z
Ylso X, - ZEF
Z—> W, D.T
W — . B, C.T
X
O S,_)'SiF
S— .+ X,ZE.F
S— - Y ZE,.F
X—>.«A,T
Y%’AYF
Y
1
S>> Y- ZE,.F
Z—> - W,D.F
W — . B, C.F
Zz
13|S—>YZ-E,F
E
14| S—>YZE,-.F

Figure 5.10: Lx DFA for grammar 5.1.
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state 5 is set because the item comes from a context of having first parsed an X, meaning that an
attachment can be established by rule 1 after the head of W — By, Cis parsed. The attachment
flag of the item [W — By, - C, F] in state 11 is not set, because the item comes from a context
of having first parsed a 'Y, meaning that no attachment results from parsing W — B;, C. Because
the states are differentiated by the setting of the attachment flag, the parser incorrectly creates
separate derivations of W depending on whether an X or a’Y was first parsed. This can be seen
in figure 5.4, where a reduction by rule 6 is specified separately on both the upper and lower
branches of the stack, creating the two separate forest nodes Wy and W..

Increasing the contextual information encoded in a state results in an increase of missed
opportunitiesfor sharing. For example, adding lookahead to items can reduce sharing in the parse

forest (Billot and Lang, 1989; Lankhorst, 1991).

Figure 5.11: State of the L+ parser (reusing derivations) after processing “A B CD”.

Rekers (1992) has also studied this problem. He proposes a solution that bases the decision
to share on the equality of derivationsin the parse forest, rather than equality of statesin the parse
table. When the parser performs a reduction, it searches for an existing derivation with exactly
the same children as the symbols being used in the current reduction. If such a derivation exists,
the parser reusesit instead of creating anew one. Thisresultsin an optimally shared parse forest.
However, it does not eliminate unnecessary actions performed by the parser. The stack is still
constructed as in GLR parsing, with branches only being rejoined when states are equal. Thus
reductions are duplicated on separate branches of the stack, although the same derivation is used
astheresult of both reductions.

For example, applying Rekers's algorithm in the previous example of parsing the sentence
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“A B CD E” with grammar 5.1, the parser processes“A B C” in exactly the sameway as explained
above, resulting in a stack identical to that shown in figure 5.4. However, when the reduction by
rule 6 is performed on the lower branch of the stack, the parser searches for an existing derivation
of W with children B and C, and finds the node W,. Therefore it reuses W, as the result of the
reduction on the lower branch of the stack. Having performed this reduction, the parser shifts
D onto the stack, leaving the stack as shown in figure 5.11 (cf. figure 5.5). There are still two
distinct branches in the stack, and the reduction by rule 6 is still performed twice, even though

the same result was used both times.

B
1| X—=> A,-B.F X—= A,B-.F|9
A
S,%'S!F
S ’
0| S—>+ XY, F S —>S. ,F|2
X =« A, B F
X
S—)X'YhyF Y
3 SﬁXYh'yF 5
Y—>'ChX1T
C
Y%Ch'XaT X
4 Y-S Ch X T|7
X = «A,B,T
A
B
6| X > Ap-B.T X—=> A,B..7T|8

Figure5.12: L« DFA for grammar 5.2.

An alternative approach worth considering is to merge states that have a common core. The
core of astate isthe set of cores of the itemsin that state, where the core of an itemistheruleand

position of itsdot. For example, infigure5.10, states5 and 11 both havethecore {{|W — B, - C|}.
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0 S —> . S F
S 7
S— - X Y oF S > S..F|2
X =+« Ay B F
X
S—> X - Yy F Y
3 S X Y,+.F|5
Y > . Cp X T
A
C
Y_>Ch‘X1T X
4 Y>> ChX-.T|6
X— A, BT
A
1 B

Figure 5.13: Lx DFA, after merging common core, for grammar 5.2.

X—)Ah'BuT

X—>ApB..7|7

STATE ACTION

A B C $ EAG S X Y
0 sl g2 g3
1 e3-1

s7,c3

2 acc
3 A g5
4 e2-1,sl g6, c2
5 rl  el-2
6 r2 ez2-2
7 r3 r3

Table 5.2; L* parse table for grammar 5.2.

By merging states with a common core, the effect of extra contextual information such as the
attachment flag is removed. The idea of merging states is used in LALR table building. States
in an LR DFA with the same core are merged together, with the lookahead of the resulting state
being the union of the lookahead of the merged states.

80



Unfortunately, using this method to construct an L parse table means that the parser may
perform eager reductions where no attachments result. For example, consider the following
grammar:

1) S — XYy
(2) Y — Ch X
3) X —» A,B

Grammar 5.2

Figure 5.12 shows the L* DFA of this grammar. States 1 and 6 have common cores, so are
mergedintoasinglestate, asarestates8 and 9. Theresulting DFA isshowninfigure5.13. Table5.2
shows the parse table constructed from this DFA. Now consider parsing the sentence“A B CA B”
with this parse table. Firstly, the parser shifts A onto the stack, leaving the parser in state 1, and
making B the next word to process. The table entry ACTION[1, B] = {e3-1, s7, c3}, so the
parser eagerly reduces A to an X by rule 3. However, ACTION[3, EAG] = {}, so no further eager
reductions are performed. No attachments have been established, so the parser has performed the

extrawork of the eager reduction for no gain.

STATE | EQUIV. ACTION
CLass | A B C D E $ EAG S X Y Z W
0 0 s3 02 g4 ol
1 1 sl1 gl3 gl12
2 2 acc
3 3 r4, r3
4 4 s5 g/ g6
5 5 e6-1
s10, c6
6 6 e5-1 e5-1
9, c5
7 7 el-2 el-2
s8, cl
8 8 ri
9 9 r5
10 10 ré
11 5 sl16
12 6 s15
13 11 sl4
14 12 r2
15 9 r5
16 10 ré

Table 5.3: New Lx* parse table for grammar 5.1, constructed from the DFA in figure 5.10.
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To avoid unjustified eager reductions, states should only be merged when warranted by the
parse. If, during parsing, two states with the same core occur together at the top of the stack, they
should be merged. To identify such states, the parser uses equivalence classes. An equivalence
class contains all items with the same core. The equivalence classis encoded as an integer stored
with each state in the parse table. For example, the Lx parse table with equivalence classes
for grammar 5.1 is shown in table 5.3. This parse table is calculated from the DFA shown in
figure 5.10. States 5 and 11 are both members of equivalence class 5, because they both have the
same items with dotsin the same position. Similarly, states 10 and 16 both belong to equivalence
class 10.

When the parser is about to create two or more vertices with states from the same equivalence
class, it mergesthese statesinto asingle vertex. The actionsto perform at thisvertex arethe union
of the actions to perform in the individual states.

For example, consider parsing the sentence “A B C D E” using the new parse table shown in
table 5.3. There is one difference to the stack diagrams drawn previously. The equivalence class

of a vertex is drawn above a list of states stored in the vertex. Both these numbers are drawn

inside the vertex.
Xy
X Y
KO i
Y,

Xy B,

X Y
5 1 1
o 4 511 e6-1, s10, c6, s16
\f!
Al B 1

Figure 5.14: State of the Lx parser after processing “A B” with table 5.3.
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6
\\6,1%/‘ es-1
X1 Y1
Xy B, W
4 5 1
. 511 s10, c6, s16 /"v._‘
[6-W,:6] '
Al Bl
Y
1
1
Zy
/—7\\
\\ 7,/‘ 91_2
Xl Y1 %1
W
X,
2 A, B,
4
Y

Figure 5.15: State of the L+ parser after processing “A B C” with table 5.3.

. The parser shifts A onto the stack, then reduces it to an X by rule 3, and a'Y by rule 4,
leaving the stack as shown in the first diagram of figure 5.14.

. There are outstanding shift actions to states 5 and 11. However, rather than creating two
separate vertices from these shifts, the parser creates only a single vertex which represents
the merger of states5 and 11, because both states belong to equivalence class 5. Theactions
to perform at the new vertex are the union of the actionsto performin states5 and 11. The
result is shown in the second diagram of figure 5.14. Next, the parser eagerly reduces B to
aW by rule 6. The entries ACTION[4, W] = {g6} and ACTION[1, W] = {12} determine
the states of the resulting vertices. Both states 6 and 12 belong to equivalence class 6,

SO again, the parser creates a single vertex representing the merger of these two states
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Figure 5.16: State of the L parser after processing “A B C D” with table 5.3.

(first diagram of figure 5.15). Next, the parser performs a cascaded reduction by rule 5

at the new vertex, creating the incomplete node z,. Note that the parser also creates two

separate vertices in the stack as a result of this reduction because ACTION[4, Z] = {g7}

and ACTION[1, Z] = {g13}, and states 7 and 13 belong to different equivalence classes.

This leaves the stack as shown in the second diagram of figure 5.15. The parser then

performs a further cascaded eager reduction by rule 1 that establishes the right-attachment

of Z; to the previously parsed X;, creating the incomplete node S; .
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Figure 5.17: State of the L* parser after processing “A B C D E” with table 5.3.

3. There are two outstanding shift actionsto perform at the stack top with equivalence class 5.
However, both state 10 and state 16 belong to equivalence class 10, so the parser only
creates a single vertex as aresult of shifting C onto the stack. The parser also combines C
into the incomplete W, because c6 € ACTION[5, C] (first diagram of figure 5.16). Next,

the parser performs a completing reduction by rule 6, marking W; as complete.

4. The parser shifts D onto the stack, and D is combined into zZ;. This leaves the parser
as shown in the second diagram of figure 5.16. Next, the parser performs a completing

reduction by rule 5, marking z; as complete.

5. The parser shifts E onto the stack, and E is combined into the incomplete node S; (as shown
in figure 5.17). A completing reduction by rule 1 on the upper branch of the stack and a
reduction by rule 2 on the lower branch of the stack create the complete parses S; and S,

of the sentence“A B CD E”, asshown in figure 5.1.

The parser performed only one reduction by rule 6, and one reduction by rule 5, and therefore
only created one forest node for W and one node for Z.

As discussed earlier, increasing the length of lookahead &k in LR(k) parse tables results in
a loss of sharing and therefore a loss of efficiency that makes these parse tables impractical.
Equivalence classes can also be employed to eliminate the contextual distinctions introduced by

lookahead in LR(k) tables, making parsing with such tables practical.
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5.2 Integrating the L x parser with an external oracle

The L= parser is intended to form part of a modular natural language processing system. The
NLP system can provide feedback to the L parser on the validity or plausibility of the parses
it is pursuing, which hopefully leads to greater efficiency because the system only pursues those
parses which are syntactically, semantically, and pragmatically consistent.

The larger NLP system can be modelled as an oracle that evaluates parses. The oracle may
reject a parse on the basis of information such as mismatched grammatical features, selectional
restrictions, or pragmatic information. Whenever areduce or a combine action is performed, the
L parser accepts input from the oracle, giving an evaluation of the new structure.

When the oracle rejects a parse, the parser should cease all further work on that parse. When
it isafull reduction that created the rejected parse, this can be achieved by deleting any vertices
created by the regjected reduction. For example, consider parsing the sentence“A B C D” with the
following grammar, a parse table for which is shown in figure 5.4

1 S — VX

(2 S - WY,

R V- A

4 wW-— A Grammar 5.3
(55 X — B,CD

(7) Z - BGCy

W,

o s6
@ |o]

A, e s10
w7

W,
0 [o}—2)s

Figure 5.18: Two possible outcomes of performing reductions by rules 3 and 4.
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STATE ACTION
A B C D $ EAG S W V X Y Z
0 A g3 g2 gl
1 s10 011
2 s6 g7 @5
3 acc
4 13, r4
5 e6-1 e6-1
s9, c6
6 s8
7 r2 e2-2
8 r7
9 ré
10 e5-1
s12,c5
11 rl1  el-2
12 sl13,c5
13 r5

Table 5.4 Lx parse table for grammar 5.3.

Firstly, the parser shifts A onto the stack, leaving the stack as shown on the left-hand side of
figure 5.18. The actions to perform next are given by ACTION[4, B] ={r3, r4}. The parser
performs each of these reductions and passes the result to the oracle for evaluation. If the oracle
does not reject either reduction, then the parser operates as usual, and the stack after the two
reductions is as shown in figure 5.18(a). If, however, the oracle rejects the reduction by rule 3,
then the parser deletes the vertex with state 1, leaving the stack as shown in figure 5.18(b).

If the rejected parse was created by an eager reduction or combine action, then there are
additional complications. It isinsufficient just to del ete the vertices created by the rejected action.
No missing constituents of a rejected incomplete derivation should be parsed and combined into
the derivation. Nor should any completing reduction of arejected derivation be attempted.

A rejected parse may also contain incomplete children, in which case no further work should
be done to complete these children. Therefore, the complete definition of arejected parseis a
parse that has been rejected by the oracle, or a parse for which all possible parents have been
rejected.

For example, consider parsing the sentence “A B C D” again with grammar 5.3. First, the
parser shifts A onto the stack, and reducesit to both aV and aW. Next, the parser shifts B onto the
stack, leaving the state of the parser as shown in the first diagram of figure 5.19. The parser then
eagerly reduces by rule5, creating an incomplete derivation of X (second diagram of figure 5.19).
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Figure 5.19: Trace of the Lx algorithm parsing “A B C D” with grammar 5.3.

Thistriggers a cascaded reduction by rule 1, producing an incompl ete parse of an S. Suppose that
the oracle rgjects thisincomplete parse. Not only should all further work on the S be abandoned,
but any further work on parsing X; should aso be stopped. The only way X; can be used in a
complete parse of the sentence has been rejected, so it is pointlessto complete X;. Thusthe parser
deletes both the vertex with state 11 and the vertex with state 10, leaving the stack as shown in
the third diagram of figure 5.19.

Care must be taken when deleting vertices in the stack. A state of the parse can represent the
parser being part way through parsing a number of different rules. In this case, the vertex cannot
be deleted until all possible parses have been rejected. For example, consider parsing the sentence
“A B C D” with grammar 5.4, which is a slight modification of grammar 5.3. A parse table for

this new grammar is shown in table 5.5.
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1) S = WX,

B W-—- A
4 X — B,CD Grammar 5.4
6 Z - BCy
STATE ACTION
A B C D $ EAG S W X Y Z
0 s3 g2 ol
1 A g7 g6 @5
2 acc
3 r3
4 e4-1
9, c4
5 e5-1 e5-1
S8, ¢5
6 r2 ez2-2
7 ri el-2
8 r5
9 ré
sl0, c4
10 r4

Table 5.5: L parse table for grammar 5.4.

The parser shifts A onto the stack and reduces it to a W. Next, it pushes B onto the stack
and eagerly reduces it to an X by rule 4 (first diagram of figure 5.20). This triggers a cascaded
reduction by rule 1; suppose that the oracle rejects the resulting incomplete derivation of S. The
only possible parent of the eagerly created X has been rejected, so the parse of X isregected, and
the vertex with state 7 is deleted (second diagram of figure 5.20). The vertex with state 4 cannot
be deleted, however, because C may still be used as part of parsing a Z, and needs to be shifted
onto the stack to continue this parse. State 4 represents being part way through two different
partial parses of the input seen so far, namely X — B, CD and Z — B C, as can be seen by
examining the items in the DFA for state 4 (figure 5.21).

More generally, state 4 contains two kernel items—items where the dot is not at the start
of the RHS. The number of kernel items valid for a given lookahead determines the number of
partial parses represented by the vertex. This can be calculated during the parse table building
process and stored in a separate table. An entry KCOUNTS][cl, L] in this table is the number of
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Figure 5.20: Trace of the L% agorithm parsing “A B C D” with grammar 5.4.
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Figure 5.21: DFA for the grammar 5.4.
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kernel items that are valid in equivalence class ¢l with L as the lookahead. It is straightforward
to construct this table: for each kernel item [X — a - (3, a] of a state I, increment the count
KCOUNTSYI, z] for every z € FIRST(3), or if 3 isempty, then for every x € FOLLOW(X). The
entry KCOUNTS[ I, EAQ] is the total number of kernel itemsin state I. For example, table 5.6
shows the KCOUNT S table constructed by this method from the DFA of figure 5.21.

CLASS KCOUNTS
A B C D $ EAG
0 0 0 0 0 0 0
1 0 2 0 0 0 2
2 0 0 0 0 1 1
3 0 1 0 0 0 1
4 0 0 2 0 0 2
5 0 0 0 1 0 1
6 0 0 0 0 1 1
7 0 0 0 0 1 1
8 0 0 0 0 1 1
9 0 0 0 2 0 2
10 0 0 0 0 1 1

Table 5.6: L* kernel counts table for grammar 5.4.

During parsing, the KCOUNTStableis used to determine the number of possible parsesbeing
pursued at avertex and therefore the number of parses that must be rejected before the vertex can
be deleted. Associated with each vertex isacounter of the number of parses being tracked at that
vertex. When aparseisrejected, the counter is decremented by one until it reaches zero, at which
time the vertex is deleted.

There is aso a problem that, because vertices may not be deleted when a parse is rejected,
combine actions may be performed when they should not be because there are still pointersto the
rejected vertices elsewhere in the stack. The parse associated with this vertex has been rejected,
so references to it stored in combine pointer elsewhere in the stack should be deleted. To be able
to locate these combine pointers, areverse kill pointer is maintained at each vertex. A kill pointer
points to the combine pointer created by the eager reduction that created the vertex now being
deleted. Thuswhen avertex isrejected, the parser follows the kill pointer to identify the combine
pointer from which reference to the deleted vertex is then removed.

If, by this process, the combine pointer is left not pointing to any vertices, then the parse

associated with that combine pointer has been rejected, so the counter at the vertex where the
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empty combine pointer is stored is decremented by one, and the whole procedure of testing the
counter and chasing Kill pointersisrecursively applied at this vertex. If the vertex is not deleted,
the empty combine pointer isretained, thus stopping compl eting reductions from being performed.

The count at avertex isinitialised from the KCOUNT S table, by indexing the table using the
current lookahead symbol, or the EAG symboal if the vertex is created from an eager reduction.

A full reduction always decrements the count at the vertex, because regardless of whether it
isrejected or not, the parser has finished tracking that parse.

Continuing the example of parsing the sentence“A B C D” with grammar 5.4 from figure 5.20,
the parser next shifts C onto the stack, creating anew vertex with state 9, and a counter initialised
from the entry KCOUNTS[9, D] = 2. The empty combine pointer is moved from the vertex with
state 4 to the new vertex, but C is not combined into X;, which was created by eager reduction,
because the combine pointer is empty. Instead, the counter at the new vertex is decremented by
one because of the empty combine pointer. The counter is then tested for being zero, in which
case the vertex would be deleted. However, the counter is not zero, so the vertex is not deleted,
and the stack is left as shown in the first diagram of figure 5.22. Next, the parser performs afull
reduction by rule 6 at the vertex with state 9, which creates the node Z;, and the new stack vertex
with state 5. Also, the counter at the vertex with state 9 is decremented, making it 0. Thus the
vertex with state 9 is deleted, and the outstanding action s1 0 is never processed. Thisis because
the only possible use for this action is to extend the parse by rule 4, which has aready been

rejected. The resulting stack is shown in the second diagram of figure 5.22.

Wl
Wl B1 Cl
[1 ]
00 11 41 9,) r6,s10 @
[4-X1]
Al Bl Cl
Wl Zl
Wl Zl
O0 l1 @ e5-1, s8 @
A B C

1 1

Figure 5.22: Trace of the L* algorithm parsing “A B C D” with grammar 5.4 (cont.).
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5.3 An example of using the extended L x parser

Consider parsing the sentence “ The courses taught at the academy were very demanding” with

grammar 5.5 using the extended L x algorithm, which includes equival ence classesand an interface

to an external oracle.

1)
(2)
3)
(4)
()
(6)
(7)
(8)

S
RCI
NG
NP
NP
VP
VP
PP

S A AN

NP VP,
VP

Det Ny,
NGy,

NG, RCl
V), PP

V5, Adv Adj
Prep, NG

Grammar 5.5

To illustrate the L* algorithm in detail, the state of the parser at different stages of the exampleis

shown in a diagram with three components:

e The graph-structured stack.

The graph-structured stack isdrawn asfor the diagrams of chapter 4, except that the number

inside a vertex is the equivalence class of the vertex instead of the state. Thereisalso a

second number in the lower right corner of each vertex which isthe counter of the number

of live parses the vertex represents.

e The parseforest.

The parse forest is drawn as for the diagrams of chapter 4. Parts of the parse forest that are

rejected are displayed in grey.

e Thecurrent word.

As in chapter 4, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.

Table 5.7 shows the L x parse table for grammar 5.5. In addition to the the information stored

in the parse tables constructed in chapter 3, this parse table contains an extra column giving the

equivalence class of each state of the parse table, referred to as EQCLASS] st]. Table 5.8 shows

the new KCOUNTS table which store the number kernel items included in each state. Thisis

used determine the number of possible parses that a vertex represents.
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STATE | EQUIV. ACTION
Ciass| Det N \Y Adv Adj Prep $ EAG S RCI VP NP NG PP
0| 0| sl g2 g4 o3
1 1 sl6
2 2 acc
3| 3 S5, r4 e4-1 gl5 gl4
4 | 4 5 g6
5 5 er-1 €6-1 g9
S8, c7 s/ c6
6 6 ri el-2
e8-1 gl12
sl c8
8 8 s10, c7
9 9 r6é 6 e6-2
10 10 r7 r7
11 1 s13
12 11 r8 r8 e8-2
13| 12 r3 r3
14 | 13 r2 e2-1
15 14 5 e5-2
16 | 12 r3 r3
Table 5.7: L parse table for grammar 5.5.
CLASS KCOUNTS
Det N \Y} Adv  Adj  Prep $ EAG
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
3 0 0 2 0 0 0 0 2
4 0 0 1 0 0 0 0 1
5 0 0 0 1 0 1 0 2
6 0 0 0 0 0 0 1 1
7 1 0 0 0 0 0 0 1
8 0 0 0 0 1 0 0 1
9 0 0 1 0 0 0 1 1
10 0 0 1 0 0 0 1 1
11 0 0 1 0 0 0 1 1
12 0 0 1 0 0 0 1 1
13 0 0 1 0 0 0 0 1
14 0 0 1 0 0 0 0 1

Table 5.8: L kernel counts table for grammar 5.5.
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Figure 5.23: Trace of the L algorithm parsing “ The courses taught. .. ”.

Theremainder of this section presents adetailed trace of the L* algorithm parsing the sentence
“The courses taught at the academy were very demanding”. The parser isinitialised with asingle
vertex with state O (first diagram of figure 5.23). To begin, the parser shifts the word “The” onto
the stack, creating a new vertex that has equivalence class 1 because EQCLASS[1] = 1. The
kernel counter of the vertex is initialised from the entry KCOUNTS[1, Det] = 1. The resulting
stack is as shown in the second diagram of figure 5.23. Following this, the parser shifts the word
“courses’ onto the stack and reduces Det; and N; to NG, by rule 3 (third diagram of figure 5.23).

This NG isin turn reduced to NPy by rule 4. The counter of the vertex with egquivalence class 3
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Figure 5.24: Trace of the L algorithm parsing “ The courses taught. . . ” (cont.).

is decremented because one parse has been processed completely. The stack now has with two
branches, both of which have an outstanding s5 action at the end (fourth diagram of figure 5.23),
so the parser rejoins the stack by shifting the word “taught” onto the stack, as shown in the fifth
diagram of figure 5.23.

The next word to process is “at”. An eager reduction by rule 6 creates the incomplete node
VP;. Theeager reduction al so establishes acombine pointer at the vertex with equivalence class5,
and akill pointer that points to this combine pointer at the vertex with equivalence class 6 (first
diagram of figure 5.24). At this point, the parser performs an eager reduction by rule 1 at the
vertex with equivalence class 6. Thisreduction attemptsto construct an Sfrom NP; “the courses’
and theincomplete VP, “taught . ..”. When this parse of Sis passed to the oracle for evaluation,
the oracle uses the knowledge that courses cannot teach to reject this parse. Thus the parser stops
all further work pursuing this parse. Accordingly, the counter at the vertex with equivalence
class 6 is decremented. This makes the counter O, so the vertex isdeleted. Thekill pointer at this

vertex is used to identify the combine pointer at the vertex with equivalence class 6, and the vertex
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Figure 5.25: Trace of the L+ algorithm parsing “ The courses taught. .. ” (cont.).

with equivalence class 6 is removed from the combine pointer (second diagram of figure 5.24).
The eager reduction of V; to VP; is not yet rejected, however, because there is one other place it
may be used, represented by the vertex with equivalence class 13 stored in the combine pointer,
at which there is an unprocessed eager reduction by rule 2. This reduction is processed next by
the parser, creating the incomplete node RCI; from VP, (first diagram of figure 5.25). A cascaded
eager reduction by rule 5 then creates NP, from NG; and RCl, leaving the stack as shown in the
second diagram of figure 5.25.

The parser shifts the word “at” onto the stack and eagerly reduces it to PP; by rule 8. This
incomplete PP is combined into the previously created node VP, (first diagram of figure 5.26).
Next, the words “the academy” are shifted onto the stack, and reduced to an NG by rule 3. This
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Figure 5.26: Trace of the L algorithm parsing “ The courses taught. . .” (cont.).

NG is combined into the incomplete PP,, leaving the stack as shown in the second diagram

of figure 5.26. Next, the parser performs a completing reduction by rule 8, marking PP, as

complete (first diagram in figure 5.27). This is followed by a completing reduction by rule 6,

marking VP, as complete. Note how, although there are two paths connected to the vertex with

eguivalence class 5, the compl eting reduction only gets propagated back along one of them. The

other path wasrejected in the earlier rejected eager reduction, and the resulting vertex was del eted

from the combine pointer. Thus the branch of the stack with NP, in it disappears after this

reduction is completed, because it cannot participate in any complete parse. Thisleavesthe much

simpler looking stack shown in the second diagram of figure 5.27. Next, the parser performs
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Figure 5.27: Trace of the L+ algorithm parsing “ The courses taught. ..” (cont.).

a completing reduction by rule 2, marking RCl; as complete, which is followed by a further
compl eting reduction marking NP, as complete. At this point, the stack is as shown in the third
diagram of figure 5.27.

The parser completes the parse of the sentence by shifting the word “were” onto the stack
(first diagram in figure 5.28), eagerly reducing it VP,, which is used in conjunction with NP, to
form S; (second diagramin figure 5.28). The parser then shifts the words “ very demanding” onto

the stack and combines them into the incomplete VP;. Completing reductions by rule 7 (third
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Figure 5.28: Trace of the L algorithm parsing “ The courses taught. ..” (cont.).

diagramin figure 5.28) and rule 1 make S; complete , and the parser finishes the parsewith S; as

the root of the parse forest (fourth diagram in figure 5.28).
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54 Formal Algorithm

Input
A parse table ACTION[state, symbol] for the context-free grammar G = (N, T, R, S) and an
input string z € T™. Entriesin the parsetable are sets of parsing actions. Each action hasthe form

“shift §”, “reduce r”, “eager-reduce r—k”, “goto s”, “combine r”, or “accept”.
N isaset of nonterminals, T isaset of terminals, R isaset of grammar rules of theform X— a,
where X € Nanda € (N UT)*, and S isthe start symbol. The state sq is designated as the
Start state.

A table EQCLASS[state] that gives the equivalence class of each state.

A table KCOUNTSY[class, symbol] that gives the number of kernel items of an equivalence

class that are valid for a given input symbol.

Output

A list of root nodes of a shared parse forest for z if z € L(G), otherwise an error indication.

Data Structures

A vertexin the graph-structured stack isatuple (e, S, n, o, k,C, P), where e is an equivalence
class, S isaset of states, n isaforest node, o isacount of unprocessed paths, k isakill pointer,
C isaset of combine pointers, and P is the set of successor vertices in the stack. For notational
convenience, the elements of avertex v can be referenced using the functions Class(v), States(v),
Node(v), KCount(v), Kill-Ptr(v), Combine-Ptrs(v), and Successors(v).

A node in the shared forest is atuple (X, d), where X € N, and d is a derivation, written
as alist of child forest nodes. The elements of a node n can be referenced using the functions
Nonterm(n) and Children(r).

A combine pointer isatuple (r,d, V), wherer € R, disaderivation, and V isaset of vertices.
The elements of a combine pointer ¢ can be referenced using the functions Rule(c), Deriv(c), and
Vertices(c).

A kill pointer isapair (v, c), wherev isavertex, and c isacombine pointer. The elements of
akill pointer k can be referenced using the functions Kill-vert(k), and Kill-Cptr(k).

A path is a contiguous sequence of vertices vy, ..., v inthestack. That is, fori = 2,...,k,

v; € Successors(v;_1).
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FRONTIER stores a set of pairs (v, a), where v is a vertex and a is a parse action yet to be
performed at v. The vertices within the pairs of thislist form the active stack tops.

KILL-CHECK isaset of verticesfor which the number of unprocessed paths must be checked.

w denotes the current input symbol.

Main L oop

- Add aterminator symbol $ to the end of the input
string z
- w  Thefirst symbol of z
- vo + (EQCLASS]s0), {so}, NIL, O,NIL, {},{}) - Initialise the stack
- Call Schedule(vg, w)
- Loop - Perform reductionsfollowed by shiftsun-

Call Reduce() til acceptance or rejection.
- Call Check-Kills()

- Call shift()

- If FRONTIER contains only pairs of the form
(v, “accept”) then halt and return
{Node(v) | (v, “accept”) € FRONTIER}

- If FRONTIER = {} then halt and signal an error.
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Reduce()
Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Non-eager
reduce actions are processed first, followed by eager reduce actions.

- While 3z € FRONTIER of the form - Process all outstanding non-eager reduc-
(v, “reduce X—a"): tions at stack tops.
- Remove z from FRONTIER
- C + {c € Combine-Ptrs(v) | Rule(c) = X—a} - Each element of C correspondsto aprevi-
- If C # {} then ous eager reduction that is now complete.
- Cal Completing-Reduce(v, C)
Else
- P <« {p|pisapath of length || starting at v in
the stack}

- KCount(v) - KCount(v) + |P| — 1
- Vp € P, cal Full-Reduce(p, X— )
- While 3z € FRONTIER of the form - Process all outstanding eager reductions
(v, “eager-reduce r—k") : at stack tops.
- Remove z from FRONTIER
- P+ {p|pisapathof length k starting at v in
the stack}
- Vp € P, call Eager-Reduce(p, r)

Completing-Reduce(v, C)

Perform a completing reduction at vertex v. Asthis reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and all that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

- KCount(v) - KCount(v) — 1
- Add v to KILL-CHECK

- VeelC - C is aset of combine pointers that point
- Remove ¢ from Combine-Ptrs(v) to the vertices created earlier by an eager
- Vv’ € Vertices(c) reduction that is now being completed.

. Call Schedule(v', w)
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Full-Reduce(vs, . . . , vk, X— )
Non-eagerly reduce by therule X— «, creating anew forest node X whose children arethe nodes of vertices

v1, ..., V. COmbinethisnew nodeinto other partial derivations created previously by eager reduction, and
schedule any further actionstriggered by this reduction.

- KCount(vy) + KCount(vy) — 1
- Add v; to KILL-CHECK
- Proposereduction of Node(vg), . . . , Node(v1) by X—

to the Oracle
- If the Oracle does not reject the reduction then
- n' < (X, (Node(vg), ..., Node(v1))) - Create anew forest node.

- A+ {(v,a)|v € Successors(vg) A s € States(v) A
a € ACTION[s, X]Aa="goto s'"}
- IT + A partition of A st. (v,a) € 7. if and only if
a="goto s” A EQCLASS[s] =e
- Ve €11 - Create new vertices containing the new
- S« {s|(v,a) emc Na="gotos"} forest node, one for each element of IT.
- V<« {v]|(v,a) € 7}
- 0+ KCOUNTSJe, w]
- v+ (e,8,n',0,NIL, {}, 7e)

- YveV - Combine the newly created n' into pre-
- Vs € States(v) vious eager reductions by rule » whose
- Va € ACTION[s, w] st. a =“combine r" corresponding partial derivations have

- Call Combine(v,v',r) Node(v) astheir rightmost element.

. Call Schedule(v’, w)

n ;= Nonterm(Node (v;))
N\ .= Nonterm(Node (V)

TCeZ

Figure 5.29(a): Stack before full reduction.

Figure 5.29(b): Stack and new forest node af-
ter full reduction.
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Eager-Reduce(vy, . . ., v, X— )

Eagerly reduce by the rule X — «, creating a new incomplete forest node X whose children are the nodes
of vertices vy, ...,v,x. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

- Proposereduction of Node(vg), - . ., Node(vy) by X— o
to the Oracle
- If the Oracle regjects the reduction then
- KCount(v;) + KCount(vy) — 1
- Add v; to KILL-CHECK

Else

- d < (Node(v), ..., Node(v1))

- n' — (X,d) - Create anew forest node.

- e+ (X—a,d, {}) - Create a new combine pointer.

- A<+ {(v,a) |v € Successors(vi) A s € States(v) A
a € ACTION([s, X]Aa="gotos'"}
- TT + A partition of A st. (v,a) € m. if and only if
a="goto s” AN EQCLASS[s] =e
- Vme €11 - Create new vertices containing this new
- S« {s|{v,a) e mTe Na="gotos"} node, one for each element of I1.
-V {v]|{v,a) € 7.}
- 0+ KCOUNTS[e, w]
-k« (v,c)
- v+ (e,8,n,0,k,{},V)
- Add v’ to Vertices(c)

- Yv eV - Combine the newly created n' into pre-
- Vs € States(v) vious eager reductions by rule » whose
- VYa € ACTION[s, w] St. a =" combine 7" corresponding partial derivations have

- Cdll Combine(v,v’,r) Node(v) astheir rightmost element.

- Call Schedule(v', EAG)
- Add ¢ to Combine-Ptrs(v1)

n ;= Nonterm(Node(V;))
S n .= Nonterm(Node (V)

m, {-

Figure 5.30(a): Stack before eager reduction.

Figure 5.30(b): Stack and new forest node af-
ter eager reduction.
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Combine(vy, v, r)

Combine Node(wv;) into partial derivations created by eager reduction whose rightmost element is currently
Node(vy). These derivations are identified by the combine pointers associated with vy.

- V¢ € Combine-Ptrs(vs) sit. Rule(c) =
- Remove ¢ from Combine-Ptrs(vy)
- If Vertices(c) = {} then
- KCount(v;) < KCount(v;) — 1
Else
- Propose combining Node(w;) into Deriv(c)
to the Oracle
- If the Oracle rejects combine then
- KCount(v;) « KCount(vs) — 1
- Vertices(c) + {}
- Add ¢ to Combine-Ptrs(v;)
Else
- Add Node(v;) to the end of Deriv(c)

- Add ¢ to Combine-Ptrs(v;)

?f N, = Nonterm(Node (Vv ))
»"1. n;=Nonterm(Node(V;))
4 1
’ ' n .= Nonterm(Node(v,))
Ny Ny

n¢ N
v v

Combine—Pitrs (v,)={{(X~o,d,{v})}

Figure 5.31(a): Stack and forest node before
combine.
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- All elements of Vertices(c) have the same
forest node.

- Movethe combine pointers forward to v,
so that further combines (or completing
reductions) can be performed there.

ZE N, = Nonterm(Node(Vv,))
AN
SN n; = Nonterm(Node(V;))
N r;f ‘nt n .= Nonterm(Node(v,))
X
I_ |
o
v
Ny n; n,
v v v

Combine—Ptrs (v,)={{X-c.,d.{v})}

Figure 5.31(b): Stack and forest node after
combine.



Check-Kills()
Kills off any actions at dead vertices.

- While 3v € KILL-CHECK
- Remove v from KILL-CHECK
- If KCount(v) = 0 then
- Remove any actions of the form (v,a) from
FRONTIER
- k <+ Kill-Ptr(v)
- Delete v from Kill-Cptr(k)
- If Vertices(Kill-Cptr(k)) = {}
- KCount(Kill-Vert(k)) +— KCount(Kill-Vert(k)) —1
- Add Kill-Vert(k) to KILL-CHECK

Shift()

Shift the next terminal symbol onto all the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule

any actions triggered by the shift.
« (w,{})

- w ¢ The next symbol of theinput string
- A+ {(v,a) € FRONTIER|a=*“shift s"}
- FRONTIER + FRONTIER — A
- TT + A partition of A st. (v,a) € 7, if and only if
=“shift 8" A EQCLASS[s] =
- Vme € H
- S+ {s|(v,a) e me Na="shift s"}
. V(—{v|<v a) € e}
- 0+ KCOUNTS]e, w]
- ve + {e,8,n,0,NIL, {}, V)
- Yz € FRONTIER of theform (v, “combine r”) st.
veV
- Remove z from FRONTIER
- Call Combine(v, ve,r)
- Call Schedule(ve,w)

v
TCel 1
O s,
Vo
Tl:ez{ O Ss,
Vs

Figure 5.32(a): Stack tops with outstanding
shift actions.
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- Create a new forest node for the shifted
input symbol.
- Aistheset of al shift actionsto perform.

- Create a new vertex for each member of
IT.

- Combine the newly created n into pre-
vious eager reductions by rule » whose
corresponding partial derivations have
Node(v) astheir rightmost element.

Figure 5.32(b): Stack after shifting.



Schedule(v, L)
Add to FRONTIER all possible actions to be performed at vertex v.

- Vs € States(v) - Schedule al actions except eager reduc-
- A< {a € ACTION][s, L] | tions that repeat an eager reduction car-
(a ="eager-reduce r-k" = ried out earlier.

—Jc € Combine-Ptrs(v) st.Rule(c) = r)
- Va € A, add (v, a) to FRONTIERif not already there
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Chapter 6

L ocal Ambiguity Packing

The ambiguity of natural language is such that the number of valid parses of a sentence can be
exponential inthelength of the sentence (Maruyama, 1990), and there are often hundreds of parses
for an average sentence in anewspaper (Jacobs et a., 1991). To avoid the cost of processing each
parseindividually, the GL R agorithm useslocal ambiguity packing. Loca ambiguity packing can
reduce the amount of stack and parse forest structure, created during parsing, by an exponential
factor, because it allows reuse of computation between parses.

Section 6.1 examines how a GLR parser performs local ambiguity packing. Section 6.2 then
describes the modifications of the L algorithm of chapter 4 that are needed to perform packing.
Section 6.3 presents a complete example of parsing using the new Lx algorithm. Section 6.4

presents aformal specification of the L algorithm with packing.

6.1 Determining packingin a GLR parser

It isthe job of the parser to determine opportunities to pack. Derivations should be packed when
they are headed by the same nonterminal and cover the same input substring. The GLR parser
verifiesthat derivations cover the sameinput substring by determining that the derivations have the
same start and end pointsin theinput. It does this using the configuration of the graph-structured
stack. Derivations start at the same point if the vertices resulting from the reductions have the
same state and the same successors in the stack. Derivations finish at the same point if they are

created by reductions at the same word.
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The GLR parser therefore packs any derivations that are created by reductions which meet the

following criteria:
1. Thereductions all result in the same nonterminal.
2. Thereductions are specified at the same input word.
3. Thereductions result in vertices in the stack with the same state and the same successors.

For example grammar 2.3 from chapter 2 (reproduced here as grammar 6.1), allows two

different parses of S—either asan NP followed by aVP (rule 1) or an Sfollowed by aPP (rule 2).

(1) S — NPVP

20 S — SPP

(33 NP— N

(49 NP— DetN Grammar 6.1
(5> NP— NPPP

(6) PP — PrepNP

(7) VP— VNP

Both forms of the S can be derived from the sentence “ John saw a man in the park”:

(1) [[John],, [saw a man in the park],,]|q

(2) [[gohn saw a man]g [in the park|.,]s

Thesetwo different derivations of Sshould be packed together in the sameforest node because they
cover the sameinput substring. When parsing this sentence, the parser reaches a state as shownin
thefirst diagram of figure 6.1. The next action the parser executes from this state is the reduction
by rule 1, creating a derivation of S from NP; and VP,. The table entry ACTIONIO, §] = {g2}
determines the state of the vertex resulting from the reduction. Thus the parser should create a
new vertex with state 2 whose successor isthe vertex with state 0. However, such avertex already
exists, so the parser performs local ambiguity packing instead, adding the new derivation of Sto
S,, the node associated with the already existing vertex (second diagram in figure 6.1).

6.2 Determining packingin an L parser

The L* parser uses the method of the GLR parser to decide when full reductions should be packed

together. Eager reduction, however, introduces a complication: it becomes difficult to determine
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N, V; Det; N, Prep, Det, N,
Johnsaw a man in the pak

N, V, Det; N, Prep, Det, N,
Johnsasw a man in the pak

Figure 6.1; State of the GLR parser after processing “John saw a man in the park”.

the input substring that a derivation covers. The starting point of an incomplete derivation
created by eager reduction can be determined using the graph-structured stack, asin GLR parsing.
However, the word where the eager reduction is performed is not the word where the derivation
will be complete. Indeed, the word at which the derivation will be completeis unknown when the
eager reduction is performed. It follows that the method used to determine packing opportunities
ina GLR parser cannot be applied to derivations created by eager reduction.

The solution of the Lx parser is to provisionally pack incomplete derivations together if
they start at the same input word and derive the same nonterminal. The parser provisionaly
packs derivations, even though it cannot determine whether the packing will be correct, to avoid
unnecessarily repeating work. Whether or not to provisionally pack is also determined using
the graph-structured stack. The L parser packs any incomplete derivations created by eager

reductions which meet the following criteria:
1. Thereductions all result in the same nonterminal.

2. Thereductions result in vertices in the stack with the same state and the same successors.
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For example, consider parsing the sentence “A B C” using grammar 6.2. An Lx parse table
for this grammar is shown in table 6.1. The following notation is employed in diagrams of the
parse forest. A provisionally packed node is depicted in diagrams of the parse forest as a box
with a dotted line. Individual derivations in a packed node are identified by appending a letter
to the name of the forest hode containing them. For example, if there are two derivations of a

nonterminal X, they are labelled X;(a) and X, (b).

(20 X — BpY
8; é : Eh z Grammar 6.2
B zZz->C
6 Zz— CD
STATE ACTION
A B C D $ EAG S X Y Z
0 sl g2
1 3 g4
2 acc
3 e?-1, e3-1 g7,c2 g6, c3
5
4 ri el-2
5 8 r5r4
6 r3 e3-2
7 r2 e2-2
8 ré

Table 6.1: L parse table for grammar 6.2.

To begin the parse of “A B C”, the parser shifts “A B” onto the stack, leaving the stack as
shown in thefirst diagram of figure 6.2. At the stack top with state 3, there are outstanding eager
reductions by rules 2 and 3. The parser first executes the eager reduction by rule 2, creating the
incomplete node X, , asshown in the second diagram of figure 6.2. Next, the parser eagerly reduces
by rule 3. Thiscreatesanother incompletederivation of X. Thetableentry ACTION[1, X] = {g4}
determines the state of the vertex resulting from the reduction. Thus the parser should create a
new vertex with state 4, whose successor is the vertex with state 1. However, there is already
an eagerly created vertex in the stack that matches this description, so the parser provisionally
packs the new derivation of X into the forest node X; (third diagram of figure 6.2). This X isthen
eagerly reduced to S; by rule 1 (fourth diagram of figure 6.2).
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Ay B,

0 1 @ e2-1,e3-1,s5

[2-X,(a):4]

xl
{4 e1-2
”L/Bl
0 1 @ S5
[o}— 1]

[2-X,(a):4]
[3-X,(b):4]

_____

_____

Figure 6.2: Trace of the L algorithm parsing “A B C..."” with grammar 6.2.

Complete and incompl ete derivations are never packed together because they cover different
substrings. At a given point in the input, any incomplete derivations created at that point must

extend to cover at least the next word, while any complete derivation can extend no further.
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6.2.1 Checking provisional packing

Thefinal decision about whether aprovisional packing iscorrect or not can only be made oncethe
derivations of the provisionally packed node are completed. Derivations are marked as complete
by completing reductions. When anode contains only one derivation, thisisthe same as marking
the forest node storing the derivation as complete. However, packed nodes are only marked as
complete when the provisional packing of the node has been checked. The packing of a node
should be checked after derivationsin the node are completed, and before the next word is shifted
onto the stack. Complete derivations should remain packed together, because they must cover
the same input substring—they finish at the same point, and they must start at the same point
because they were provisionally packed. Incomplete derivations should be separated out of the
node because they must extend over alonger substring of theinput. Theseincomplete derivations
cannot be deleted, however, because although the provisional packing was incorrect, they may
still be completed at a later point in the parse. Instead, the incomplete derivations are put in a
newly created forest node. A new vertex is also created in the stack, representing the parses of
these incompl ete derivations. It has the same state and same successors as the vertex at which the
packing check was executed, but it is an eager vertex, because the derivations stored in the node
associated with the vertex are incomplete.

The parser specifies that the packing of a node should be checked with the packing check
action. Thisisanew action, not stored in the parse table, that is scheduled by the parser at vertices
where a completing reduction has completed a derivation of the packed node associated with the
vertex. Itiswritten as“pc” at stack tops in diagrams of the stack.

For example, again consider grammar 6.2. This grammar accepts the two sentences “A B C”
and“A B CD”, depending on whether Z isparsed using rule 5 or rule 6. For both these sentences,
the parser eagerly reduces by rules 2 and 3 after processing “A B” and provisionally packs the
result, as discussed in the previous section, and shown in figure 6.2. This provisional packing is
correct only if the sentenceis“A B C”.

If the input sentenceis“A B C”, the parser continues processing from the fourth diagram of
figure 6.2 by shifting C onto the stack, and reducing it to both aY by rule 4 and a Z by rule 5
(first diagram of figure 6.3). Next, the parser performs a completing reduction by rule 3, making
derivation X1 (a) complete. Because one of the derivations of X; has been completed, a packing

check action is scheduled at the vertex with state 4 (second diagram of figure 6.3). Before this
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Figure 6.3: Trace of the L* algorithm parsing
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“A B C” with grammar 6.2.



action is executed, however, the parser performs a completing reduction by rule 2, marking the
derivation X1 (b) asalso complete (third diagram of figure 6.3). The parser now checksthe packing
of X1, and because both derivations of the packed node are complete, the parser marksthe node X,
as complete (fourth diagram of figure 6.3). Having verified that the packing of X, is correct, the
parser performs a completing reduction by rule 1, marking S; as complete, thus completing the
parse (fifth diagram of figure 6.3).

If the input sentenceis“A B C D", the parser continues processing from the fourth diagram
of figure 6.2 by shifting C and D onto the stack and reducing them to a Z by rule 6 (as shown
in the first diagram of figure 6.4). The parser next performs a completing reduction by rule 3,
marking the derivation X;(b) as complete. Again, a derivation of X; has been completed, so the
parser schedules a packing check action at the vertex with state 4 (second diagram in figure 6.4).
There are no other actions to perform, so the parser executes the packing check of X;. Derivation
X1(b) is complete, but X, (a) is not, so the two derivations must be separated. The parser puts the
incomplete derivation X, (a) into a newly created forest node. It also creates a new vertex in the
stack whose associated forest node is X, (a), and whose state and successors are the same as those
of the vertex at which the packing check action was performed. The new vertex isan eager vertex
because its associated forest node contains only incomplete derivations. This leaves the stack as
shown in the third diagram of figure 6.4. Having separated the incomplete derivation into a new
forest node, the node X, (b) can be used as part of a completing reduction by rule 1, marking S;

as complete (fourth diagram of figure 6.4).

6.2.2 Processing order of parse actions

It is important that the parser performs al completing reductions that might possibly affect a
forest node before the packing of the forest node is checked. If the parser does not do this, then
it may incorrectly unpack a forest node, because a derivation in the node has not been marked
as complete when the packing is checked. For example, in the second diagram of figure 6.3, the
parser schedules a packing check action at the vertex with state 4, having performed acompleting
reduction for X;(b). There is then a choice between performing the packing check action, or
performing the completing reduction by rule 2. If the packing check is performed next, the parser
will incorrectly unpack the node X;, because X;(a) has not yet been marked as complete by the

outstanding completing reduction by rule 2.
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Figure 6.4: Trace of the L+ algorithm parsing “A B C D” with grammar 6.2.

Completing reductions must also be performed before full reductions. If they are not, deriva
tions created by full reductions at a word will not be packed with derivations that are completed

by a completing reduction at the same word.
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Figure 6.5: Trace of the L algorithm parsing “A B C” with grammar 6.3.

For example, consider parsing the sentence “A B C” using grammar 6.3.

2 X — BpC
@) X = BY, Grammar 6.3
@ Y - C

Firstly, the parser shifts“A B” onto the stack. Next, it reduces B to X;(a) by rule 2, which isthen
used in a cascaded reduction to S; by rule 1. The parser then shifts C onto the stack, combining
it into X;(a), and also reducing it to Y; by rule 4. The stack at this point is shown in the first
diagram of figure 6.5. If the parser next performs the full reduction by rule 3 at the stack top with
state 5, it will incorrectly create anew forest node instead of packing the resulting derivation of X
with X, (a), because X, (a) is still incomplete. Instead, the parser must first perform the completing
reduction by rule 2, marking X;(a) as complete (second diagram in figure 6.5), so that when the

parser performs the full reduction by rule 3, it packs the resulting derivation with the complete

X1 (a) (third diagram in figure 6.5).
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To ensure correct ordering of reductions, scheduled reductions are ordered according to depth

of the vertex that they create in the stack. The depth of a vertex is the length of the longest path

from the vertex to the root of the stack.

6.3 An example of parsing using the L« parser with packing

To demonstrate the L* algorithm with local ambiguity packing, consider the problem of parsing

the sentence “ John saw aman in the park” with the grammar 6.4, which isthe same asgrammar 2.3

used in chapter 2, except the rules of the grammar are annotated with syntactic heads. Table 6.2

shows a parse table for this grammar.

1)
(2)
3)
(4)
()
(6)
(")

S —
S —
NP —
NP —
NP —
PP —
VP —

NP VP,

S, PP

Np

Det Ny, Grammar 6.4
NP;, PP

Prep, NP

V5 NP

Throughout the exampl e, the state of the parser isagain shown in adiagram with three components:

e The graph-structured stack.

The graph-structured stack is drawn as in the diagrams of chapter 4. There is one new

action displayed to the right of a stack top—the packing check action, written pc. This

action is not stored in the parse table, but is scheduled by the L parser when necessary.

e The parseforest.

The parse forest is drawn asin the diagrams of chapter 4. Packed nodes are drawn as a box

containing the different possible parses for the symbol of the node. A provisional packing

of incomplete derivations in aforest node is depicted by the box being drawn with adotted

line. When the provisional packing of anode is checked, the box is changed from a dotted

to asolid line. Individual derivations of a packed node are identified by appending aletter

to the name of the forest node containing them. For example, two derivations of a packed

node X; would be labelled X1 (a) and X, (b).

119



e The current word.

As in chapter 4, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.

STATE ACTION
N Det Prep V $ EAG S VP NP PP
0 sl s3 g2 g4
1 r3 r3 r3
2 5 acc glé
3 s15
4 6 g8 a7
5 $9,e6-1 <$10, e6-1 gl4, c6
6 s9,e7-1 <10, e7-1 011, c7
7 5 5 15 &52
8 rl ri el-2
9 r3 r3 r3
10 s13
11 S5, 17 r7 er-2 gl12
12 5 5 15 &52
13 r4 r4 r4
14 5,16 16 r6 e6-2 gl2
15 r4 r4 r4
16 r2 r2 e2-2

Table 6.2: L parse table for grammar 6.4.

Theremainder of this section presents adetailed trace of the L algorithm parsing the sentence
“John saw a man in the park”. The parser is initialised with a single vertex with state O (first
diagram of figure 6.6). The parser begins by shifting the word “ John” onto the stack, and reducing
it to NP1 by rule 3 (second diagram of figure 6.6). Next, the parser shiftsthe word “saw” onto the
stack, and eagerly reducesit to VP, by rule 7. Thisnodeis used in a cascaded eager reduction by
rule 1, creating the incomplete node S; (third diagram of figure 6.6).

Next, the parser shifts the words “aman” onto the stack, and reduces them to NP, by rule 4.
ThisNPis combined into the eagerly created node VP (fourth diagram of figure 6.6). The parser
then performs a completing reduction by rule 7, which marks the node VP; as complete. Thisis
followed by acompleting reduction by rule 1, marking S; as compl ete (fifth diagram of figure 6.6).

The parser next rejoins the stack by shifting the word “in” onto the stack, as shown in the
first diagram of figure 6.7. Following this, the parser eagerly reduces by rule 6, creating the

incomplete node PP,, and two new vertices—one on each branch of the stack (second diagram of
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Figure 6.6: Trace of the Lx algorithm parsing “ John saw a man in the park”.

figure 6.7). At the vertex with state 12, the parser performs a cascaded eager reduction by rule 5
which creates the node NP3 from NP, and PP;. ThisNPisused in a cascaded reduction by rule 7
to create the incomplete node VP,, which isthen used in a further cascaded reduction by rule 1,
creating the incomplete node S, from NP; and VP, (third diagram of figure 6.7).

The next action the parser performs is an eager reduction by rule 2, at the stack top with
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Figure 6.7: Trace of the Lx algorithm parsing “John saw a man in the park” (cont.).

state 16. This reduction creates an incomplete derivation of Sfrom S; and PP;. The parse table

entry ACTION[O, S] ={g2} specifies that the state of the vertex resulting from the reduction is

state 2. There already exists an eager vertex with the same state (state 2) and the same successors

(the vertex with state 0) as the one the parser would create from this reduction. Therefore,

the parser provisionally packs the new incomplete derivation into the node S, (first diagram of

figure 6.8).

Having provisionally packed S,, the parser then shifts the words “the park” onto the stack,

and reduces them to NP4 by rule 4. This NP is combined into PP, leaving the stack as shown

122



NP, PP,

I---I
11!
[

[7-VP,:8] /' [5-NP,:11]

[6- PP,:16,12]

PP,

:-1-6-: N; V; Det; N, Prep;
[ John saw a man in
[2-S,():2]

NP,
14 ) r6
[6-PP;:16,12]

AN
N, V, Det; N, Prep, Det, N,
John saw a man in the park

[2-S,(0):2]

Figure 6.8: Trace of the L* algorithm parsing “John saw aman in the park” (cont.).

in the second diagram of figure 6.8. Next, the parser performs a completing reduction by rule 6,
marking PP, as complete (first diagram of figure 6.9). Thisisfollowed by acompleting reduction
by rule 5, marking NP3 as complete, then afurther completing reduction by rule 7, marking VP,
as complete (second diagram of figure 6.9).

Next, the parser performs a completing reduction by rule 1, marking derivation S,(a) as
complete. Thisisshowninthefirst diagram of figure 6.10 by changing the dotted lines connecting
the children of S,(a) to solid lines. Because one of the derivations of the node S, has been
completed, the packing of S, must be checked, hence a packing check action is scheduled at the
stack top with state 2. However, this packing check action isnot executed until all other reductions
that could affect S, have been performed. Thus the completing reduction by rule 2 at the stack
top with state 16 is performed first, marking the derivation S, (b) as complete (second diagram of
figure 6.10). Now that all reductions that can affect S, have been performed, the parser checks
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PP,

[5-NP,:11]

N, V, Det; N, Prep, Det, N,
John saw a man in the park

[2-S,(b):2]
S,
I‘ i |
2
| IS
NP, VP,
®
4 8)rl
[1-S,():2]

PP,
N, V, Det; N, Prep, Det, N,

John saw a man in the park

r2
[2-8,(b):2]

Figure 6.9: Trace of the L* algorithm parsing “ John saw aman in the park” (cont.).

the packing of node S, and discovers that all derivations of the provisionally packed node are
complete, therefore the provisional packing is correct, and S, is marked as complete. Thisis
depicted by changing the dotted box to a solid one in the third diagram of figure 6.10. Having
determined that the packing of S, is correct, the parser accepts the input, with S, as the root of

the resulting parse forest.
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S; PP,

0 2 @ r2
[2-5,(0):2]
S,
2 | pc
N, V, Det; N, Prep, Det, N,
John sasw a man in the park
S,

o]

N, V, Det; N, Prep, Det, N,
John sasw a man in the pak

S,

N, V, Det; N, Prep, Det, N,
John sasw a man in the pak

Figure 6.10: Trace of the Lx algorithm parsing “John saw a man in the park” (cont.).
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6.4 Formal Algorithm

Input
A parsetable ACTION[state, symbol] for the context-free grammar G = (N, T, R, S) and an
input string z € T*. Entriesinthe parsetable are sets of parsing actions. Each action hastheform

“shift §", “reduce r”, “eager-reduce r—k”, “goto s”, “combine r", or “accept”.
N isaset of nonterminals, T isaset of terminals, R isaset of grammar rules of theform X— a,
where X € Nand a € (N UT)*, and S isthe start symbol. The state sq is designated as the

start state.

Output

Theroot node of a packed shared parsetreefor z if z € L(G), otherwise an error indication.

Data Structures

A vertex in the graph-structured stack isatuple (s, n,,C, S), where s isa state, n isaforest
node, ! isthelength of thelongest path back to the base of the stack, C isaset of combine pointers,
and S isthe set of successor vertices in the stack. For notational convenience, the elements of a
vertex v can be referenced using the functions State(v), Node(v), Depth(v), Combine-Ptrs(v), and
Successors(v).

A node in the shared forest is atuple (X, D), where X € N, and D is aset of derivations.
The elements of anode n can be referenced using the functions Nonterm(n) and Derivs(n).

A derivation is a pair (c,z), where c is a list of child forest nodes and z € {complete,
incomplete} indicates whether the derivation is complete or not. The elements of a derivation
d can be referenced using the functions Children(d), and Status(d).

A combine pointer isatuple (r,d, V), wherer € R, disaderivation and V isaset of vertices.
The elements of a combine pointer ¢ can be referenced using the functions Rule(c), Deriv(c), and
Vertices(c).

A path is a contiguous sequence of verticesvy, ..., v inthestack. That is, fori = 2,...,k,
v; € Successors(v;_1).

RFRONTIER and SFRONTIER store sets of pairs (v, a), where v isavertex and a is a parse
action yet to be performed at v. The vertices of these pairs form the active stack tops. Shift,
combine, and accept actions are stored in SFRONTIER. Reduce, eager-reduce, and

pack-check actions are stored in RFRONTIER. RFRONTIER is a priority queue. Items on
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RFRONTIER are ordered by the depth of the verticesthat their actions createin the stack. Actions
that create vertices deeper in the stack have a higher priority and are run earlier.

Thesets CURRENT-V and EAGER-V areused to keep track of possible packing opportunities.
CURRENT-V isaset of all vertices whose associated forest node contains at |east one derivation
that was completed at the current input word. EAGER-V isaset of al vertices created by eager
reduction whose associated forest node as yet contains no complete derivation.

w denotes the current input symbol.

Main L oop

- Add aterminator symbol $ to the end of the input
string z
- w + Thefirst symbol of z
- v + (so,NIL, 0, {}, {}) - Initialise the stack
- CURRENT-V « {wo}
. EAGER-V « {}
- Call Schedule(vg, w)
- Loop - Perform reductionsfollowed by shiftsun-

Cdl Reduce() til acceptance or rejection.
- Call Shift()
- If SFRONTIER = {(v, “accept”)} then halt and

return Node(v)
- If SFRONTIER = {} then halt and signal an error.
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Reduce()

Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Actions
with the same priority are processed in the following order: completing reduces, full reduces, packing
checks, then eager reduces.

- While RFRONTIER # {}
- B + Theset of adl itemsin RFRONTIER with the
highest priority
- If 3z € Bst. z = (v,"reduce X—a")
- C < {c € Combine-Ptrs(v) | Rule(c) = X—a} - Each element of C correspondsto aprevi-
- IfC#{} ous eager reduction that is now complete.
- Cal Completing-Reduce(v, C)
Else
- P« {p|pisapath of length |a| starting at v in
the stack}
- Vp € P, cal Full-Reduce(p, X— )
Elself 3z € B st. z = (v, “pack-check”)
- Call Packing-Check ({v | (v,"pack-check”) € B})
Elself 3z € Bst. z = (v,"eager-reduce r—k")
- P+ {p|pisapathof length k starting at v in
the stack}
- Vp € P, call Eager-Reduce(p, r)

Completing-Reduce(v, C)

Perform a completing reduction at vertex v. As this reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and al that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

- VYeeC - C isaset of combine pointers that point
- Status(Deriv(c)) < complete to the vertices created earlier by an eager
- Remove ¢ from Combine-Ptrs(v) reduction that is now being completed.

- Yo' € Vertices(c)
- Remove v’ from EAGER-V

- Add v' to CURRENT-V
- Add (v',"pack-check”) to RFRONTIER with - Check that the packing of Node(v') isstill

)

priority Depth(v") correct.
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Full-Reduce(vs, . . ., vk, X— )

Non-eagerly reduce by the rule X — «, creating a derivation of X whose children are the nodes of vertices
v1, ..., V. COmbinethisnew nodeinto other partial derivations created previously by eager reduction, and
schedule any further actionstriggered by this reduction.

- d <+ ((Node(vg), ..., Node(v)), complete)

- T «+ A partition of Successors(vg) by goto value on - v belongstotheset w, € ITif and only if

symbol X

- If 3v € CURRENT-V sit.

Successors(v) € IT A Nonterm(Node(v)) = X

- Add d to Derivs(Node(v))

Else
- n' (X, {d})
- Vmg €11
- 1 + Max({Depth(v) | v € ms}) + 1
v (s,n, [, {},7s)
- Add v’ to CURRENT-V
- Yv € g
- Va € ACTION]State(v), w] st.
a ="combine r”
- Call Combine(v,v',r)
- Call Schedule(v', w)

\

I 4@

k
m,, -

Figure 6.11(a): Stack before full reduction
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“goto s” € ACTION[State(v),X]. See
figure 6.11(a).

- Pack using an existing vertex in
CURRENT-V whosenonterminal and | eft
context match the current reduction.

- Create anew forest node.

- Create new vertices containing this node,
one for each element of I1.

- Combine the newly created n' into pre-
vious eager reductions by rule » whose
corresponding partial derivations have
Node(v) astheir rightmost element.

n,= Nonterm(Node(v;))
n = Nonterm(Node(v,))

Figure 6.11(b): Stack after full reduction



Eager-Reduce(vy, . .., vg, X—a)

Eagerly reduce by the rule X — «, creating a new incompl ete derivation of X whose children are the nodes
of vertices vy, ...,v;. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

- d < ((Node(wvg), .. .,Node(v1)), incomplete)

- IT + A partition of Successors(vy) by goto value on
symbol X

- ¢+ (X—=a,d,{})
- Vv € EAGER-V
- If Successors(v) € IT A Nonterm(Node(v)) = X
- Add v to Vertices(c)

- If Vertices(c) # {} then

- v « Anarbitrary element of Vertices(c)
- Add d to Derivs(Node(v))
Else
- ' (X, {d})
- Vg €11
- |+ Max({Depth(v) |v € ms}) + 1
- v (s,n,,{},7s)
- Add v’ to EAGER-V
- Add v’ to Vertices(c)
- Yv €y
- Ya € ACTION]State(v), w] st.
a="“combiner”
- Cdl Combine(v,v’,r)
- Cadl Schedule(v', EAG)
- Add ¢ to Combine-Ptrs(v1)

TESZ

Figure 6.12(a): Stack before eager reduction.
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- Thenew derivation isincomplete because
it is created by an eager reduction.

- v belongsto theset =, € ITif and only if
“goto s” € ACTION][State(v),X]. See
figure 6.12(a).

- Create anew combine pointer.

- Collect the set of existing eager vertices
whose nonterminal and left context match
the current reduction.

- Pack using an existing vertex created by
aprevious eager reduction.

- All elements of Vertices(c) have the same
forest node.

- Create anew forest node.

- Create new vertices containing this new
node, one for each element of T1.

- Combine the newly created n' into pre-
vious eager reductions by rule » whose
corresponding partial derivations have
Node(v) astheir rightmost element.

- Use EAG because appropriate lookahead
symbols are not available.

n ;= Nonterm(Node (v;))
n,= Nonterm(Node(v,))

c=(x~o,d,{v;,v, )

Figure 6.12(b):

Stack after eager reduction.



Combine(vy, v, 7)
Combine Node(wv;) into partial derivations created by eager reduction whose rightmost element is currently
Node(vy). These derivations are identified by the combine pointers associated with vy.

- V¢ € Combine-Ptrs(vf) sit. Rule(c) =r
- Add Node(v;) to the end of Children(Deriv(c))

- Remove ¢ from Combine-Ptrs(vy)
- Add ¢ to Combine-Ptrs(v;)

X
" n = Nonterm(Node(v,))
// !
,~~ v n¢=Nonterm(Node(V;))
N n, n,.= Nonterm(Node(Vv,))

Combine-Ptrs (vq)={(X~a,d,{vh}

Figure 6.13(a): Stack before combine.

- Move the combine pointers forward to v,
so that further combines (or completing

reductions) can be performed there.

)f N, = Nonterm(Node(V,))
; ! ‘\ Nn¢ = Nonterm(Node (v;))
| n .= Nonterm(Node(v,))

Combine-Ptrs (v,)={(X~a,d,{vh}

Figure 6.13(b): Stack after combine.
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Packing-Check (L)

Check the provisional packing of nodes in the parse forest. If there are both complete and incomplete
derivations packed together in the same node, then the packing was incorrect and the incomplete and com-
plete derivations must be separated and unpacked into two distinct forest nodes. The complete derivations
were created by completing reductions at the current input word, so schedule any actions these compl eting
reductions trigger at the vertices whose associated forest node contain the complete derivations.

- IT + A partition of £ according to associated forest
node
- Vm, €11
- C + {d € Derivs(n) | Status(d) = complete }
- T <+ {d € Derivs(n) | Status(d) = incomplete }
- 1f C # {} then
- If T £ {} then

- n' + (Nonterm(n),C)
- Derivs(n) T

-Yvem,
- Remove v from CURRENT-V
- Add v to EAGER-V
- v'«(State(v),n’, Depth(®),{ }, Successors(v))
- Add v’ to CURRENT-V
- Call Schedule(v', w)

Else
- Yv em,
- Cal Schedule(v, w)

X vET,
] s' s = State(v)
I_\; B X = Nonterm(n)

Figure 6.14(a): Stack before unpacking.
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- Each v belongs to the set =, € IT if and

only if Node(v) = n.

- Forest node n. contains both complete and

incomplete derivations, so it is necessary
to unpack.

- Remove the compl ete derivations from n

and put them into a new node n’. See
figure 6.14(b).

- Create new vertices associated with the

newly created node.

- Node(v') contains the complete deriva-

tions, so schedule further actions at v’

- All v € m, have forest node n, and al

derivations of n are complete; therefore
schedule further actions at these vertices.

vVET,
S = State(v)
X = Nonterm(n)

n’ = Node(v)

Figure 6.14(b): Stack after unpacking.



Shift()

Shift the next terminal symbol onto al the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule

any actions triggered by the shift.
- (w,{})

- w « The next symbol of the input string
- CURRENT-V « {}
- 8§+ {(v,a) € SFRONTIER |a =“shift s"}
- SFRONTIER + SFRONTIER — S
- IT + A partition of S according to goto state of the
shift actions
- Vg €11
- V<« {v]|(v,a) € 7}
- 1 + Max({Depth(v) | v € V}) + 1
© Vs <37n7l7{}7v>
- Add v to CURRENT-V
- Yz € SFRONTIERSLt. z = (v,“combiner’)AveY
- Remove z from SFRONTIER
. Cal Combine(v, vs,r)
- Call Schedule(vs, w)

o

T Vi
O s,
Vo
ESZ{ O Ss,
Vs

Figure 6.15(a): Stack tops with outstanding
shift actions.

Schedule(w, L)

- Create a new node for the shifted input

symbol.

- Sistheset of all shift actionsto perform.

- Each w, € II consists of elements of the

form (v, “shift s").

- Create a new vertex for each member of

IT.

- Combine the newly created n into pre-

vious eager reductions by rule » whose
corresponding partial derivations have
Node(v) astheir rightmost element.

S1

Vo
S2
Vg Vs,

Figure 6.15(b): Stack after shifting.

Add to RFRONTIER and SFRONTIER all possible actions to be performed at vertex v.

- VYa € ACTION|State(v), L] st.
a ="eager-reduce r—k" A
—Je € Combine-Ptrs(v) st. Rule(c) =»
- p+ Depth(v) —k+1
- Add (v, a) to RFRONTIER with priority p
- Va € ACTION|State(v), L] st. a =“reduce X—a”
- p <+ Depth(v) — |a| +1
- Add (v, a) to RFRONTIER with priority p
- Va € ACTION|State(v), L] st. aisashift,
combine, Or accept action
- Add (v, a) to SFRONTIER
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- Filter out reductions that would repeat an
eager reduction carried out earlier.






Chapter 7

Conclusion

Thisthesis has described L+ parsing—a method of parsing designed to improve the efficiency of
anatural language processing system by facilitating the early resolution of ambiguity. L parsing

defines ageneral framework for specifying parsers with different control strategies.

7.1 Summary of L parsing

Lx parsing facilitates early resolution of ambiguity by allowing grammar rules to be applied
whenever they are likely to provide syntactic information that permits an NLP system to perform
useful semantic or pragmatic work.

L« parsing is atable-driven algorithm. It has been implemented by extending the bottom-up
GLR parser to include two new parse actions—the eager-reduce and combine actions. These
actions are stored in the parse table. The eager-reduce action allows an L parser to perform a
reduction by a grammar rule before all symbols of the rule’'s RHS have been parsed, creating an
incomplete derivation. The combine action then incorporates the missing RHS symbols into the
incomplete derivation when they are derived from later input.

Control strategies for the Lx parser are expressed by specifying the circumstances in which
eager reductions are to be performed. One particular approach to performing eager reductions
is to eagerly reduce only when doing so generates a syntactic attachment. Syntactic attachment
provides a way of determining whether or not a reduction is likely to allow useful semantic
processing. A method of compiling this approach into an L parse table has been designed and

implemented.
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To make the L« algorithm practical, a method for removing contextual distinctions encoded
in states of the parse table has been designed and implemented. Contextual distinctions reduce
opportunitiesfor theL x parser to shareand pack parses. Thismakesthe parser inefficient becauseit
unnecessarily repeatswork. Contextual distinctionsareremoved by the use of equivalence classes.
An equivalence class contains all states that are differentiated only by contextual distinctions.
When parsing, all states of the same equivalence class at the top of the stack are merged together.
Equivalence classes can also be used with LR(k) grammars to remove the contextua distinctions
introduced by lookahead.

The Lx parser is intended to be used as part of alarger natural language processing system.
A prototype interface for the interaction of the parser and an oracle that eval uates parses has been
designed and implemented. When the oracle rejects parses created by eager reduction, the parser
stops al work on completing the parse. To implement this, an extra table storing the number of

kernel itemsin each state is built in conjunction with building the parse table.

7.2 Work in progress

This thesis describes an ongoing research project. Current lines of research are summarised in

the following sections.

7.2.1 Integration of equivalence classes, oracle, and packing

A version of the Lx parser that combines the algorithms described in chapters 5 and 6 has been
implemented. While there appear to be no problems with the integration of the two algorithms,

further testing is needed.

7.2.2 ExtendingL=x parsingto alarger class of context-free grammars

The current version of the algorithm does not function correctly with grammars involving null
rules (grammar rules that specify that a nonterminal derives the empty string). Any context-free
grammar with null rules can be transformed to a grammar with no null rules (Aho and Uliman,
1972). However, the number of rules resulting from such a transformation can be impractically

high. Also, transformations of the grammar are generally undesirable, because the relationships
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between symbols in the grammar may have implications for semantic processing that are altered
by transforming the grammar.

Tomita's version of the GLR algorithm did not process null rules correctly either. Although
the GLR parser could parse with grammarsinvolving null rules, the method for dealing with them
produced inefficient parse forests, and could not cope with cyclic grammars. A better method of
parsing grammarswith null rulesisto allow cyclesin the graph-structured stack (Nozohoor-Farshi,
1991; Rekers, 1992).

A version of the Lx algorithm without packing that processes null rules has been implemented,
though not fully tested. Also, theimplicationsof null ruleswhen using the L parser with packing
have not yet been investigated. In particular, reductions by null rules may cause problems for

determining the order in which reductions should be performed.

7.2.3 Extending L parsingto other grammar formalisms

Although context-free grammars can model a useful subset of natural language, they cannot
express all features. Also, describing some features of natural language with a context-free
grammar may take many grammar rules, and fail to capture underlying structure and regularities.
For example, to express subject-verb agreement in a context-free grammar requires different rules
for singular and plural subjects.

A common method of addressing these problems is to augment context-free grammars with
some form of parameter mechanism. This is the approach of constraint-based grammar for-
malisms (Shieber, 1992), examplesof whichinclude FUG (Kay, 1982), L FG (Kaplan and Bresnan,
1982), and PATR (Shieber, 1992). Tomita has addressed issuesin parsing augmented context-free
grammars with the GLR agorithm (Tomita, 1987a).

TheL x algorithm hasbeen extended to use affix grammarsover afinitelattice (AGFLs) (Neder-
hof and Sarbo, 1993), which are a restricted form of affix grammars (Koster, 1991). However,
the implementation does not perform local ambiguity packing, and has not been fully tested.
Sample AGFL s of English and Turkish have been obtained from the University of Nijmegen, The
Netherlands, through Mark-Jan Nederhof, for testing purposes.

Parsing with parameters presents additional problems for L parsing. In particular, an eager
reduction may be create an incomplete derivation with the value of a parameter unbound. Cas-

caded reductions may then place constraints on the possible values of this unbound parameter.
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When performing alater combine action, the parser may discover inconsistencies between these
constraints and the value of the parameter for the derivation being combined. The currently
implemented solution to this problem is to split forest nodes when performing combine actions

to remove any inconsistencies.

7.2.4 Experimentation and evaluation of L x parsing

The L= algorithm has currently been tested on anumber of grammars specially designed to exploit
the various mechanisms of Lx parsing. However, no evaluation of the effects of L parsing has
been performed on awide coverage grammar of natural language, with the parser interacting with
alarger NLP system.

Work isin progressto perform such an evaluation. The PUNDIT natural language processing
system (Lang and Hirschman, 1988) has been obtained under an educational licence for this
purpose. PUNDIT is an NLP system written in Quintus Prolog. It analyses the syntax of
sentences according to a restriction grammar of natural language (Hirschman and Puder, 1986,

1982). Work to date has seen PUNDIT ported to Sicstus Prolog.

7.3 Futurework

There are anumber of possible extensions to the work described in thisthesis.

7.3.1 Changing theway the L parser pursues parses

Animportant modification for usein natural language would be to change the current breadth-first
pursuit of all parsesto a best-first search. The most promising parse would always be considered,
without expending effort on parsing lesslikely interpretations. The parser would receive goodness
ratings on the current parses, and always pursue the one with the highest goodness rating. This
would involve some interesting changes, because input can no longer be processed in a strict
left-to-right fashion. A promising parse might be pursued for a number of words before it is
discovered to be wrong (such as in a garden-path sentence), at which time the parser might back

up in the input and pursue a different interpretation.
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7.3.2 Determining whereto eagerly reduce

Another major area for future research is determining eager reduction points in the grammar.
This thesis has presented one strategy for producing eager reductions from a grammar. Thisis
far from the only possibility, however, and there is scope for investigating other possible methods
of determining eager reduction points. One interesting possibility is to explore probabilistic,
corpus-based approaches.

7.3.3 Dealing with ungrammatical input

Dealing with ungrammatical input is a serious problem for real NLP systems. Work in this area
addressing adapting the GLR agorithm to handle ungrammatical input (Maone and Felshin,
1991) could be extended to the L* parsing framework.

7.4 Summary

Thisthesis has described anew parsing algorithm for natural |anguage processing that isintended
to increase the efficiency of an NLP system by facilitating early resolution of ambiguity. The
initial design and implementation has been completed. However, many issues still remain to be

addressed.
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