
Flexible Table-Driven Parsing for
Natural Language Processing

Linton Miller

A thesis

Submitted to the Victoria University of Wellington

in fulfilment of the requirements for the degree of

Master of Science in Computer Science.

Victoria University of Wellington

1994

Abstract

Ambiguity is a major difficulty for natural language processing (NLP) systems.

The longer that ambiguities in a sentence remain unresolved, the more work an NLP

system may perform in considering alternative interpretations of the sentence. Thus,

for efficiency, an NLP system should resolve ambiguities as early as possible in

processing.

This thesis describes L� parsing—an algorithm for table-driven parsing, designed

to permit efficient processing of natural language by facilitating the early resolution

of ambiguity. The algorithm is a generalisation of GLR parsing that allows grammar

rules to be used whenever they may provide useful syntactic information to an NLP

system.

L� parsing defines a general framework for specifying a variety of parser control

strategies. Different control strategies can be expressed by specifying exactly when

grammar rules are to be used. This thesis presents one possible control strategy,

designed to provide syntactic information that enables useful semantic and pragmatic

processing, and describes a method of compiling this strategy into a parse table.

Acknowledgements

There are so many, many people to thank.

Firstly, special thanks to my supervisor, Eric Jones, for his guidance and energy throughout

the project.

My deepest thanks go to my officemate, and fellow sufferer, Aaron Roydhouse, for his good

nature, company, and friendship.

Also, thanks go to the other members of the AI group, in particular Peter Andreae, Paul

Hosking, and Michael Norrish, for many wide-ranging and varied discussions—they may not

have helped me finish, but at least they kept me sane.

A big thank you to the Department programming staff Mark Davies, Duncan McEwan, Bernd

Gill and Julian Anderson for a great environment in which to work.

Thanks to the department secretaries Christine Polglase and Valerie McGillivray, who dealt

with all those little administrative hassles, and gave me great company.

A heartfelt thank you to my friends and family who have supported me through the whole

process, especially my father who waded through endless drafts of unintelligible jargon, and still

didn’t manage to teach me how to use the word “only”.

And finally, a very special thank you to a very special person, without who the whole thing

might never have been completed. For her never ending patience, support, and love, my deepest

thanks go to Judi.

Contents

1 Introduction 1

1.1 Ambiguity of natural language � 2

1.2 Interaction of syntax and semantics in an NLP system � � � � � � � � � � � � � � 5

1.3 Past work on syntactic analysis � 5

1.3.1 Grammars of natural language � 6

1.3.2 Parsing algorithms � 6

1.4 The L� parsing algorithm � 7

1.5 Definitions and Notation � 8

1.6 Outline of this thesis � 9

2 GLR Parsing 11

2.1 Overview of GLR parsing � 11

2.2 The Graph-Structured Stack � 12

2.2.1 Splitting � 12

2.2.2 Rejoining � 13

2.3 The Packed Shared Forest � 13

2.4 An example of parsing with the GLR algorithm � � � � � � � � � � � � � � � � � 15

2.5 The Formal GLR Algorithm � 22

3 Building Tables for L� Parsing 25

3.1 Parsing in a modular system � 25

3.2 Eager reduction � 27

3.2.1 Semantic heads and semantic attachment � � � � � � � � � � � � � � � � 28

3.2.2 Syntactic heads and syntactic attachment � � � � � � � � � � � � � � � � 29

i

3.2.3 When to eagerly reduce � 30

3.3 Building LR parse tables � 31

3.3.1 LR finite automata � 31

3.3.2 Building LR parse tables from finite automata � � � � � � � � � � � � � � 35

3.4 Building L� parse tables � 37

3.4.1 Creating the L� NFA � 38

3.4.2 Constructing an L� DFA from an NFA � � � � � � � � � � � � � � � � � 41

3.4.3 Constructing L� parse tables from finite automata � � � � � � � � � � � � 43

3.5 Left recursion � 48

3.6 Formal table-building algorithms � 52

3.6.1 L� Table Building Algorithm � 52

3.6.2 Algorithm for detecting head-left-recursive loops � � � � � � � � � � � � 54

4 L� Parsing 55

4.1 The eager-reduce action � 55

4.1.1 Cascaded reductions � 56

4.2 The combine action � 57

4.2.1 Combine pointers � 57

4.2.2 Completing reductions � 58

4.3 A simple example of parsing using the L� algorithm � � � � � � � � � � � � � � � 58

4.4 Formal L� algorithm without packing � 63

5 L� Parsing Extensions 71

5.1 Subtree Sharing � 71

5.2 Integrating the L� parser with an external oracle � � � � � � � � � � � � � � � � � 86

5.3 An example of using the extended L� parser � � � � � � � � � � � � � � � � � � � 93

5.4 Formal Algorithm � 101

6 Local Ambiguity Packing 109

6.1 Determining packing in a GLR parser � 109

6.2 Determining packing in an L� parser � 110

6.2.1 Checking provisional packing � 114

ii

6.2.2 Processing order of parse actions � 116

6.3 An example of parsing using the L� parser with packing � � � � � � � � � � � � � 119

6.4 Formal Algorithm � 126

7 Conclusion 135

7.1 Summary of L� parsing � 135

7.2 Work in progress � 136

7.2.1 Integration of equivalence classes, oracle, and packing � � � � � � � � � 136

7.2.2 Extending L� parsing to a larger class of context-free grammars � � � � 136

7.2.3 Extending L� parsing to other grammar formalisms � � � � � � � � � � � 137

7.2.4 Experimentation and evaluation of L� parsing � � � � � � � � � � � � � � 138

7.3 Future work � 138

7.3.1 Changing the way the L� parser pursues parses � � � � � � � � � � � � � 138

7.3.2 Determining where to eagerly reduce � � � � � � � � � � � � � � � � � � 139

7.3.3 Dealing with ungrammatical input � 139

7.4 Summary � 139

References 140

iii

List of Figures

2.1 Trace of the GLR algorithm parsing “John saw a man in the park”. � � � � � � 17

2.2 Trace of the GLR algorithm parsing “John saw a man in the park” (cont.). � � 18

2.3 Trace of the GLR algorithm parsing “John saw a man in the park” (cont.). � � 19

2.4 Trace of the GLR algorithm parsing “John saw a man in the park” (cont.). � � 20

2.5 Trace of the GLR algorithm parsing “John saw a man in the park” (cont.). � � 21

3.1 LR(0) NFA for recognising viable prefixes of grammar 3.2. � � � � � � � � � � 34

3.2 LR(0) DFA for recognising viable prefixes of grammar 3.2. � � � � � � � � � � 35

3.3 L� NFA for recognising the viable prefixes of grammar 3.3. � � � � � � � � � � 40

3.4 L� NFA for recognising the viable prefixes of grammar 3.4. � � � � � � � � � � 42

3.5 L� DFA for recognising the viable prefixes of grammar 3.4. � � � � � � � � � � 43

3.6 L� DFA for recognising the viable prefixes of grammar 3.3. � � � � � � � � � � 44

3.7 L� DFA for grammar 3.5. � 50

4.1 Parse state after an eager reduction. � 56

4.2 Trace of the L� algorithm parsing “John saw Mary”. � � � � � � � � � � � � � 60

4.3 Trace of the L� algorithm parsing “John saw Mary” (cont.). � � � � � � � � � � 61

4.4 Trace of the L� algorithm parsing “John saw Mary” (cont.). � � � � � � � � � � 62

4.5 Trace of the L� algorithm parsing “John saw Mary” (cont.). � � � � � � � � � � 63

4.6(a) Stack before full reduction. � 66

4.6(b) Stack and new forest node after full reduction. � � � � � � � � � � � � � � � � � 66

4.7(a) Stack before eager reduction. � 67

4.7(b) Stack and new forest node after eager reduction. � � � � � � � � � � � � � � � � 67

4.8(a) Stack and forest node before combine. � 68

4.8(b) Stack and forest node after combine. � 68

iv

4.9(a) Stack tops with outstanding shift actions. � � � � � � � � � � � � � � � � � � � 69

4.9(b) Stack after shifting. � 69

5.1 Optimal parse forest for the sentence “A B C D E” with grammar 5.1. � � � � � 72

5.2 L� parse forest for the sentence “A B C D E” with grammar 5.1. � � � � � � � 72

5.3 State of the L� parser after processing “A B” with table 5.1. � � � � � � � � � � 74

5.4 State of the L� parser after processing “A B C” with table 5.1. � � � � � � � � 74

5.5 State of the L� parser after processing “A B C D” with table 5.1. � � � � � � � 75

5.6 State of the L� parser after processing “A B C D E” with table 5.1. � � � � � � 75

5.7 Rejoining of the stack allows sharing. � 76

5.8 The stack is rejoined when states are equal. � � � � � � � � � � � � � � � � � � 76

5.9 The stack is not rejoined when states are not equal. � � � � � � � � � � � � � � 76

5.10 L� DFA for grammar 5.1. � 77

5.11 State of the L� parser (reusing derivations) after processing “A B C D”. � � � � 78

5.12 L� DFA for grammar 5.2. � 79

5.13 L� DFA, after merging common core, for grammar 5.2. � � � � � � � � � � � � 80

5.14 State of the L� parser after processing “A B” with table 5.3. � � � � � � � � � � 82

5.15 State of the L� parser after processing “A B C” with table 5.3. � � � � � � � � 83

5.16 State of the L� parser after processing “A B C D” with table 5.3. � � � � � � � 84

5.17 State of the L� parser after processing “A B C D E” with table 5.3. � � � � � � 85

5.18 Two possible outcomes of performing reductions by rules 3 and 4. � � � � � � 86

5.19 Trace of the L� algorithm parsing “A B C D” with grammar 5.3. � � � � � � � 88

5.20 Trace of the L� algorithm parsing “A B C D” with grammar 5.4. � � � � � � � 90

5.21 DFA for the grammar 5.4. � 90

5.22 Trace of the L� algorithm parsing “A B C D” with grammar 5.4 (cont.). � � � � 92

5.23 Trace of the L� algorithm parsing “The courses taught� � � ”. � � � � � � � � � � 95

5.24 Trace of the L� algorithm parsing “The courses taught� � � ” (cont.). � � � � � � 96

5.25 Trace of the L� algorithm parsing “The courses taught� � � ” (cont.). � � � � � � 97

5.26 Trace of the L� algorithm parsing “The courses taught� � � ” (cont.). � � � � � � 98

5.27 Trace of the L� algorithm parsing “The courses taught� � � ” (cont.). � � � � � � 99

5.28 Trace of the L� algorithm parsing “The courses taught� � � ” (cont.). � � � � � � 100

v

5.29(a) Stack before full reduction. � 104

5.29(b) Stack and new forest node after full reduction. � � � � � � � � � � � � � � � � � 104

5.30(a) Stack before eager reduction. � 105

5.30(b) Stack and new forest node after eager reduction. � � � � � � � � � � � � � � � � 105

5.31(a) Stack and forest node before combine. � 106

5.31(b) Stack and forest node after combine. � 106

5.32(a) Stack tops with outstanding shift actions. � � � � � � � � � � � � � � � � � � � 107

5.32(b) Stack after shifting. � 107

6.1 State of the GLR parser after processing “John saw a man in the park”. � � � � 111

6.2 Trace of the L� algorithm parsing “A B C� � � ” with grammar 6.2. � � � � � � � 113

6.3 Trace of the L� algorithm parsing “A B C” with grammar 6.2. � � � � � � � � 115

6.4 Trace of the L� algorithm parsing “A B C D” with grammar 6.2. � � � � � � � 117

6.5 Trace of the L� algorithm parsing “A B C” with grammar 6.3. � � � � � � � � 118

6.6 Trace of the L� algorithm parsing “John saw a man in the park”. � � � � � � � 121

6.7 Trace of the L� algorithm parsing “John saw a man in the park” (cont.). � � � 122

6.8 Trace of the L� algorithm parsing “John saw a man in the park” (cont.). � � � 123

6.9 Trace of the L� algorithm parsing “John saw a man in the park” (cont.). � � � 124

6.10 Trace of the L� algorithm parsing “John saw a man in the park” (cont.). � � � 125

6.11(a) Stack before full reduction � 129

6.11(b) Stack after full reduction � 129

6.12(a) Stack before eager reduction. � 130

6.12(b) Stack after eager reduction. � 130

6.13(a) Stack before combine. � 131

6.13(b) Stack after combine. � 131

6.14(a) Stack before unpacking. � 132

6.14(b) Stack after unpacking. � 132

6.15(a) Stack tops with outstanding shift actions. � � � � � � � � � � � � � � � � � � � 133

6.15(b) Stack after shifting. � 133

vi

List of Tables

2.1 SLR(1) parse table for grammar 2.3. � 15

3.1 SLR(1) parse table for grammar 3.2. � 37

3.2 L�(1) parse table for grammar 3.3. � 47

3.3 L� parse table for grammar 3.5. � 50

4.1 L�(1) parse table for grammar 4.2. � 59

5.1 L� parse table for grammar 5.1. � 73

5.2 L� parse table for grammar 5.2. � 80

5.3 New L� parse table for grammar 5.1, constructed from the DFA in figure 5.10. � 81

5.4 L� parse table for grammar 5.3. � 87

5.5 L� parse table for grammar 5.4. � 89

5.6 L� kernel counts table for grammar 5.4. � 91

5.7 L� parse table for grammar 5.5. � 94

5.8 L� kernel counts table for grammar 5.5. � 94

6.1 L� parse table for grammar 6.2. � 112

6.2 L� parse table for grammar 6.4. � 120

vii

List of Grammars

1.1 � 9

2.1 � 12

2.2 � 13

2.3 � 15

3.1 � 26

3.2 � 33

3.3 � 39

3.4 � 41

3.5 � 48

4.1 � 56

4.2 � 58

5.1 � 72

5.2 � 81

5.3 � 86

5.4 � 89

5.5 � 93

6.1 � 110

6.2 � 112

6.3 � 118

6.4 � 119

viii

Chapter 1

Introduction

Ambiguity is a major difficulty for natural language processing systems. Ambiguity can be found

in all aspects of natural language, and can arise from many different sources. Even unambiguous

sentences are constructed from ambiguous parts. Thus, a natural language processing (NLP)

system must resolve ambiguity when processing a sentence.

To process natural language efficiently, ambiguity must be resolved as early as possible in

processing. Ambiguities cause inefficiency because an NLP system must consider alternative

interpretations of a sentence. The longer an ambiguity remains unresolved, the more work a

system may perform in considering alternative interpretations.

Resolving ambiguity requires wide and varied types of knowledge, any of which can be called

on to help resolve a particular ambiguity. Storing this knowledge in a number of modules is

one possible organisation of an NLP system. A module consists of knowledge and algorithms

relating to one aspect of natural language. A module take inputs from other parts of the system,

applies the algorithms of the module, possibly building internal structures as part of the process,

and produces outputs that can then be used by other parts of the system. Modularity is desirable

in an NLP system because it allows the system to be flexible and expandable. A sentence can

be analysed in different ways by different modules, according to the different knowledge and

algorithms contained within.

Interaction between modules is vital because different knowledge sources are required for

resolving ambiguity in different situations. The points when interaction occurs affect the efficiency

of the NLP system as a whole, because they affect when ambiguities can be resolved. If a module

performs all its processing before communicating with other parts of the system, not only will it

consider more possibilities locally, but it will also present more possibilities for other parts of the

1

system to process as well.

One type of knowledge used in natural language processing is syntactic knowledge. Syntax

describes how words group into phrases, which in turn form larger phrases, and so on, forming the

sentences of a language. Syntactic knowledge is usually encoded as a grammar—a set of rules

describing the patterns used in the language. Most NLP systems contain a module for analysing

a sentence according to a particular grammar. This module will be referred to as the syntactic

module. The process of syntactic analysis is known as parsing, and the program that performs a

syntactic analysis is called a parser. Input to the the parser is a sentence expressed as a string of

words. Output from the parser is an analysis of the ways rules of the grammar can be applied to

construct the sentence.

This thesis describes a framework for defining efficient parsers for an NLP system. These

parsers can be tailored to improve the interaction of a syntactic module with other parts of an NLP

system, allowing efficient resolution of ambiguity.

The rest of this chapter examines these issues in further detail. Section 1.1 examines the

problem of ambiguity in more detail. Section 1.2 presents some evidence for interaction of

modules in an NLP system. Section 1.3 examines the structure of the syntactic module and

describes past work. Section 1.4 outlines the new method proposed by this thesis. Section 1.5

defines some terms and notation. Section 1.6 provides an overview of the rest of this thesis.

1.1 Ambiguity of natural language

Ambiguity in natural language comes in many different forms. A sentence may be globally

ambiguous, where the entire sentence has more than one possible interpretation. A sentence may

also contain local ambiguity, where a part of the sentence is ambiguous in isolation, but is not

ambiguous as part of the complete sentence. Local ambiguities are a problem in NLP because

they may cause a system to waste time investigating them.

There are many forms of global and local ambiguity. For example, the ambiguity may be

structural, lexical, or referential. Structural ambiguities are exemplified in sentences 1–3.

(1) I saw a man with the telescope.

(2) I like fluffy cats and dogs.

(3) The oil filter pump was black.

2

Sentence 1 can mean that either I did the seeing with a telescope, or the man that I saw had a

telescope. Similarly, sentence 2 is ambiguous because the word “fluffy” can refer to either the

word “cats”, or the phrase “cats and dogs”. In sentence 3, the compound noun phrase “oil filter

pump” can be analysed as either ��oil filter� pump�, or �oil �filter pump��.

Lexical ambiguities arise from words having more than one possible interpretation, as in

sentences 4–5b.

(4) Judi went to the bank.

(5a) The box is in the pen.

(5b) The pen is in the box.

Sentence 4 has two possible interpretations, depending on whether the word “bank” is taken

to mean “a financial institution” or “the side of a river”. Similarly, sentences 5a and 5b are

ambiguous because of the word “pen”, which can be interpreted as either “fenced area” or

“writing instrument”.

Referential ambiguity is also common, as in sentences 6a–7.

(6a) The city council refused the demonstrators a permit because they feared violence.

(6b) The city council refused the demonstrators a permit because they advocated violence.

(7) Five students ate four slices of pizza.

In sentences 6a and 6b, “they” could conceivably refer either to the city council or the demonstra-

tors. In sentence 7, it is ambiguous whether five students ate four slices of pizza each, or whether

five students ate a total of four slices of pizza between them.

Ambiguities multiply with longer, more complex sentences. For example, sentence 8 has over

a hundred syntactic parses (Jacobs, Krupka, and Rau, 1991).

(8) A form of asbestos once used to make Kent cigarette filters has caused a high percent-

age of cancer deaths among a group of workers exposed to it more than 30 years ago,

researchers reported. (Wall St. Journal)

To resolve ambiguities requires many different forms of knowledge. To resolve the ambiguities

in sentences 1–4 requires knowledge about the context of discourse. For example, if the fact that

I was carrying a telescope has been previously established, then the likely meaning of sentence 1

3

is that through a telescope, I saw a man. The ambiguity in sentences 5a and 5b can be resolved

by reasoning about the function of pens and boxes in the world, their size, and possible spatial

relationships. In sentence 5a, the meaning of the word “pen” can be interpreted as “fenced area”

because it is far more likely for a fenced area to contain boxes. In sentence 5b, the meaning of

the word “pen” can be interpreted as “writing instrument” because only a writing instrument can

be enclosed in a box. The ambiguity of sentences 6a and 6b can be resolved using the knowledge

that city councils are generally fearful of demonstrators being violent, and not vice versa.

Local ambiguities are exemplified by sentences 9b–9a.

(9a) Flying planes are dangerous.

(9b) Flying planes is dangerous.

Having only read “Flying planes”, there is a local ambiguity in whether this phrase is a noun

phrase meaning “planes which are flying” (sentence 9a) or a verb phrase meaning “the act of

flying planes” (sentence 9b).

Some sentences exhibit an extreme form of local ambiguity that causes people reading the

sentence to assume one parse, and to backtrack when later information shows that this assumption

was wrong. Sentences 10a–10b are examples of these so-called garden path sentences.

(10a) The officers taught at the academy were very demanding.

(10b) The courses taught at the academy were very demanding.

The garden path effect of sentence 10a results because the verb “taught” is ambiguous: it

could be interpreted as a simple past tense verb, or as a past-participle. Under the simple past

tense interpretation, “taught” is the main verb of the sentence, and the reader infers “The officers

taught somebody at the academy”. Under the past-participle interpretation, “taught” is the verb

of a reduced relative clause, and the reader infers “The officers who were taught by somebody at

the academy”. Having processed only the words “The officers taught”, the reader has insufficient

information to choose between these two interpretations. In the absence of additional contextual

clues, people tend to choose the first interpretation, even though it is incorrect, and change their

decision only when they reach the real main verb “were” later in the sentence (Frazier, 1987). In

contrast, if the subject noun “officers” is changed to “courses” as in sentence 10b, then the garden

path effect is removed.

4

1.2 Interaction of syntax and semantics in an NLP system

There is psycholinguistic evidence for the interaction of syntax and semantics (Crain and Steed-

man, 1985; Stowe, 1991; Taraban and McClelland, 1988; Tyler and Marslen-Wilson, 1977). Crain

and Steedman (1985) performed a number of experiments with humans to show that context could

affect the interpretation of garden path sentences. In one experiment, subjects were presented

with sentence pairs such as 11a and 11b.

(11a) The teachers taught by the Berlitz method passed the test.

(11b) The children taught by the Berlitz method passed the test.

Subjects judged sentence 11b as grammatical significantly more often than sentence 11a. Crain

and Steedman claimed that the semantic difference between the two sentences (namely that

teachers are more likely to teach, and children are more likely to be taught) accounts for these

judgments.

Stowe (1991) performed similar experiments by measuring the word-by-word reading times

of sentences such as 10a and 10b. These experiments established that semantic information such

as the animate nature of the subject influenced the results of syntactic analysis.

The practical benefit of interaction between syntax and semantics is demonstrated empirically

by NLP systems such as SCISOR (Rau and Jacobs, 1988), PUNDIT (Lang and Hirschman, 1988),

and KERNEL (Palmer, Passonneau, Weir, and Finin, 1993). For example, Lang and Hirschman

describe the SPQR module of the PUNDIT text-processing system. The purpose of SPQR is to

use domain-specific knowledge to improve the accuracy and efficiency of the parser by ruling

out syntactically-correct but domain-inconsistent parses. Their experimental results show that

parsing with SPQR reduces the average number of parses found by 30% and reduces the average

parse time by 35%.

1.3 Past work on syntactic analysis

The syntactic module of an NLP system consists of two elements: a grammar and a parsing

algorithm. The grammar describes the sentences of a language. The parsing algorithm describes

a computational mechanism for analysing a sentence according to a grammar.

5

1.3.1 Grammars of natural language

Much research in linguistics is concerned with encoding the syntax of natural language as a

grammar. Many types of grammar have been suggested for this purpose. A popular class of

grammars are phrase structure grammars, which describe a language by a set of rules. These rules

describe how larger phrases are formed from sub-phrases. Examples of phrase structure grammars

include context-free grammars (CFG), linguistic string grammars (Sager, 1981), generalised

phrase structure grammars (GPSG) (Gazdar, Klein, Pullum, and Sag, 1985), and head-driven

phrase structure grammars (Pollard and Sag, 1987). Perrault (1984) provides a good survey of a

number of the main types of grammar.

Context-free grammars have been widely used as a basis for many computational systems,

because, even though they cannot model all features of natural language (Shieber, 1987), they

can model a useful subset of language. Context-free grammars have the advantages that they

are simple, they provide an analysis of parse structure in an explicit manner, and there is a large

amount of knowledge and experience in dealing with them. A common method to improve CFGs

is to augment them with constraints, such as functional unification grammar (FUG) (Kay, 1982),

PATR (Shieber, 1992), and DCG (Pereira and Warren, 1980).

1.3.2 Parsing algorithms

There have been many different parsing algorithms proposed for parsing with different grammars.

A particularly popular method for parsing phrase structure grammars has been chart parsing (Kay,

1986), one of the earliest versions of which was created by Earley (1970). Chart parsing allows

a number of different control strategies to be implemented, and has a worst case performance

of O�n3� where n is the length of the input sentence. The basic data structure of a chart parser

is the active chart, which represents all the partial parses it has created as edges in the chart.

Control strategies of a chart parser are dictated by the order that new edges are added to the chart,

and the order in which existing edges are processed. An agenda provides general mechanism

for controlling the processing of edges (Kaplan, 1973). The fact that the chart stores all past

derivations the parser has constructed allows the parser to avoid unnecessarily repeating work.

Introductions to chart parsing can be found in Winograd (1983) and Gazdar and Mellish (1989).

A problem of chart parsers is the overhead of dynamically constructing the chart while parsing.

A promising line of research in an attempt to resolve this problem is table-driven parsing, which

6

seeks to reduce the overhead in parsing by pre-compiling a parse table (Lang, 1974; Schabes,

1991; Leermakers, 1989; Nederhof, 1993).

One particular method that has been designed for use in natural language processing is the

generalised LR (GLR) parser (Tomita, 1985, 1986, 1987a, 1988; Tomita and Ng, 1991). The GLR

parser has been shown to be efficient in comparison with other parsing algorithms (Shann, 1991),

and is used as part of the machine translation project at CMU (Nirenburg, Carbonell, Tomita, and

Gooman, 1992; Tomita, 1987b). However, the GLR parser suffers because of its strict bottom-up

control strategy that does not allow effective interaction with other modules of an NLP system.

The parser only reduces when all constituents of a grammar rule have been seen in the input.

1.4 The L� parsing algorithm

This thesis describes the new L� parsing algorithm for context-free grammars, which is designed

to improve the efficiency of an NLP system by facilitating the early resolution of ambiguity.

It does this by allowing grammar rules to be used wherever so doing is likely to allow useful

semantic or pragmatic processing.

The L� parser is a table-driven parser, for reasons of efficiency. It is implemented as an

extension to the GLR algorithm, by introducing eager reductions. An eager reduction is similar

to a bottom-up reduction except it is carried out before all members of the right hand side of a rule

have been parsed. The eager reduction creates an incomplete derivation, because the derivation

may be missing some of its children. These children may then be derived from later input and

combined into the incomplete derivation. A basic familiarity with LR parsing is assumed in the

description of the L� parser. An extensive description of LR parsing can be found in (Aho and

Ullman, 1977).

L� parsing defines a general framework for creating parsers with different control strategies.

Control strategies are expressed by specifying the circumstances in which eager reductions are to

be performed, in a method similar to the announce points of Abney and Johnson (1991).

The L� algorithm has been implemented in Lisp (Steele Jr., 1990), and tested on a wide range

of grammars specifically designed to exercise the features of the algorithm. Diagrams of the parser

stack presented throughout this thesis have been generated automatically from the implemented

L� parser. Some of the research described in this thesis has also been presented at a number of

conferences (Miller and Jones, 1992; Jones and Miller, 1992, 1993, 1994a, 1994b).

7

1.5 Definitions and Notation

This section introduces definitions and notation used throughout the rest of this thesis.

A string is a sequence of symbols. For example, if a, b, c and d are symbols, then abcd and

bdc are strings. The empty string is written �. The length of a string s (written as jsj) is the number

of symbols in the string. For example jabcdj � 4.

A prefix of a string is any number of leading symbols in the string. For example, the string

abc has prefixes �, a, ab, and abc.

An alphabet is a finite set of symbols.

A language is a possibly infinite set of strings of symbols from an alphabet.

A context-free grammar (CFG) describes the strings of a language recursively in terms of a

set of primitive symbols called terminals and a set of variables called nonterminals. Nonterminals

are defined by a set of grammar rules, which specify that a nonterminal can be formed by taking

the concatenation of a sequence of terminals and nonterminals. Grammar rules are of the form

X � �, where the left-hand side (LHS) X is a nonterminal and the right-hand side (RHS) � is a

(possibly empty) sequence of terminals and nonterminals.

Formally, a context-free grammar is denoted G � �N�T�R� S�, where N is a set of nonter-

minal symbols, T is a set of terminals (such that N � T � fg), R is a set of grammar rules, and

the nonterminal S is the start symbol.

A grammar rule describes how a nonterminal can be expanded as a sequence of terminals

and nonterminals. The expansion of the nonterminal X by the grammar rule X � � is written

�X� �� ���. A sequence of these expansions form a derivation: �1
�

�� �n means that

�1 derives �n by 0 or more expansions. An incomplete (rightmost) derivation is an expansion

�X i
�� �� where X � �� is a grammar rule.

In natural language, the individual words of the language are categorised into a number of

syntactic classes known as preterminals. For example, “John” is a noun. It is possible for a word

to be more than one type of preterminal. For example, the word “book” can be either a verb or

a noun. The CFG is written with these preterminals as the terminal symbols of the grammar,

although individual words can still also appear as terminals in the grammar rules.

A special sentinel symbol $ �� �N �T � is added to the end of the input string to facilitate easy

end-of-string processing.

8

An example of a CFG is the following:

(1) S � NP VP
(2) NP � Det N
(3) NP � N
(4) VP � V NP

Grammar 1.1

This CFG is a very simple grammar that generates sentences such as “Judi ate the apple”. The

words of this sentence are pre-classified as preterminals, making the sentence “N V Det N”. The

nonterminals of this grammar are S, NP, and VP, with S being the start symbol. Rules 2 and 3

describe two different ways an NP may be constructed, either as the expansion “N” or “Det N”.

Throughout this thesis, examples will be given to explain and illustrate points being made.

The examples will involve a number of different context-free grammars, some of which will

be arbitrary and have no immediate relation to natural language processing. These CFGs are

presented because they are simple. They do, however, exemplify situations that arise in more

complex grammars of natural language.

The following conventions in writing arbitrary grammars apply:

� The letters S, V, W, X, Y, and Z denote nonterminals, with S being the start symbol.

� The letters A, B, C, D, E, and F denote terminal symbols.

� The italic letters K, L, and M denote symbols that can be either terminals or nonterminals.

� The lowercase greek letters �, �, �, and � denote strings of symbols (either terminals or

nonterminals).

1.6 Outline of this thesis

� Chapter 2 provides an introduction to GLR parsing.

� Chapter 3 describes the new L� parsing framework and a method for compiling L� parse tables

for parsers defined within this framework.

� Chapter 4 examines the basic actions of L� parsing and demonstrates their use with a simple

example.

� Chapter 5 examines extensions to the basic L� algorithm to make it a practical algorithm for

natural language processing.

� Chapter 6 addresses the problem of compactly representing the parses of an L� parser.

� Chapter 7 presents a summary of the new L� parsing method, and concludes with a discussion

of ongoing and possible future work.

9

Chapter 2

GLR Parsing

This chapter provides an introduction to GLR parsing. Section 2.1 provides an overview of the

GLR parsing process. Sections 2.2 and 2.3 examine the data structures used in GLR parsing.

Section 2.4 illustrates the GLR algorithm by tracing the execution of the algorithm on a simple

example. Finally, section 2.5 presents a formal specification of the GLR algorithm.

2.1 Overview of GLR parsing

GLR parsing is an extension of LR parsing that can cope with arbitrary context-free grammars. The

approach was developed by Tomita (1986) specifically for efficient parsing of natural language.

A GLR parser is a shift-reduce parser: elements of the right-hand side of a grammar rule are

shifted one by one onto a stack as they are recognised in the input. Complete right-hand sides

are then reduced, or replaced by their corresponding left-hand sides. A GLR parser is also a

table-driven parser. All actions for the parser to perform are pre-compiled and stored in a parse

table which is then accessed during parsing to determine the parse actions to perform next.

A GLR parse table is constructed automatically from a context-free grammar by the same

method used to construct an LR parse table (DeRemer, 1971). However, the restriction that each

cell of an LR parse table contain only a single parse action is removed. Instead, a cell of a GLR

parse table can contain multiple parse actions. This enables a GLR parser to parse with ambiguous

grammars.

A GLR parser processes input from left to right, one word at a time, executing reduce and

shift actions until an accept or error action is reached. If more than one action is specified at any

point in a parse, any reduce actions are executed before shifts. All possible parses are pursued in

11

parallel, using two main data structures: a graph-structured stack and a packed shared forest. To

avoid confusion, an element of the graph-structured stack will be referred to as a vertex, and an

element of the packed shared forest will be referred to as a node.

2.2 The Graph-Structured Stack

The graph-structured stack is an extension of an LR stack that allows a GLR parser to deal with

nondeterminism in a parse. Nondeterminism results from multiple actions in a cell of the parse

table. In addition to the standard push and pop operations of an LR stack, the graph-structured

stack has two new operations to handle nondeterminism: splitting and rejoining.

2.2.1 Splitting

When there is more than one action to be performed at a stack top, the stack is split into multiple

branches, one for each different result. For example, consider the following stack:

A B C

The stack grows from left to right, so A is the bottom of the stack, and C is the top of the stack.

Given the grammar rules

(1) X � B C
(2) Y � B C Grammar 2.1

the B C at the top of the stack can be reduced to an X by rule 1 or a Y by rule 2. Upon performing

these reductions, the parser splits the stack, with one branch for each alternative. The resulting

stack after the reductions has two new stack tops X and Y.

A

Y

X

B C

12

2.2.2 Rejoining

If at some stage in the parse, the same vertex is to be pushed onto more than one stack top, then

the corresponding branches of the stack are rejoined. For example, if F is shifted onto both stack

tops X and Y from the previous figure, the resulting stack is

A

X

Y

F

2.3 The Packed Shared Forest

A packed shared forest compactly represents all the possible parses of an input sentence. The

forest is constructed so that all common subtrees are shared, and are represented only once in

the forest. Subtrees that represent different parses of the same input substring are packed into a

common root node that has multiple lists of children, one for each parse. This operation is called

local ambiguity packing.

Continuing the example from the previous figure, if grammar 2.1 also contains the four rules

(3) V � F
(4) W � F
(5) Z � X V
(6) Z � Y W

Grammar 2.2

then there are two possible derivations of Z, both of which cover the string “B C F”, but which

are structured differently:

X YV W

Z Z

B C F B C F

These two parses of Z can be packed together into a single node because the two parses both

cover the same input substring. The forest node Z is referred to as a packed node, and has two

lists of children, one corresponding to the expansion by rule 5, and the other corresponding to the

13

expansion by rule 6. Also observe that B, C, and F are all shared among different parses—they

have multiple parents in the forest.

Z

WYX V

B C F

The decision to perform local ambiguity packing can be made using the configuration of the

graph-structured stack. Local ambiguity packing is appropriate when two or more reductions to

the same nonterminal are specified at the same input word and result in the same vertex. In this

case the derivations resulting from the two reductions should be packed together in a single forest

node.

For the above example, the stack before the reduction to Z by rules 5 and 6 will look like this:

A X

Y W

V

Both reductions create a vertex labelled Z. Therefore the two derivations created by the reductions

are packed together in a single forest node, and the resulting stack will look like this:

A X

Y

Z

V

W

14

STATE ACTION

N Det Prep V $ PP NP S VP
0 s1 s3 g4 g2
1 r3 r3 r3
2 s5 acc g12
3 s11
4 s5 s6 g8 g7
5 s1 s3 g10
6 s1 s3 g9
7 r1 r1
8 r5 r5 r5
9 s5, r7 r7 g8

10 s5, r6 r6 r6 g8
11 r4 r4 r4
12 r2 r2

Table 2.1: SLR(1) parse table for grammar 2.3.

2.4 An example of parsing with the GLR algorithm

To illustrate the GLR algorithm, this section presents a trace of the GLR algorithm parsing a

simple sentence using grammar 2.3.

(1) S � NP VP
(2) S � S PP
(3) NP � N
(4) NP � Det N
(5) NP � NP PP
(6) PP � Prep NP
(7) VP � V NP

Grammar 2.3

This grammar is ambiguous because a PP may attach either to an S (by rule 2), or to an NP

(by rule 5). For example, the sentence “John saw a man in the park” has two possible parses,

corresponding to the two different attachments of the PP “in the park.”

(1) �John saw �a man �in the park� PP � NP � S

(2) �John saw �a man� NP �in the park� PP � S

The two parses give rise to different interpretations. Parse 1 means that a man who was in the

park was seen by John. Parse 2 means that John, who was in the park, saw a man.

Table 2.1 shows a parse table for grammar 2.3. The table is indexed by state number st and

15

grammar symbol L. An entry ACTION[st, L] is a set of parse actions. A blank entry represents a

parse error. Actions are written as follows:

	 “s n” means shift and go to state n.

	 “r n” means reduce by the n-th grammar rule.

	 “g n,” means go to state n.

	 “acc” means accept.

To illustrate the GLR algorithm in detail, the state of the parser at each step is shown in a

diagram with three components:

	 The graph-structured stack.

The graph-structured stack is a collection of vertices, each of which has an an associated

state (an integer) and a parse forest node. Vertices are drawn with their state number inside

them, and their associated parse forest node above them. Vertices that represent stack tops

are drawn as circles. All other stack vertices are drawn as squares. The stack grows from

left to right. Pending parse actions are entries from the parse table, and are placed to the

right of the stack tops.

	 The parse forest.

Nodes in the parse forest are labelled with a grammar symbol and a subscript to distinguish

different nodes with the same grammar symbol. Packed nodes are drawn as a box containing

the different possible parses for the symbol of the node.

	 The current word.

The word the parser is currently processing is shown in a box at the right hand edge of the

diagram.

The remainder of this section presents a detailed trace of the GLR algorithm parsing the

sentence “John saw a man in the park”.

Initially the parse forest is empty, and the stack contains only the single vertex with the

start state of 0. The first word is “John,” which is an N, so the first set of parse actions is

ACTION[0, N] = fs1g (first diagram of figure 2.1). The parser therefore performs a shift action

16

0 s1 John

0 1

N1

r3 John

N1 saw

0 4

NP1

s6

John

NP1

N1

saw

0 4

NP1

6

V1

s3

John saw

NP1

N1 1V
a

Figure 2.1: Trace of the GLR algorithm parsing “John saw a man in the park”.

that creates a new stack vertex with state 1 and forest node N1. The newly created vertex is pushed

onto the stack, becoming the new stack top; hence it is drawn as a circle. The original vertex is

redrawn as a square (second diagram of figure 2.1).

The next word to process is “saw,” whose lexical category is V. The parse actions to perform

are determined by the table entry ACTION[1, V] = fr3g, so the parser performs a reduction by

rule 3. The vertex labelled with N1 at the top of the stack corresponds to the RHS of rule 3, and is

popped off, to be replaced by a new vertex with state 4. The state of this new vertex is determined

by ACTION[0, NP] = fg4g. The parser uses state 0 to index the ACTION table because it is

at the top of the stack after N1 has been popped off. A new forest node NP1 is also created,

corresponding to the LHS of rule 3, and has as its child the single node N1 that was popped off the

stack (third diagram of figure 2.1). At the new vertex with state 4, the next actions to perform are

given by ACTION[4, V] = fs6g. Consequently, the verb “saw” is shifted onto the stack, creating

a new vertex with state 6, and a new forest node V1 (fourth diagram of figure 2.1).

The following words “a” and “man” are shifted onto the stack as shown in the first and second

17

0 4

NP1

6

V1

3

Det 1

s11

John saw

NP1

N1

a

Det11V
man

0 4

NP1

6

V1

3

Det 1

11

N2

r4

John saw man

NP1

N2N1

a

Det11V
in

0 4

NP1

6

V1

9

NP2

r7, s5

NP2

John saw man

NP1

N2N1

a

Det11V
in

0 4

NP1

6

V1

9

NP2

s5

7

VP1

r1

NP2

John saw man

NP1

N2N1

a

1VP

Det11V
in

Figure 2.2: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

diagram of figure 2.2, making “in”, with lexical category Prep, the next word to process. The

next action is ACTION[11, Prep] = fr4g, so Det1 and N2 are reduced to NP2 by rule 4, creating a

new stack vertex with state 9 and associated forest node NP2 (third diagram of figure 2.2). At this

point there are multiple parse actions to perform, because ACTION[9, Prep] = fr7, s5g. The

GLR algorithm specifies that all reductions are processed before any shifts at a word, so the parser

executes a reduce by rule 7, leaving the vertex with state 9 still active with an unprocessed shift

action. The reduction causes the stack to split, creating a new stack top with state determined by

ACTION[4, VP] = fg7g (fourth diagram of figure 2.2).

The parse actions to perform at this new vertex are ACTION[7, Prep] = fr1g. Again, the

parser processes this reduction immediately, before performing the shift. The reduction by rule 1

creates the new forest node S1 from NP1 and VP1, and a new stack vertex with state 2 (first diagram

18

0 4

NP1

6

V1

9

NP2

s5

2

S1

s5

NP2

John saw man

NP1

N2N1

a

S1

1VP

Det11V

in

0 4

NP1

6

V1

9

NP2

5

Prep 1

s3

2

S1

NP2

John saw man

NP1

N2N1

ina

S1

1VP

Det1 Prep11V

the

0 4

NP1

6

V1

9

NP2

5

Prep 1

3

Det 2

s11

2

S1

NP2

John saw man

NP1

N2N1

in thea

S1

1VP

Det 2Det1 Prep11V

park

0 4

NP1

6

V1

9

NP2

5

Prep 1

3

Det 2

11

N3

r4

2

S1

NP2

John saw man

NP1

N2N1

in thea park

S1

1VP

N3Det 2Det1 Prep11V

$

Figure 2.3: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

of figure 2.3). At this new vertex, ACTION[2, Prep] = fs5g. The only outstanding actions are

now the s5 actions at the vertices with states 2 and 9, so the parser shifts the Prep “in” onto the

stack. Both the shift actions create a vertex with the same state (being state 5) and associated

forest node (being Prep1), so the stack is rejoined and only a single new stack vertex with state 5

and associated forest node Prep1 is created (second diagram of figure 2.3).

Next, the words “the” and “park” are shifted onto the stack (third and fourth diagrams of

figure 2.3). This brings the parser to the end of the input sentence, so the next input word becomes

19

0 4

NP1

6

V1

9

NP2

5

Prep 1

10

NP3

r6

2

S1

NP2

John saw man

NP1

N2N1

in thea park

S1

NP3

1VP

N3Det 2Det1 Prep11V

$

0 4

NP1

6

V1

9

NP2

8

PP1

r5

2

S1

12

PP1

r2

NP2

John saw man

NP1

N2N1

in thea park

S1

NP3

1PP1VP

N3Det 2Det1 Prep11V

$

0 4

NP1

6

V1

9

NP2

8

PP1

r5

2

S2

acc
NP2

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

N3Det 2Det1 Prep11V

$

Figure 2.4: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

the sentinel $. A reduction by rule 4 creates NP3 from Det2 and N3, leaving the stack as shown

in the first diagram of figure 2.4. The next action to perform is ACTION[10, $] = fr6g. There

is only one path of length 2 starting from NP3 in the stack (Prep1 NP3), so only the single new

parse forest node PP1 is created. However, there are two stack vertices joined to the end of

this path, namely the vertices with states 2 and 9. As the goto values for these two states differ

(ACTION[9, PP] = fg8g and ACTION[2, PP] = fg12g), two new stack vertices are created. The

vertex with state 8 is pushed onto the branch of the stack with the vertex with state 9 at the end.

Similarly, the new vertex with state 12 is pushed onto the vertex with state 2. The same forest

node PP1 is associated with both these new vertices (second diagram of figure 2.4).

The actions to perform now are ACTION[8, $] = fr5g and ACTION[12, $] = fr2g. The

reduction by rule 2 is processed next, creating a new stack vertex with state 2 and new forest

node S2 (third diagram of figure 2.4). Because ACTION[2, $] = faccg, the node S2 represents

20

0 4

NP1

6

V1

9

NP4

r7

2

S2

acc
NP2

NP4

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

N3Det 2Det1 Prep11V

$

0 4

NP1

7

VP2

r1

2

S2

acc
NP2

NP4

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

VP2

N3Det 2Det1 Prep11V

$

0 2

S2

acc
NP2

NP4

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

VP2

N3Det 2Det1 Prep11V

$

Figure 2.5: Trace of the GLR algorithm parsing “John saw a man in the park” (cont.).

a complete parse of the sentence “John saw the man.” The parse is not yet finished, however,

because there is still an outstanding reduction by rule 5 to be processed. Performing this reduction

creates the new node NP4, and new vertex with state 9 (first diagram of figure 2.5). This is followed

by a reduction by rule 7, creating VP2 (second diagram of figure 2.5). At this point, the next

action is ACTION[7, $] = fr1g. Executing this reduction creates an S from NP1 and VP2. The

table entry ACTION[0, S] = fg2g determines the state of the vertex resulting from the reduction.

There is already a stack top with state 2 and associated parse forest node S, so instead of creating

a new forest node, the parser performs local ambiguity packing, and adds the new derivation from

21

this reduction into forest node S2. The only remaining action now is acc, so the parse is finished,

and the final parse forest is rooted at node S2 (third diagram of figure 2.5).

2.5 The Formal GLR Algorithm

Input

A parse table ACTION[state, symbol] for the context-free grammar G � hN�T�R� Si and an

input string z � T �. Entries in the parse table are sets of parsing actions. Each action has the

form “shift s”, “reduce r”, “goto s”, or “accept”. N is a set of nonterminals, T is a set

of terminals, R is a set of grammar rules of the form X��, where X � N and � � �N � T ��,

and S is the start symbol. The state s0 is designated as the start state.

Output

The root node of a packed shared parse tree for z if z � L�G�, otherwise an error indication.

Data Structures

A vertex in the graph-structured stack is a tuple hs� n�Si, where s is a state, n is a forest node,

and S is the set of successor vertices in the stack. For notational convenience, the elements of a

vertex v can be referenced using the functions State(v), Node(v), and Successors(v).

A node in the packed shared forest is a tuple hX�Di, where X � N , and D is a set of lists

of child forest nodes. The elements of a node n can be referenced using the functions Nonterm(n)

and Derivs(n).

A path is a contiguous sequence of vertices v1� � � � � vk in the stack. That is, for i � 2� � � � � k,

vi � Successors(vi�1).

FRONTIER stores a set of pairs hv� ai, where v is a vertex and a is a parse action yet to be

performed at v. The vertices within the pairs of this list form the active stack tops.

CURRENT-V is a set of all vertices created by shifts or normal reductions while parsing an

individual word, providing the set of vertices to check for packing.

� denotes the current input symbol.

22

Main Loop

� Add a terminator symbol $ to the end of the input
string z

� � � The first symbol of z
� v0 � hs0�NIL� fgi � Initialise the stack

� CURRENT-V � fv0g
� Call Schedule(v0� �)
� Loop
� Call Reduce()
� Call Shift()
� If FRONTIER = fhv� “accept”ig then halt and

return Node(v)
� If FRONTIER = fg then halt and signal an error

� Perform reductions followed by shifts un-
til acceptance or rejection.

Reduce()

Perform all reductions licensed by an individual word.

� While �x � FRONTIER of the form
hv� “reduceX��” i :

� Remove x from FRONTIER
� P � fp j p is a path of length j�j starting at v in

the stackg
� �p � P , call Reduce-Path(p�X��)

Reduce-Path(v1� � � � � vk� X��)

Perform a reduction by the rule X� � along the path v1� � � � � vk in the stack, creating a new derivation
consisting of the nodes of vertices v1� � � � � vk.

� d� h�Node�vk�� � � � �Node�v1��i
� Π � A partition of Successors(vk) by goto value on

symbol X
� If �v � CURRENT-V s.t.

Successors(v) � Π � Nonterm�Node�v�� = X

� Add d to Derivs(Node(v))

� Pack using an existing vertex in
CURRENT-V whose nonterminal and
left-context match the current reduction.

Else
� n� � hX� fdgi � Create a new forest node

� ��s � Π
� v� � hs� n�� �si
� Add v� to CURRENT-V
� Call Schedule(v�� �)

� Create new vertices containing this node,
one for each element of Π

23

Shift()

Shift the next terminal symbol onto all the stack tops, creating a new node for it in the parse forest, and
schedule any actions triggered by the shift.

� n� h�� fgi
� � � The next symbol of the input string
� CURRENT-V � fg

� Create a new node for the shifted input
symbol.

� S � fhv� ai � FRONTIER j a = “shift s”g
� FRONTIER � FRONTIER � S

� S is the set of all shift actions to perform.

� Π � A partition of S according to goto state of the
shift actions

� Each �s � Π consists of elements of the
form hv� “shift s” i.

� ��s � Π
� V � fv j hv� ai � �sg
� vs � hs� n�Vi
� Add vs to CURRENT-V
� Call Schedule(vs� �)

� Create a new vertex for each member of
Π.

Schedule(v� L)

Add to FRONTIER all possible actions to be performed at vertex v.

� �a � ACTION[State�v�� L]
� Add hv� ai to FRONTIER

�

24

Chapter 3

Building Tables for L� Parsing

Close interaction between modules of an NLP system is important for the efficient resolution of

ambiguity. This chapter examines a method of building parsers to facilitate this interaction. Sec-

tion 3.1 describes how top-down and bottom-up parsers act in a modular NLP system. Section 3.2

then describes the new L� parsing framework for defining table-driven parsers, and presents a

particular parser within the framework that is designed to be efficient in a modular NLP system.

Section 3.3 describes building tables for LR parsing, to provide a background for section 3.4,

which describes a method of compiling L� parse tables. Section 3.5 addresses the problem of

left-recursion. Section 3.6 presents a formal algorithm for building L� parse tables.

3.1 Parsing in a modular system

The ambiguity of natural language means that an NLP system must search through a large set of

partial interpretations of a sentence for one that is syntactically, semantically, and pragmatically

plausible. For this search to be efficient, it must be as focused as possible, using all available

information as early as possible in processing (Birnbaum, 1986). In a syntactic context, this

means it is desirable that a parser generate syntactic hypotheses (partial parses) as early as

possible in processing. These syntactic hypotheses can then help guide the system’s search for an

interpretation of the sentence. Hence, the accuracy of the syntactic hypotheses directly affects the

efficiency of the search. In particular, incorrect hypotheses will misdirect the system and cause

it to perform extra useless work. There is a trade-off between the desire to generate syntactic

hypotheses early, and the desire to make them accurate. The earlier that hypotheses are generated,

25

the less information they are based on and therefore the more likely they are to be incorrect.

There are two standard styles of parsing—top-down and bottom-up (Aho and Ullman, 1977).

A top-down parser generates syntactic hypotheses very early in processing a sentence because it

expands grammar rules before parsing the symbols of the rule. The hypotheses are not strongly

based on the actual input to the parser, however, so they may be inaccurate and therefore misdirect

the search.

In contrast, a bottom-up parser generates more accurate syntactic hypotheses, because it only

generates these hypotheses once all input covered by the hypotheses has been processed. Hence

a bottom-up parser does not allow all available information to be applied as early as possible in

processing. For example, consider the sentences

(1a) The officers taught at the academy were very demanding.

(1b) The courses taught at the academy were very demanding.

Sentence 1a is a garden path sentence: humans initially assume the verb “taught” to be the main

verb of the sentence, and only change that assumption when they read “were” later in the sentence.

In contrast, with the subject noun changed from “officers” to “courses”, as in sentence 1b, the

garden path effect is removed. This is because of the knowledge that courses can only be taught

and cannot teach. In the interests of efficiency, this knowledge should be applied as soon as

the verb “taught” is read, so that only the reduced relative clause parse is pursued, however, a

bottom-up parser does not do this.

(1) S � NP VP
(2) RCl � VP
(3) NG � Det N
(4) NP � NG
(5) NP � NG RCl
(6) VP � V PP
(7) VP � V Adv Adj
(8) PP � Prep NG

Grammar 3.1

Consider how a bottom-up parser processes sentence 1b according to grammar 3.1. First, it

reads “the courses” as a Det and N, which it reduces to an NG by rule 3, then an NP by rule 4.

Next it reads “taught” as a V. At this point, enough input has been processed to use the knowledge

that courses cannot teach to rule out the interpretation that has “taught” as the main verb of

the sentence. This knowledge can be applied when the parser attempts to construct a complete

26

sentence with “taught” as the main verb, by a reduction using rule 1. However, before reducing

by rule 1, a bottom-up parser must first parse “at the academy” as a PP and attach it to the VP by

a reduction using rule 6. It follows that the knowledge that courses cannot teach is not applied as

early as possible in processing, and therefore causes the system more work.

The deficiencies of top-down and bottom-up parsers described above arise because of the strict

control strategy of the parsers. A top-down parser always proposes application of a rule before

any members of the rule have been processed. A bottom-up parser only proposes reduction by a

grammar rule once all constituents of the rule have been parsed.

3.2 Eager reduction

A more general method of parsing is to allow reduction by a grammar rule when the first k

symbols of the rule have been processed. The value of k can differ for different grammar rules.

This allows rules to be reduced at the point which produces syntactic hypotheses that best focus

the search of the NLP system.

This approach defines a framework in which a variety of control strategies for a parser can be

specified, depending on when grammar rules are applied. This framework covers both top-down

and bottom-up parsers. If every rule is applied before any RHS symbols have been parsed, the

result is a top-down parser. If every rule is applied only after all RHS symbols have been parsed,

the result is a bottom-up parser.

One way of implementing this approach is to modify a bottom-up parser to allow partial or

eager reductions. An eager reduction is similar to a bottom-up or full reduction except it is carried

out before all members of the RHS of a rule have been parsed. The eager reduction creates an

incomplete derivation, where the derivation resulting from the reduction is missing some of its

children. These children may then be derived from later input and combined into the incomplete

derivation. The result is an L� parser, so called because the parser reads input from Left-to-right,

but allows derivations to be constructed in any fashion—the “�” represents a wildcard.

An eager reduction introduces a predictive component into a bottom-up parser. Having seen

some portion of the RHS of a grammar rule, an L� parser will predict that the rule is applicable,

and will reduce without waiting to see the complete RHS of the rule as a bottom-up parser would.

27

Any method that reduces by a rule after only seeing a prefix of the rule may propose syntactic

analyses that are inconsistent with the larger sentence and that are not completely justified by the

input, as in top-down parsing. Thus in an entirely syntactic context, such a method can never

perform better than a bottom-up parser. However, in the context of a larger NLP system, this

method has the potential for greater efficiency because it allows the earlier resolution of ambiguity

on semantic or pragmatic grounds.

Because eager reductions introduce more hypotheses into an NLP system, it is important

they are proposed only when they are likely to provide useful information that can improve the

efficiency of the system. In particular, eager reductions should be performed when the resulting

syntactic hypotheses are likely to afford the greatest semantic leverage, that is the earliest points

at which semantic processing can perform useful work with the resulting syntactic hypotheses.

3.2.1 Semantic heads and semantic attachment

One approach for determining the useful points for eager reduction in a grammar is to consider

when useful semantic work happens and how this can be triggered by syntactic processing.

A common method for representing the semantics of a phrase is to use a frame-based system.

A frame has a number of slots, each of which has a number of constraints on the values that may

fill that slot.

For example, consider the following frame:

teach is-a action with
teacher: human
student: human
subject-matter: course

This frame represents the action of teaching. It specifies that “teach” is an action. There are three

things associated with teaching—the teacher, the student, and the subject matter. These are the

slots of the teach frame. Both the teacher and the student are constrained to be humans, and the

subject matter is constrained to be a course.

28

Individual instances of the teaching frame are created to represent specific situations. For

example, the following frame might represent the semantics of the sentence “John teaches the

officers marching”:

teach-5 inst-of teach with
teacher := john-7
student := officers-2
subject-matter := marching-101

The frame teach-5 is an instance of the teach frame, with the teacher slot having the value

john-7, the student slot being officers-2, and the subject-matter being marching-101.

Each of the slot fillers is itself an instance of a frame. For example, john-7 may be an instance

of the male frame.

Whenever a slot of a frame is filled with a particular value, checks are performed to determine

that the value meets all the constraints on the slot. For example, when john-7 fills the teacher

slot of teach-5, the constraint that john-7 is human should be checked. If these constraints are

violated, then the particular meaning can be discarded. Thus useful semantic work can be done

when the slots of a frame are filled.

The semantic head of a phrase is the word whose lexical entry is used to construct the top-

level frame in a representation of the meaning of the phrase. In the above example, “teaches” is

the semantic head of the sentence “John teaches the officers marching” because teach-5 is the

top-level frame of the representation for this sentence.

Words whose lexical entries specify values that fill slots of a frame are said to semantically

attach to the head. For example, “the officers” semantically attaches to “teaches” because

the value officers-2 fills the student slot of teach-5. Useful semantic work occurs when

semantic attachments are established, because constraints on the slot are checked when a semantic

attachment is established. Hence one case where an eager reduction can be beneficial is when it

causes a semantic attachment.

3.2.2 Syntactic heads and syntactic attachment

Unfortunately, a syntactic parser cannot determine whether a reduction will generate a semantic

attachment, because the semantic representations necessary to make such a decision are not

available to the parser. This problem can be solved, however, by defining a syntactic correlate

to the semantic head and semantic attachment described in section 3.2.1. The syntactic head (or

29

just head) of a grammar rule is an element of the RHS of that rule, chosen so as to dominate the

semantic heads of as large a proportion of the phrases derivable from it as possible. A nonterminal

Y of the rule X � �Y� dominates the semantic head ai of a phrase a1� � � � � an if

X �� �Y�
�

�� ���ai�
��

�

�� a1� � � � � an

The head of a rule can be indicated by annotating the symbol in the rule with a subscripted h.

For example, if VP is the head of the rule S � NP VP, then this is written S � NP VPh. Each

grammar rule has a unique head. There may be no explicit annotation on a grammar rule. In this

case, the last element of the rule is treated as the implicit head of the rule.

Semantic attachments established by filling the slots of a frame can be mapped into the

syntactic domain using the concept of syntactic attachment. All non-head elements of a grammar

rule syntactically attach to the head of the rule. There are two kinds of attachment. For a grammar

rule X � � Yh �, all symbols in � left-attach to Y, and all symbols in � right-attach to Y.

3.2.3 When to eagerly reduce

The definitions of syntactic head and syntactic attachment provides a purely syntactic notion of

when a reduction is likely to facilitate semantic processing. Therefore, the parser should perform

an eager reduction upon processing the syntactic head of a rule whenever doing so will cause a

syntactic attachment with no further consumption of input.

For example, given the grammar rule

(1) X � Y Zh �

the parser should perform an eager reduction after parsing Z, because doing so will generate an

attachment between Y and Z. This differs from a bottom-up parser, which would delay until �

had been completely parsed before performing a reduction by rule 1.

It may also be the case that an eager reduction only indirectly causes an attachment. For

example, given the grammar rules

(1) X � Y Zh

(2) Z � Ah �

there is a left-attachment of Y to Z, which can be established once the head of Z is parsed. Eagerly

30

reducing by rule 2 once A has been parsed constructs a Z, which can then be used in a reduction

by rule 1, to generate an attachment between Y and Z. Thus, eagerly reducing by rule 2 generates

an attachment by rule 1.

Whether or not an eager reduction generates an attachment may depend on context. For

example, consider the following grammar:

(1) S � X Yh

(2) Y � Xh C
(3) X � Ah B

The first expected symbol is an X, by rule 1. This X left-attaches to Y (the head of rule 1), but

this attachment cannot be made until the head of Y is parsed. Hence an eager reduction by rule 3

does not generate an attachment between X and Y in this case, so rule 3 should be processed in

normal bottom-up fashion, waiting until both A and B are parsed before performing a reduction.

After X is parsed, the parser works towards parsing a Y. Eagerly reducing after seeing the head

of rule 2 generates an attachment of X to Y by rule 1. In this case, an eager reduction by rule 3

creates an X which can be in turn eagerly reduced by rule 2 to create a Y, to which the first X

left-attaches by rule 1. Thus an eager reduction by rule 3 should be carried out by the parser in this

case. This demonstrates that in the context of parsing an S, eagerly reducing by rule 3 generates

no attachment, whereas in the context of parsing a Y, an eager reduction by rule 3 will generate

an attachment.

3.3 Building LR parse tables

The specification of when to eagerly reduce must be stated in a form that can be used in a table-

driven parser. This means compiling the chosen eager reduction strategy into the parse table. To

explain how this is done, it is first necessary to understand how an LR parse table is constructed.

3.3.1 LR finite automata

An LR parse table encodes a finite automaton that recognises the valid items for a viable prefix

of a grammar. A viable prefix is a partial derivation that can always be extended into a complete

parse. When used in conjunction with a stack, the result is a push-down automaton that parses

the grammar. States of the automaton contain sufficient information to decide when to reduce.

31

Conceptually, a suitable finite automaton can be constructed in a two step process. Firstly,

a nondeterministic finite automaton (NFA) is defined that recognises the viable prefixes of a

grammar. Secondly, the subset construction method (Aho and Ullman, 1977) is applied to this

NFA to define a deterministic finite automaton (DFA) from which the LR parse table can be

constructed.

The NFA is constructed from a grammar G � �N�T�R� S�, where N is a set of non-

terminal symbols, T is a set of terminals (such that N � T � fg), R is a set of grammar

rules, and S is the start symbol. To allow detection of the completion of a parse, the gram-

mar G is augmented by adding a new production S� � S, creating the augmented grammar

G� � �N�T�R � fS� � Sg� S��. S� is a new symbol not in N � T .

Formally, the NFA recognising viable prefixes of a grammar is defined by a 5-tuple

�Q� I� �� q0� Q
��, where Q is the set of states of the NFA, I is the set of input symbols, � is

the transition function, q0 is the start state, and Q��
 Q� is the set of accepting states. A finite

automaton can be represented by a directed graph called a transition diagram. The states of

the finite automaton are the vertices of the graph. For each element of the transition function

q2 � ��q1� a�, there is a directed arc from state q1 to state q2 labelled with symbol a.

The states of the NFA are the items of a grammar. An LR(0) item is defined to be a grammar

rule, together with a dot at some position of the RHS of the rule. For example, the possible items

for the grammar rule S � NP VP are

[S� � NP VP]
[S� NP � VP]
[S� NP VP �]

Intuitively, an item represents how far the parser is through parsing a grammar rule. For

example, the item �S � � NP VP� indicates that the parser expects a string derivable from NP VP

next in the input. Similarly, the item �S � NP � VP� represents the case where the parser has

derived an NP from the input, and is expecting to find a VP next.

The NFAM recognising viable prefixes for a grammarG� isM � �Q�N �T� �� q0� Q�, where

the set of states Q of the NFA is the set of LR(0) items for G�, the initial state q0 is the item

�S� � � S�, and the transition function � is defined as:

1. ���X � � � L ��� L� � f�X � � L � ��g

2. ���X � � � Y ��� �� � f�Y � � �� j Y � � � Rg.

32

Intuitively, rule 1 corresponds to the situation where the parser is in a state where it has so far

recognised � from the grammar rule X � � L �. If L is then derived, the portion of this grammar

rule recognised can be extended to �L, represented by the item where the dot has been moved

over the L. Rule 2 corresponds to the case where the parser is expecting to see Y next in the input,

and Y derives �, so it must also be expecting to see � next in the input.

For example, consider the following grammar:

(1) S � NP VP
(2) VP � V NP
(3) NP � N

Grammar 3.2

The transition diagram of the NFA recognising viable prefixes for grammar 3.2 is shown in

figure 3.1. The arc from �S � � NP VP� to �S � NP � VP� is an example of rule 1 of the

transition function, with X = S, � = �, L = NP, and � = VP. Similarly, the arc from �S � NP � VP�

to �VP � � V NP� is an example of rule 2 of the transition function, with X = S, � = NP, Y = VP,

� = �, and � = V NP.

A DFA that recognises viable prefixes can be constructed by applying the subset construction

algorithm to the NFA. After inputs a1� � � � � an, the DFA is in a state that represents the set of

possible states in the NFA that can be reached with input a1� � � � � an. For example, the DFA

constructed from the NFA in figure 3.1 is shown in figure 3.2. The start state (state 0) of the DFA

is constructed by taking the start state of the NFA �S� � � S� and adding the states �S � � NP VP�

and �NP � � N�, because both these states can be reached by �-transitions from the start state of

the NFA.

In practice, the two steps of creating the NFA and then applying the subset construction

algorithm are combined into a single procedure for building a DFA.

There are more sophisticated finite automaton construction techniques that augment the defini-

tion of an LR(0) item with lookahead: items now include information about the terminal symbols

that can possibly follow them. The number of symbols used for lookahead is described by the

number of the item. An LR(0) item means the item includes 0 lookahead symbols. An LR(1)

item includes one symbol of lookahead in each item, and is of the form �X � �, t�, where t is a

33

NP VP

NP

S

∈

∈

∈

→NP N →NP N

VPS → NP

S→S ′

∈
V

N

→VP NPV →VP NPV →VP NPV

VPS → NPVPS → NP

S→S ′

Figure 3.1: LR(0) NFA for recognising viable prefixes of grammar 3.2.

terminal symbol that may follow the item. For example, with the grammar rules

(1) S � X Y
(2) X � A B
(3) Y � C D

the LR(1) items for rule 2 would be

[X� � A B, C]
[X� A � B, C]
[X� A B � , C]

34

S→S ′

VP

NP

S

NP

0

1

2

3

4

5

6

VPS → NP

→VP NPV

→VP NPV

→NP N
→VP NPV

VPS → NP

S→S ′

→NP N

VPS → NP

→NP N

N
V

N

Figure 3.2: LR(0) DFA for recognising viable prefixes of grammar 3.2.

Because Y always follows X by rule 1, and C is always the first symbol of Y by rule 3, C is the

only terminal symbol that follows X. Hence C is the lookahead of the LR(1) items for X � A B.

The lookahead symbols can be used when the parse table is constructed to better determine which

parse actions to perform for a given input.

3.3.2 Building LR parse tables from finite automata

An LR parse table can be constructed from a DFA that recognises viable prefixes. The parse table

specifies the set of actions to perform in some state when a given string of lookahead symbols is

next in the input. A longer lookahead provides a better determination of the actions to perform

35

for a given input, but can increase the size of the parse table dramatically. Varying the length of

lookahead defines the family of LR parse tables, where the length of lookahead is given by k in

the description LR(k). Parse tables constructed from a DFA of LR(0) items are a special case.

Although the items of the DFA contain no lookahead, by using the function FOLLOW(X), some

lookahead can still be used in constructing the parse table. A parse table constructed from a DFA

of LR(0) items is known as an SLR(k) table, where the k in this case refers to the number of

symbols given by the FOLLOW function.

The auxiliary functions FIRST and FOLLOW used when building SLR tables are defined as:

	 FIRST(�) is the set of terminals that begin strings derived from �.

	 FOLLOW(X), for a nonterminal X, is the set of terminals that can directly follow X.

For example, consider the following grammar:

(1) S � X Y
(2) X � A B
(3) Y � C D
(4) Y � E F

Then FIRST(X) = fAg, because X always starts with an A by rule 2, and FOLLOW(X) = fC, Eg,

because a Y always follows an X by rule 1 and the first symbol of a Y is either a C (by rule 3) or

an E (by rule 4).

The parse table encodes the states of the DFA as rows of the table. Goto and shift actions

encode the transition function of the DFA. Shift actions represent transitions by terminal symbols,

and goto actions represent transitions by nonterminal symbols. Reduce actions apply grammar

rules when the symbols of the right-hand side have been derived from the input. The accept action

specifies that the parser should indicate successful completion of the parse.

To generate the actions for a state I of the DFA:

1. If the item �S� � S �� � I , add the action accept to ACTION[I , $].

2. For all items of the form �X � � �� � I , add the action reduce X � � to ACTION[I , x]

for every x � FOLLOW(X).

3. For ��I� t� � J , where t is a terminal symbol, add the action shift J to ACTION[I , t].

4. For ��I�X� � J , whereX is a nonterminal symbol, add the actiongotoJ to ACTION[I , X].

36

Table 3.1 shows the SLR(1) parse table constructed from the DFA in figure 3.2 by rules 1–4

above. The table is indexed by state number st and grammar symbol L. An entry ACTION[st, L]

is a set of parse actions. A blank entry represents a parse error. Actions are written as follows:

	 “s n” means shift and goto state n.

	 “r n” means reduce by the n-th grammar rule.

	 “g n,” means goto state n.

	 “acc” means accept.

To exemplify the process of table construction, consider constructing the table row for state 4

of the DFA shown in figure 3.2. By rule 3, the action s1 is added to ACTION[4, N], because

��4� N) = 1, and N is a terminal. Similarly, the action g6 is added to ACTION[4, NP] by rule 4,

because ��4� NP) = 6, and NP is a nonterminal.

STATE ACTION

N V $ S VP NP
0 s1 g2 g3
1 r3 r3
2 acc
3 s4 g5
4 s1 g6
5 r1
6 r2

Table 3.1: SLR(1) parse table for grammar 3.2.

3.4 Building L� parse tables

The L� parse table should be compiled so that eager reductions are specified whenever they will

cause a syntactic attachment with no further consumption of input. Thus the table builder needs a

method of evaluating whether or not performing an eager reduction in a given state would generate

an attachment. This is a problem when building the parse table from an LR finite automaton.

Whether an attachment results from applying a grammar rule depends on context not encoded in

37

an LR item. Thus the table builder cannot correctly determine all the places to generate eager

reductions.

A solution to this problem is to augment an LR(0) item by adding a boolean flag that indicates

whether or not the item comes from a context where reduction by the rule of the item creates

an attachment. An L�(0) item is written �S � NP VP, a�, where a is a boolean flag that has the

value T if the item comes from a context where reducing by the rule of the item will create an

attachment, and F otherwise. For example, the rule S � NP VP has 6 possible L�(0) items

[S� � NP VP, F] [S� � NP VP, T]
[S� NP � VP, F] [S� NP � VP, T]
[S� NP VP �, F] [S� NP VP �, T]

Augmenting an item to include a boolean flag encoding attachment information can be applied

to the entire family of LR(k) items.

3.4.1 Creating the L� NFA

The L� NFA is defined in a similar way to the LR NFA described in section 3.3. However, the

states of the L� NFA are the L�(0) items of a grammar.

For an augmented grammar G� � �N�T�R � fS� � Sg� S��, the L� NFA M recognising

viable prefixes forG� is defined by the 5-tuple M � �Q�N �T� �� q0� Q�, where the set of statesQ

is the set of L�(0) items for G�, the initial state q0 is the item �S� � � S, F�, and the transition

function � is defined by the following rules. For notational convenience, �h means that the head

of the rule is contained within the non-empty sequence of symbols �. Also, a is a variable

representing the boolean attachment flag of an item.

1. ���X � � �L �, a�� L� � f�X � � L � �, a�g

2. ���X � � � Y �h, a�� �� � f�Y � � �, F� j Y � � � Rg

3. ���X � � L � Yh �, a�� �� � f�Y � � �, T� j Y � � � Rg

4. ���X � � Yh �, a�� �� � f�Y � � �, a� j Y � � � Rg

5. ���X � �h � Y �, a�� �� � f�Y � � �, T� j Y � � � Rg

Rule 1 applies in the situation where the parser is in a state when � in the rule X � � L �

has already been recognised, and L has just been derived. Rules 2–5 apply when the parser is

38

expecting to see Y next in the input, and Y derives �, so the parser must also be expecting to see

� next in the input.

The setting of the attachment flag for each of the above rules is described in detail as follows:

1. Moving the dot through a rule does not change the context of where the item comes from,

therefore the setting of the attachment flag remains unchanged.

2. The head of the grammar rule comes after Y, so parsing Y does not establish any new

attachments to elements of the RHS of this rule. Hence parsing � in order to derive Y

causes no attachments, so the attachment flag of the items �Y � � �, F� is not set.

3. The symbols in �L left-attach to the head Y, so parsing Y generates an attachment. Hence

parsing � to derive a Y causes an attachment, so the attachment flag of the items �Y � � �, T�

is set.

4. Although the head of the rule has been parsed, there are no symbols before Y in the

rule X � Yh � to left-attach to the head Y, so no new attachments are created by parsing

Y. However, if reducing the rule X � Yh � indirectly causes an attachment by another

grammar rule, then parsing Y allows this attachment to be established. Thus the setting of

the attachment flag for the items �Y � � �, a� is the same as the setting for �X � � Yh �, a�.

5. Parsing Y causes a right-attachment of Y to the head of the rule in �. It follows that parsing

� to derive a Y causes an attachment, so the attachment flag of the items �Y � � �, T� is set.

For example, consider constructing the L� NFA for grammar 3.2, annotated with syntactic

heads as follows:

(1) S � NP VPh

(2) VP � Vh NP
(3) NP � Nh

Grammar 3.3

Figure 3.3 shows the NFA resulting from applying rules 1–5 above. For the purposes of

exposition, the rule of the transition function used to create each link in the NFA is shown

in italics beside the link. For example, the arc from �S � � NP VP, F� to �S � NP � VP, F� is

created by rule 1, with X = S, � = �, L = NP, � = VP. Similarly, the arc from �S � NP � VP, F� to

�VP � � V NP ,T� is created by rule 3, with X = S, � = �, Y = VP, � = �, and � = V NP.

39

∈

∈

∈

S

NP

1

VP

NP

∈

V

N

N

VP hS → NP , FVP hS → NP , F

→NP , ThN →NP , ThN

→NP , F
hN

VP hS → NP , F

→ NP , ThV NPVP

→NP , F
hN

, FS→S ′ , FS→S ′

→VP NP , ThV →VP NP , T
hV

1

11

1

1

4

2

1

5

3

Figure 3.3: L� NFA for recognising the viable prefixes of grammar 3.3.

Comparing this NFA with the LR NFA of figure 3.1, there is one major difference. In the

LR NFA, the states for parsing an NP (namely �NP � � N� and �NP � N ��) were previously

linked to both �S � � NP VP� and �VP � V � NP�. In the L� NFA, however, there are separate

states for parsing the NP of �S � � NP VP� and the NP of �VP � V � NP�. Parsing the NP of

�S � � NP VP� generates no attachment, so the attachment flag of the items �NP � � N, F� and

�NP � N �, F� is not set. Parsing the NP of �VP � V � NP� generates a right-attachment of the

40

NP to the V already parsed, so the attachment flag of the items �NP � � N, T� and �NP � N �, T�

is set. This exemplifies how the context-dependent nature of attachments affects the NFA.

The addition of the boolean attachment flag doubles the number of potential states in the NFA.

However, not necessarily all items will be used in the NFA, because some rules may never be used

both in a context where they would generate an attachment and a context where they would not.

3.4.2 Constructing an L� DFA from an NFA

An L� DFA can be constructed from an L� NFA by subset construction, using the same method

as for LR items. There is one special case in this construction. At some point in the parse, it is

possible that a rule can be used both in a context where reducing it will generate an attachment,

and a context where no attachment will result. For example, consider the following grammar:

(1) S � A Xh

(2) X � Yh

(3) X � Y Bh

(4) Y � Zh C

Grammar 3.4

Parsing a Y generates an attachment in the context of rule 2, but not in the context of rule 3. This

results in two different states for the rule Y � Zh C in the NFA shown in figure 3.4. The arc

from �X � � Yh, T� to �Y � � Zh C, T� is added by rule 4 for determining transitions, presented

in section 3.4.1, whereas the arc from �X � � Y Bh, T� to �Y � � Zh C, F� is added by rule 2.

Although the two items have the same rule and position, the setting of the attachment flag is

different.

This creates a complication when constructing the DFA from this NFA. Because the two items

�Y � � Zh C, T� and �Y � � Zh C, F� can both be reached from the NFA state �S � A � Xh, F� by

�-transitions, both items will be included in the same state of the DFA by the subset construction

algorithm. The problem is that the first item indicates that an eager reduction by rule 4 should

be performed after parsing just Z because an attachment will result, whereas the second item

indicates that the entire rule should be parsed before reducing by rule 4, because no attachment

will result. Thus the same rule will be parsed in two different ways, when it should only be done

once.

The DFA should contain a single item for any rule, so that the rule is processed only once.

The attachment flag of this item should be set if there is any context where an eager reduction in

41

Y

S

X

, FS→S ′ , FS→S ′

A

B

CZ

AS → , FhX S → , FhXA S → hXA , F

, T→X hY , T→X hY

, T→Y ChZ , T→Y ChZ , T→Y ChZ

Bh→X Y , T Bh→X Y , T →X BhY , T

→ , FY ChZ → , FY ChZ → , FY ChZ

Y

Z C

∈

∈

∈

∈

∈

Figure 3.4: L� NFA for recognising the viable prefixes of grammar 3.4.

this state would create an attachment. The item �Y � � Zh C, T� represents the fact that there is at

least one context where the rule Y � Zh C will generate an attachment when reduced. Therefore,

only the item �Y � � Zh C, T� is included in the state of the DFA.

Applying this principle during subset construction, the L� DFA resulting from the NFA

of figure 3.4 is shown in figure 3.5. In particular, note that state 2 contains only the item

�Y � � Zh C, T� rather than both the items �Y � � Zh C, T� and �Y � � Zh C, F�.

42

, FS→S ′

S → hXA , F

, T→Y ChZ , T→Y ChZ

→X BhY , T

, FS→S ′

AS → , FhX

, T→X hY

Bh→X Y , T

S → , FhXA

, T→X hY

, T→Y ChZ

Bh→X Y , T

S

X

A

B

C

Y

Z

0 1

2

3

4 5

6
7

Figure 3.5: L� DFA for recognising the viable prefixes of grammar 3.4.

3.4.3 Constructing L� parse tables from finite automata

Once the DFA has been constructed, it must be converted into a parse table with actions specifying

when to perform eager reductions. This is achieved by introducing a new eager-reduce parse

action. An eager-reduce action specifies which grammar rule to reduce by and how many symbols

of the right-hand side of the rule to use.

An eager reduction creates an incomplete derivation with some symbols of the RHS missing.

As these missing symbols are parsed, the parser must incorporate them into the incomplete

43

VP hS → NP , F

→NP , ThN

→VP NP , ThV

→ NP , ThV NPVP

VP hS → NP , F

→NP , F
hN

VP hS → NP , F

, FS→S ′

VP

NP

S

NP

0

1

2

3

4

5

N

V

N

→NP , ThN

→NP , F
hN

, FS→S ′

→VP NP , T
hV 7

6

Figure 3.6: L� DFA for recognising the viable prefixes of grammar 3.3.

derivation. This is specified using a new combine parse action. A combine action specifies that

the symbol just parsed should be combined into an incomplete derivation created from a previous

eager reduction by a particular grammar rule.

After performing an eager reduction, the parser carries out any further reductions triggered

by the newly created nonterminal. A question immediately arises: exactly which reductions

should be carried out? A GLR(k) parser would use lookahead to select only those reduce actions

consistent with the k input symbols that immediately follow the substring covered by the reduction.

Unfortunately, these lookahead symbols are not available when an eager reduction is performed,

44

as the parse associated with the eagerly reduced rule is not yet complete. To replace the k symbol

lookahead in this case, the dummy symbol EAG is introduced. The EAG column of the parse

table contains the set of cascaded reductions to perform at a state st after an eager reduction.

All entries in the EAG column are eager reductions because all the cascaded reductions have the

incomplete originally eagerly reduced derivation as a descendant. Unlike other blank entries in

the table (which signify a parse error), a blank in the EAG column means there are no cascaded

reductions to be performed in this state.

To generate the actions for state I of a DFA:

1. Shifts, gotos, reduces, and accepts are generated as for a normal LR table.

2. For each item of the form �X � �h � �, a� � I

where �h � � Mh � a � T

or �h � � L Mh � a � F

or �h � Lh M � a � F

	 If � is not empty, add the action eager-reduce n-k to ACTION[I , x] for every

x � FIRST(�), where n = X � �h � and k = j�j.

	 If M is a nonterminal, add the action eager-reduce n-k to ACTION[I , EAG],

where n = X � �h � and k = j�j.

3. For each item of the form �X � �h � K �, a�

where �h � �h � a � T

or �h � � L �h � a � F

or �h � Lh M � � a � F

	 Add the action combine n to ACTION[I , K], where n = X � �h K �.

Rule 1 adds the LR parsing actions to the parse table. Rule 2 adds eager-reduce actions. Rule 3

adds combine actions. Looking at rules 2 and 3 in detail:

2(a) If �h � � Mh � a � T, then the item �X � �h � �, a� comes from a context where

reducing by the rule of the item will cause an attachment (because the attachment flag is

true), so once the head of the rule is parsed, the rule should be eagerly reduced. The dot is

immediately after the head, indicating the head must have just been parsed. Thus an eager

45

reduction should be generated if the end of the rule has not already been reached (� is not

empty). If the head is a nonterminal, it may have been created by eager reduction, so an

eager reduction for the EAG symbol should be generated.

2(b) If �h � � L Mh � a � F, then the item �X � �h � �, a� does not come from a context

where reducing by the rule of the item will cause an attachment (the attachment flag is

false), but the symbols in �L left-attach to the head of the rule. The dot is immediately after

the head, indicating the head must have just been parsed. Thus an eager reduction should

be generated if the end of the rule has not already been reached (� is not empty). If the

head is a nonterminal, it may have been created by eager reduction, so an eager reduction

for the EAG symbol should be generated.

2(c) If�h �LhM � a� F, then the item �X � �h � �, a� does not come from a context where

reducing by the rule of the item will cause an attachment (the attachment flag is false), but

M right-attaches to the head of the rule. M is the first symbol that right-attaches to the

head and the dot is immediately after M . Thus an eager reduction should be generated if

the end of the rule has not already been reached (� is not empty). If M is a nonterminal, it

may have been created by an eager reduction, so an eager reduction for the EAG symbol

should be generated.

3(a) If�h � �h � a� T, then the item �X � �h �K �, a� comes from a context where reducing

by the rule of the item will cause an attachment, and the head of the rule has already been

parsed, so the rule must have been eagerly reduced. Thus a combine action should be

generated for each of the remaining symbols of the rule. The next symbol to be parsed is

K, so a combine action by the rule X � �h K � for K is generated.

3(b) If �h � � L �h � a � F, then the head of the rule of the item �X � �h �K �, a� has

been parsed, along with the symbols in �L which left-attach to the head, so the rule must

have been eagerly reduced. Thus a combine action should be generated for the remaining

symbols of the rule. The next symbol to be parsed is K, so a combine action by the rule

X � �h K � for K is generated.

3(c) If �h � Lh M � � a � F, then the head of the rule of the item �X � �h �K �, a� has

been parsed, along with the symbols in M� which right-attach to this head, so the rule must

46

have been eagerly reduced. Thus a combine action should be generated for the remaining

symbols of the rule. The next symbol to be parsed is K, so a combine action by the rule

X � �h K � for K is generated.

The L� parse table resulting from applying these rules to the DFA in figure 3.6 is shown in

table 3.2. The table is indexed by state number st and grammar symbol L. An entry ACTION[st, L]

is a set of parse actions. A blank entry represents a parse error, unless it is the EAG entry, in

which case a blank represents the fact that there are no cascaded reductions appropriate in this

state.

STATE ACTION

N V $ EAG VP NP S
0 s1 g3 g2
1 r3 r3
2 acc
3 s4 g5
4 s6, e2-1 g7, c2
5 r1 e1-2
6 r3 r3
7 r2 e2-2

Table 3.2: L�(1) parse table for grammar 3.3.

Actions are written as follows:

	 “s n” means shift and go to state n.

	 “r n” means reduce by the n-th grammar rule.

	 “g n,” means go to state n.

	 “e n-k” means eagerly reduce by the n-th grammar rule using only the first k symbols of

the RHS.

	 “c n” means combine the grammar symbol L into an incomplete derivation created by an

eager reduction by grammar rule n.

	 “acc” means accept.

47

To illustrate the process of table construction, consider constructing the table row for state 4

of the DFA. The actions s6 and g7 are added by the rules for adding actions to LR parse tables.

Rule 2 for generating actions can be applied to the item �VP � Vh � NP, T�, with X = VP, � = V,

and � = NP. As � �� �, the action e2-1 is added to ACTION[4, N], because VP � Vh NP is

grammar rule 2, jVj = 1, and FIRST(NP) = fNg. V is not a nonterminal, so no entry is added to

EAG. Rule 3 can also be applied to the item �VP � Vh � NP, T�, with X = VP, � = V, K = NP,

and � = �. The action c2 is added to ACTION[4, NP], because K = NP, and VP � Vh NP is

grammar rule 2.

3.5 Left recursion

Grammars containing left-recursion can create problems with eager reduction. For example,

consider the grammar rule NP � NPh PP. If the parser eagerly reduces this rule after seeing the

head, it will create an NP to which this rule can again be applied, creating a third NP, and so

on ad infinitum. More generally, define a relation 	 such that M 	 L if and only if L�Mh �.

Then a grammar is head-left-recursive if L 	� L. The parser will loop, infinitely proposing eager

reductions, for any head-left-recursive grammar. For example, consider the following grammar:

(1) S � A Xh

(2) X � Yh C
(3) Y � Z
(4) Z � Xh W F
(5) Z � B
(6) W � D Eh

Grammar 3.5

When processing the sentence “A B C D E F”, the parser will reduce B to Z by eager reduction

using rule 5. It can then create a Y by a reduction using rule 3, which can then be eagerly reduced

to ax X by rule 2, which can in turn be eagerly reduced to an Z by rule 4, and so on ad infinitum.

To avoid infinite recursion, an L� parser must accommodate some method of dealing with

head-left-recursive loops in a grammar. The standard method of dealing with the similar problem

of left-recursion in top-down parsing is to rewrite the grammar (Hopcroft and Ullman, 1979).

However this is an undesirable approach for L� parsing because, in natural language processing,

grammar structure has more significance than simply a way of recognising the sentences of a

language.

48

A preferable approach is to delay performing eager reductions that would otherwise cause the

parser to enter a loop. For example, in grammar 3.5, if rule 4 is not eagerly reduced until after W is

processed, then the parser does not enter a loop. This is because, to create a W, the input symbols

D and E must be processed, so the loop is only processed as many times as justified by the input,

rather than infinitely. Loops can be detected during parsing, however, delaying processing eager

reductions to avoid these loops introduces significant complexity and overhead.

A simpler method of avoiding loops is to construct the parse table so that eager reductions

do not cause head-left-recursive loops. When constructing the parse table, a minimal set of rules

which should not be eagerly reduced immediately after their head should be identified. Eager

reductions by these rules must only be performed after input is processed. This avoids sending

the parser into an infinite loop.

Identifying the rules in which eagerly reduction should be delayed is equivalent to finding

cycles in a graph constructed from the grammar. The vertices of the graph are the terminals

and nonterminals of the grammar. There is a directed edge from L to M if M 	 L. Cycles in

this graph can be detected using a simple graph search algorithm such as depth-first search. The

outline of an algorithm for identifying the rules in which eager reduction should be delayed is

given in section 3.6.2.

Having identified the rules in which eager reduction should be delayed, the parse table should

be constructed so that eager reductions are not generated immediately after the head of these rules.

Instead, an eager reduction should be generated after the next non-empty symbol of the rule is

processed. For example, when building the parse table for grammar 3.5 from the DFA shown in

figure 3.7, rule 4 is identified as the only rule in which eager reduction should be delayed. Instead

of generating an eager reduction by rule 4 in state 3, this eager reduction is delayed until the next

non-null symbol of the rule has been parsed. As W must be non-null, rule 4 should be eagerly

reduced after W is parsed. Thus, an eager reduction by rule 4 is generated in state 8 instead. The

resulting parse table is shown in table 3.3.

49

S

A

B

X

Y
Z

C

D

W

F

E

0

1

2

3

4
5

7
6

8

9

10

11

S→S ′ , F

S → ,A hX F
S→S ′ , F

S → ,A hX F

→X hY ,C T

→ ZY , T

→ hXZ W ,F T

→ ,Z B T

S → ,A hX F

→ hXZ W ,F T

→W D E , T

→ hXZ W ,F T

→ hXZ W ,F T

→W D E , T

→W D E , T

→X hY ,C T

→X hY ,C T
→ ZY , T

→ ,Z B T

Figure 3.7: L� DFA for grammar 3.5.

STATE ACTION

A B C D E F $ EAG S X Y Z W
0 s1 g2
1 s6 g3 g4 g5
2 acc
3 s9 r1 e1-2 g8
4 e2-1 e2-1

s7, c2
5 r3 e3-1
6 r5
7 r2 r2
8 e4-2 e4-2

s11, c4
9 s10
10 r6
11 r4

Table 3.3: L� parse table for grammar 3.5.

50

The rules for constructing the L� parse table, avoiding left recursion, are as follows. To

generate the actions for state I of a DFA:

1. Shifts, gotos, reduces, and accepts are generated as for a normal LR table.

2. For each item of the form �X � �h � �, a� � I

where �h � Mh � a � T and not delaying eager reduction by this rule

or �h � � L Mh

or �h � Lh M � a � T and delaying eager reduction by this rule

or �h � Lh M � a � F

	 If � is not empty, add the action eager-reduce n-k to ACTION[I , x] for every

x � FIRST(�), where n = X � �h � and k = j�j.

	 If M is a nonterminal, add the action eager-reduce n-k to ACTION[I , EAG],

where n = X � �h � and k = j�j.

3. For each item of the form �X � �h � K �, a�

where �h � Lh � � a � T and not delaying eager reduction by this rule

or �h � � L �h

or �h � Lh M � � a � T and delaying eager reduction by this rule

or �h � Lh M � � a � F

	 Add the action combine n to ACTION[I , K], where n = X � �h K �.

51

3.6 Formal table-building algorithms

3.6.1 L� Table Building Algorithm

Input

An augmented context-free grammar G� � hN�T�R� Si. N is a set of nonterminals, T is a

set of terminals, R is a set of grammar rules of the form X��, where X � N and � � �N �T ��,

and S is the start symbol.

Output

An L� parse table ACTION[state, symbol] for the grammar G�.

Main Program

� Call Table(ItemSets(G�))

ItemSets(G)

Compute the set of all item sets of a grammar. The sets of item sets are the states of a DFA recognising
viable prefixes of the grammar.

� REPEAT

� C � fClosure��S�� �S� F��g
� �I � C
� �L s.t. Goto�I� L� 	� fg
� C � C
Goto�I� L�

� UNTIL no more item-sets can be added to C
� RETURN C

Closure(I)

Compute all the grammar rules that may possibly apply at a point in the parse

� REPEAT

� ��X� � � Y �� f � � I
� � �Y � �� � G

� If � 	� 	

� f � = KFlag(�X� � � Y �� f �)
Else
� f � = CFlag(�X� � � Y �� f �)

� If ��Y � � �� f ��� � I
� If f � � T then
� f �� � T

Else
� I � I
 �Y � � �� f ��

� UNTIL no more items can be added to I
� RETURN I

52

Goto(I� L)

Calculate the item set resulting from a transition by symbol L from item set I

� J � fg
� ��X� � � L�� f � � I
� J � J
 �X� �L � �� f �

� RETURN Closure(J)

KFlag(�X� � � Y �� f �)

Calculate the flags for the item resulting from the closure of a kernel item (an item where � is not empty).

� If the head of X� �Y � is in �Y or � is empty
� RETURN T

Else
� RETURN F

CFlag(�X� �Y �� f �)

Calculate the flags for the item resulting from the closure of a complement item (an item where the dot is
at the start of the rule).

� If Y is the head of X� Y � or � is empty
� RETURN f

Else
� RETURN F

Table(C)

Calculate the parse table from the canonical set of items.

� �Ij � C
� If �S�� S �� f � � Ij
� Add “accept” to ACTION[j, $]

� If �X� � �� f � � Ij
� �x � Follow�X�
� Add “reduceX� �” to ACTION[j, x]

� If �X� � � A�� f � � Ij �Goto�Ij � A� = Ik
� Add “shift k” to ACTION[j, A]

� If �X� � � X�� f � � Ij �Goto�Ij � X� = Ik
� Add “goto k” to ACTION[j, X]

� If �X� �h � �� a� � Ij and ��h � �Mh�a � T����h � �LMh�a � F����h � LhM�a � F�
� If � is not empty
� �x � First���
� Add “eager-reduceX� ��� j�j” to ACTION[j, x]

� If M is a nonterminal
� Add “eager-reduceX� ��� j�j” to ACTION[j, EAG]

� If �X� �h �K�� a� � Ij and ��h � �h�a � T����h � �L
h�a � F����h � LhM��a � F�
� Add “combineX� �K�” to ACTION[j, K]

�

53

3.6.2 Algorithm for detecting head-left-recursive loops

This section presents the outline of an algorithm for finding a minimal set of grammar rules in

which to delay eager reduction to avoid left recursion.

� Build a graph where the vertices of the graph are the terminals and nonterminals of the grammar.
Add a directed edge from L to M if M 	 L.

� Build a DFS spanning tree of the graph. Whenever a cycle is discovered, increment a cycle
counter at each vertex in the cycle.

� Create a set of all vertices with cycle count
 0.
� Repeat until this set is empty (thus no cycles remain)
� Remove a vertex with the maximum cycle count, and add it to a list of rules in which to delay

eager reduction.
� For each cycle of which thus vertex is a member, decrease the cycle count by one on all

members of the cycle.
� Remove all vertices with a cycle count of 0 from the set.

� Return the list constructed by this loop.

54

Chapter 4

L� Parsing

L� parsing is a generalisation of bottom-up parsing that allows a grammar rule to be reduced

before all members of the RHS have been derived from the input. The actions to perform during

parsing are stored in a pre-compiled parse table, as described in chapter 3. The L� parse table

includes two new parse actions not present in a standard GLR parse table—the eager-reduce and

combine actions. During parsing, the driver that executes the actions specified in the parse table

must execute these new eager-reduce and combine actions.

This chapter describes the basic method used to execute the two new actions. Section 4.1

examines the eager-reduce action, and section 4.2 examines the combine action. Section 4.3 then

presents a simple example to illustrate parsing with the two new actions, and section 4.4 presents

a formal specification of the basic L� algorithm without packing. Chapter 5 then presents

improvements to the basic L� algorithm that are needed to make it an efficient algorithm for

practical parsing. Chapter 6 extends the algorithm to perform local ambiguity packing.

4.1 The eager-reduce action

As explained in section 3.2, an eager reduction is a reduction by a grammar rule performed before

all members of the RHS of the rule have been parsed. An eager reduction is specified by an

eager-reduce action eager-reduce n-k, where n is the grammar rule to reduce by, and k is the

number of symbols to use in the reduction. Eager-reduce actions are stored in the parse table.

Performing an eager reduction creates an incomplete derivation in the parse forest. The

derivation is incomplete because not all members of the RHS have been parsed when the derivation

55

is created. For example, if the graph-structured stack includes the following stack top

V

and the parse table specifies an eager reduction by the rule VP � Vh NP after parsing V, then the

parser creates a new branch of the stack for the result of the eager reduction and a new incomplete

forest node for VP, as shown in figure 4.1.

V

VP V

VP

Figure 4.1: Parse state after an eager reduction.

The length of the reduction path in the stack is one, rather than two as it would be for a full

reduction, because the eager reduction is performed after only seeing one symbol (V) of the RHS.

Also, the forest node VP resulting from the eager reduction is incomplete: it is missing a child

NP, because this NP has not been parsed at the time that the eager reduction is performed.

4.1.1 Cascaded reductions

To reap the benefits of an eager reduction, the parser should perform any further reductions

triggered by the nonterminal that resulted from the eager reduction. These are called cascaded

reductions. For example, with grammar 4.1, the parser will eagerly reduce by rule 2 after parsing

A to allow the left-attachment of X to the newly created Y by rule 1. To establish this attachment,

however, requires a cascaded reduction by rule 1.

(1) S � X Yh

(2) Y � Ah B Grammar 4.1

How should the parser access the parse table to determine which cascaded reductions to

perform? Normally, the parser uses lookahead to access the table in order to perform only reduc-

tions consistent with the immediately following symbols. However, these lookahead symbols are

unavailable immediately after an eager reduction is performed, because the parse associated with

the eagerly reduced rule is not yet complete. To solve this problem, the dummy symbol EAG

was introduced in chapter 3. The EAG column of the parse table contains the set of cascaded

56

reductions to perform at a state after an eager reduction. To perform a cascaded reduction, the

parser proceeds as usual, except it uses the EAG symbol rather than lookahead symbols to access

the parse table.

4.2 The combine action

An eager reduction creates an incomplete derivation. The eager reduction is performed on the

assumption that the missing symbols of this incomplete derivation will be subsequently derived

from the input. As each missing symbol is derived, it needs to be incorporated into the incomplete

derivation. In figure 4.1, the VP is eagerly reduced without the parser having seen the NP. When

the NP is derived from the input, it must be added to the derivation of the VP.

A combine action of the form combine n specifies that the symbol just parsed should

be combined into an incomplete derivation created from an eager reduction by rule n. The

combine action does not encode which derivation should be combined into, because the appropriate

derivation is created only during parsing.

4.2.1 Combine pointers

The L� parser uses a data structure called a combine pointer to locate an incomplete derivation,

so that missing children can be combined into the derivation as they are parsed. There are three

parts to a combine pointer: an incomplete derivation, the grammar rule that was used to create

the incomplete derivation, and the vertices in the stack that resulted from the eager reduction that

first created the incomplete derivation. A combine pointer is written �n� d : V�, where n is the

grammar rule, d is the incomplete derivation, and V is the list of vertices in the stack. Combine

pointers are stored at stack vertices, and are created by eager reductions. As part of performing

a combine action, the combine pointers used in the action are moved to the vertex associated

with the symbol being combined into the incomplete derivation. Thus combine pointers are

always stored at the vertex in the stack whose associated forest node is the rightmost child of the

incomplete derivation pointed to by the combine pointer.

When performing a combine action of the form combine n at a given vertex, the parser

locates the derivations to which the combine action should be applied by using the combine

pointers of the form �n� d : V� at that vertex.

57

If there is a combine pointer of the form �n � d : V� at a given vertex, the parser does not

perform any eager reductions by rule n at that vertex, because the combine pointer indicates that

such eager reductions have already been previously performed.

4.2.2 Completing reductions

After all missing elements of an incomplete derivation have been parsed and combined into the

derivation, the parser marks the derivation as complete. This is accomplished by performing a

completing reduce. Unlike other reductions, a completing reduction creates no new stack or forest

structure—all appropriate structure has already been created by an eager reduction and subsequent

combines. All that a completing reduction does is mark the appropriate derivation as complete.

A completing reduction appears as a reduce action in the parse table, and is identified as a

completing reduction by the presence of appropriate combine pointers at the vertex where the

reduction is scheduled. The combine pointers point to derivations already created from eager

reduction by the grammar rule now scheduled for full reduction. The fact that a full reduction

has been scheduled (as opposed to an eager reduction) indicates that the end of the rule has been

reached, so the incomplete derivation previously created using the rule must be complete. The

combine pointers also store a list of vertices that resulted from the original eager reduction. These

are the vertices that the parser should establish as the new stack tops resulting from the completing

reduce.

4.3 A simple example of parsing using the L� algorithm

As an example of the L� algorithm, consider the problem of parsing the simple sentence “John

saw Mary” using the grammar 4.2. This grammar is the same as grammar 3.3 in chapter 3, and

this example traces parsing with table 3.2 constructed in that chapter.

(1) S � NP VPh

(2) VP � Vh NP
(3) NP � Nh

Grammar 4.2

A thumbnail sketch of the parser’s actions while parsing the sentence “John saw Mary” is

as follows. First “John” is parsed as an NP as in ordinary GLR parsing. Next, the word “saw”

is pushed onto the stack. The parser then eagerly reduces by rule 2, and pushes the resulting

incomplete VP onto the stack. This immediately triggers a further eager reduction by rule 1,

58

STATE ACTION

N V $ EAG VP NP S
0 s1 g3 g2
1 r3 r3
2 acc
3 s4 g5
4 s6, e2-1 g7, c2
5 r1 e1-2
6 r3 r3
7 r2 e2-2

Table 4.1: L�(1) parse table for grammar 4.2.

creating an incomplete S. This S is incomplete even though parse nodes for each of its immediate

children exist, because its child VP node is missing a child NP. The system next parses “Mary” as

an NP and combines it into the incomplete VP. A completing reduction by rule 2 then marks the

VP as complete, because all its children have now been parsed. Finally, a completing reduction

by rule 1 marks the S as complete, because its child VP is now complete.

To illustrate the L� algorithm in detail, the state of the parser at each step is shown in a diagram

with three components:

	 The graph-structured stack.

The graph-structured stack is drawn in the same way as the diagrams of chapter 2, with

the addition that vertices are now drawn with their combine pointers below them. Vertices

created by eager reduction are drawn with dashed lines.

	 The parse forest.

The parse forest is drawn in the same was as the diagrams of chapter 2, with the addition

that dashed lines joining forest nodes represent links created by eager rather than normal

reduction, and a dotted line indicates the forward edge of an incomplete derivation created by

eager reduction. As parsing proceeds, combine actions incrementally extend the derivation.

When all RHS elements are in place, a completing reduction marks the forest node as

complete, depicted by changing the dashed lines to solid lines.

	 The current word.

As in chapter 2, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.

59

0 s1 John

0 1

N1

r3 John

N1 saw

Figure 4.2: Trace of the L� algorithm parsing “John saw Mary”.

Table 4.1 shows the L� parse table (from table 3.2) for grammar 4.2. The table is indexed

by state number st and grammar symbol L. A blank entry represents a parse error, unless it is the

EAG entry, in which case a blank entry represents the fact that there are no cascaded reductions

appropriate in this state. An entry ACTION[st, L] is a set of parse actions, as described in

section 3.4.3.

The remainder of this section presents a detailed trace of the L� algorithm parsing the sentence

“John saw Mary”. The parser is initialised with a single vertex with state 0, shown in the first

diagram of figure 4.2. Initially the parse proceeds as with GLR parsing, with “John” being pushed

onto the stack (second diagram of figure 4.2), and reduced to NP1 by rule 3 (first diagram of

figure 4.3). Next “saw” is shifted onto the stack, leaving the parser in the state shown in the

second diagram of figure 4.3.

The next word to process is “Mary,” with lexical category N. The parse actions to perform

are given by ACTION[4, N] = fe2-1, s6g. Reductions are processed before shifts as in GLR

parsing. Thus the parser next eagerly reduces by rule 2 using only one symbol in the reduction.

Performing this reduction creates a new forest node VP1 and new stack vertex whose state is

determined using the parse table entry ACTION[3, VP] = fg5g. The parse tree for VP1 is drawn

using dashed and dotted lines to indicate that the parse of the VP is incomplete, and the stack vertex

is drawn with dashed lines indicating it was created by eager reduction. The eager reduction also

establishes a new combine pointer at the vertex with state 4. This combine pointer indicates that

the incomplete VP1 was created by an eager reduction by rule 2, and indicates that the reduction

created the new vertex with state 5 in the stack (third diagram of figure 4.3).

Having just performed an eager reduction, the parser now performs any cascaded reductions

60

0 3

NP1

s4

John

NP1

N1

saw

0 3

NP1

4

V1

e2−1, s6
1V

John saw

NP1

N1

Mary

0 3

NP1

5

VP1

e1−2

4

V1

[2 → VP1 :5]

s6
1V

1VP

John saw

NP1

N1

Mary

Figure 4.3: Trace of the L� algorithm parsing “John saw Mary” (cont.).

stored in the EAG column of the parse table. Because ACTION[5, EAG] = fe1-2g, the parser

carries out a cascaded eager reduction by rule 1 and creates the new forest node S1 from NP1

and VP1, and a new stack vertex with state determined from ACTION[0, S] = fg2g. The entry

ACTION[2, EAG] is blank, so the parser does nothing further at this vertex (first diagram of

figure 4.4).

No unprocessed reductions remain for the current word (“Mary”), so the parser finally performs

the outstanding shift action s6 at the vertex with state 4. The word “Mary” is shifted onto the

stack, making the sentinel $ the current word (second diagram of figure 4.4). The parser then

reduces N2 at the top of the stack to NP2 by rule 3. The table entry ACTION[4, NP] = fg7, c2g

is used to determine the state of the resulting vertex. The goto action specifies that the state of the

new vertex is state 7. A combine action by rule 2 must also be performed. The combine pointer at

the vertex with state 4 identifies VP1 as the node created by eager reduction by rule 2. The parser

61

0

2

S1

3

NP1

5

VP1

[1 → S1 :2]

4

V1

[2 → VP1 :5]

s6 1V

1VP

John saw

S

NP1

N1

Mary

0

2

S1

3

NP1

5

VP1

[1 → S1 :2]

4

V1

[2 → VP1 :5]

6

N2

r3 1V

1VP

John saw

S

NP1

N2N1

Mary

$

0

2

S1

3

NP1

5

VP1

[1 → S1 :2]

4

V1

7

NP2

[2 → VP1 :5]

r2 1V

1VP

John saw

S

NP1

NP2

N2N1

Mary

$

Figure 4.4: Trace of the L� algorithm parsing “John saw Mary” (cont.).

therefore installs NP2 as the rightmost child of VP1 (third diagram of figure 4.4). The combine

pointer is also moved to the vertex with state 7, so that the combine pointer is stored at the vertex

associated with the rightmost child of VP1.

At the new vertex with state 7, ACTION[7, $] = fr2g. There is a combine pointer created

by rule 2 at this vertex, so this reduction is a completing reduction, covering the same ground

as the eager reduction by rule 2 carried out earlier. The parser pops the RHS elements V1 and

NP2 off the stack, establishing the vertex with state 5 (identified by the combine pointer) as a

new stack top, and marks VP1 as complete. This action is depicted by changing the dashed lines

to solid lines (first diagram of figure 4.5). Unlike other reductions, no new parse structure is

62

0

2

S1

3

NP1

5

VP1

[1 → S1 :2]

r1 1V

1VP

John saw

S

NP1

NP2

N2N1

Mary

$

0 2

S1

acc

1V

1VP

John saw

S

NP1

NP2

N2N1

Mary

$

Figure 4.5: Trace of the L� algorithm parsing “John saw Mary” (cont.).

created for the completing reduction, because all relevant structure was constructed earlier by the

eager-reduce and combine actions. Having completed VP1, the parser next performs a second

completing reduction, this time by rule 1, which indicates that S1 is also complete. A single stack

top remains, with state 2 (second diagram of figure 4.5). As ACTION[2, $] = faccg, the parse

succeeds, with S1 as the root of the resulting parse tree.

4.4 Formal L� algorithm without packing

Input

A parse table ACTION[state, symbol] for the context-free grammar G � hN�T�R� Si and an

input string z � T �. Entries in the parse table are sets of parsing actions. Each action has the form

“shift s”, “reduce r”, “eager-reduce r–k”, “goto s”, “combine r”, or “accept”.

N is a set of nonterminals, T is a set of terminals, R is a set of grammar rules of the form X��,

where X � N and � � �N � T ��, and S is the start symbol. The state s0 is designated as the

start state.

Output

A list of root nodes of a shared parse forest for z if z � L�G�, otherwise an error indication.

63

Data Structures

A vertex in the graph-structured stack is a tuple hs� n� C�Si, where s is a state, n is a forest

node, C is a set of combine pointers, and S is the set of successor vertices in the stack. For

notational convenience, the elements of a vertex v can be referenced using the functions State(v),

Node(v), Combine-Ptrs(v), and Successors(v).

A node in the shared forest is a tuple hX� di, where X � N , and d is a derivation, written

as a list of child forest nodes. The elements of a node n can be referenced using the functions

Nonterm(n) and Children(n).

A combine pointer is a tuple hr� d�Vi, where r � R, d is a derivation, and V is a set of vertices.

The elements of a combine pointer c can be referenced using the functions Rule(c), Deriv(c), and

Vertices(c).

A path is a contiguous sequence of vertices v1� � � � � vk in the stack. That is, for i � 2� � � � � k,

vi � Successors(vi�1).

FRONTIER stores a set of pairs hv� ai, where v is a vertex and a is a parse action yet to be

performed at v. The vertices within the pairs of this list form the active stack tops.

� denotes the current input symbol.

Main Loop

� Add a terminator symbol $ to the end of the input
string z

� � � The first symbol of z
� v0 � hs0�NIL� fg� fgi � Initialise the stack

� Call Schedule(v0� �)
� Loop
� Call Reduce()
� Call Shift()
� If FRONTIER contains only pairs of the form

hv� “accept”i then halt and return
fNode�v� j hv� “accept”i � FRONTIERg

� If FRONTIER = fg then halt and signal an error.

� Perform reductions followed by shifts un-
til acceptance or rejection.

64

Reduce()

Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Non-eager-
reduce actions are processed first, followed by eager-reduce actions.

� While �x � FRONTIER of the form
hv� “reduceX��”i :

� Process all outstanding non-eager reduc-
tions at stack tops.

� Remove x from FRONTIER
� C � fc � Combine-Ptrs�v� j Rule�c� = X��g
� If C 	� fg then
� Call Completing-Reduce(v� C)

Else
� P � fp j p is a path of length j�j starting at v in

the stackg
� �p � P , call Full-Reduce(p�X��)

� Each element of C corresponds to a previ-
ous eager reduction that is now complete.

� While �x � FRONTIER of the form
hv� “eager-reduce r–k”i :

� Process all outstanding eager reductions
at stack tops.

� Remove x from FRONTIER
� P � fp j p is a path of length k starting at v in

the stackg
� �p � P , call Eager-Reduce(p� r)

Completing-Reduce(v� C)

Perform a completing reduction at vertex v. As this reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and all that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

� �c � C
� Remove c from Combine-Ptrs(v)
� �v� � Vertices�c�
� Call Schedule(v�� �)

� C is a set of combine pointers that point
to the vertices created earlier by an eager
reduction that is now being completed.

65

Full-Reduce(v1� � � � � vk� X��)

Non-eagerly reduce by the ruleX��, creating a new forest nodeX whose children are the nodes of vertices
v1� � � � � vk. Combine this new node into other partial derivations created previously by eager reduction, and
schedule any further actions triggered by this reduction.

� n� � hX� �Node�vk�� � � � �Node�v1��i � Create a new forest node.

� Π � A partition of Successors(vk) by goto value on
symbol X

� v belongs to the set �s � Π if and only if
“goto s” � ACTION[State(v),X]. See
figure 4.6(a).

� ��s � Π
� v� � hs� n�� fg� �si

� Create new vertices containing the new
forest node, one for each element of Π.

� �v � �s
� �a �ACTION[State(v),�] s.t.a= “combine r”
� Call Combine(v� v�� r)

� Call Schedule(v�� �)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

v1v k

π
1s

π s 2

Figure 4.6(a): Stack before full reduction.

X

X

1s

s 2

π
1s

π s 2

v1v k

v1
′

v ′
2

n k nn 1

n k n 1

X
n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

Figure 4.6(b): Stack and new forest node after
full reduction.

66

Eager-Reduce(v1� � � � � vk� X��)

Eagerly reduce by the rule X��, creating a new incomplete forest node X whose children are the nodes
of vertices v1� � � � � vk. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

� d� �Node�vk�� � � � �Node�v1��

� n� � hX� d i � Create a new forest node.

� c� hX��� d� fgi � Create a new combine pointer.

� Π � A partition of Successors(vk) by goto value on
symbol X

� v belongs to the set �s � Π if and only if
“goto s” � ACTION[State(v),X]. See
figure 4.7(a).

� ��s � Π
� v� � hs� n�� fg� �si
� Add v� to Vertices(c)

� Create new vertices containing this new
node, one for each element of Π.

� �v � �s
� �a �ACTION[State(v),�] s.t.a= “combine r”
� Call Combine(v� v�� r)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

� Call Schedule(v�� EAG)
� Add c to Combine-Ptrs(v1)

v1v k

π
1s

π s 2

Figure 4.7(a): Stack before eager reduction.

X

1s

v ′
2

s 2

π
1s

π s 2
X

v1v k

v1
′

n k n 1

X

n k n 1

n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

d→αX〈 , 〉v ′2{ }v ′1,c = ,

Figure 4.7(b): Stack and new forest node after
eager reduction.

67

Combine(vf � vt� r)

Combine Node(vt) into partial derivations created by eager reduction whose rightmost element is currently
Node(vf). These derivations are identified by the combine pointers associated with vf .

� �c � Combine-Ptrs(vf) s.t. Rule(c) = r

� Add Node(vt) to the end of Deriv(c)
� Remove c from Combine-Ptrs(vf)
� Add c to Combine-Ptrs(vt)

� Move the combine pointers forward to vt
so that further combines (or completing
reductions) can be performed there.

,

v k

v

X

v f v t

n k nn f n t

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt
X

n k nn f

→αX 〉〈 { }v,()Combine−Ptrs =vf
}{ d

Figure 4.8(a): Stack and forest node before
combine.

,

v k

v

X

v f v t

n k nn f n t

X

n k nn f n t

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt

=()vCombine−Ptrs t
{ }→αX 〉〈 { }v,d

Figure 4.8(b): Stack and forest node after com-
bine.

68

Shift()

Shift the next terminal symbol onto all the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule
any actions triggered by the shift.

� n� h�� fgi
� � � The next symbol of the input string

� Create a new forest node for the shifted
input symbol.

� S � fhv� ai � FRONTIER j a = “shift s”g
� FRONTIER � FRONTIER � S

� S is the set of all shift actions to perform.

� Π � A partition of S according to goto state of the
shift actions

� Each �s � Π consists of elements of the
form hv� “shift s”i.

� ��s � Π
� V � fv j hv� ai � �sg
� vs � hs� n� fg�Vi

� Create a new vertex for each member of
Π.

� �x � FRONTIER of the form hv� “combine r”i
s.t. v � V

� Remove x from FRONTIER
� Call Combine(v� vs� r)

� Call Schedule(vs� �)

� Combine the newly created n into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

1ss

1v

2v

s 2s

s s 1

v 3

π
1s

π s 2

Figure 4.9(a): Stack tops with outstanding
shift actions.

s 1

s 2

π
1s 1v

2v

v 3

π
1s

π s 2

vs 1

vs2

Figure 4.9(b): Stack after shifting.

Schedule(v� L)

Add to FRONTIER all possible actions to be performed at vertex v.

� A � fa � ACTION�State�v�� L� j
�a = “eager-reduce r–k” �
�c � Combine-Ptrs�v� s.t. Rule�c� = r)

� �a � A, add hv� ai to FRONTIER

� Schedule all actions except eager reduc-
tions that repeat an eager reduction car-
ried out earlier.

�

69

Chapter 5

L� Parsing Extensions

The L� algorithm described in chapter 4 can be extended in two ways. Section 5.1 presents an

extension that eliminates inefficiencies inherited from GLR parsing. Section 5.2 presents an ex-

tension that allows the L� parser to be interfaced with a modular NLP system. Section 5.3 presents

an example of parsing with these extensions, and section 5.4 presents a formal specification of

the L� algorithm including the two extensions.

5.1 Subtree Sharing

A GLR parser uses a packed shared forest to represent all possible parses of a sentence. Sharing

and packing are important because they provide a method of compactly representing the parse,

and they eliminate the repetition of work when building parse forests. Sharing results in subtrees

being parsed and represented only once if they are headed by the same nonterminal, cover the

same input substring, and have the same structure. Packing results in subtrees being put together

in a single forest node if they are headed by the same nonterminal, cover the same input substring,

but have different structure. Further parses are then performed only once for the entire node,

rather than once for each member of the packed node.

The parser must recognise opportunities to share or pack parses. Where the parser fails to do

so, it will repeat work unnecessarily. For example, consider the possible parses of the sentence

“A B C D E” using grammar 5.1.

71

(1) S � Xh Z E
(2) S � Y Z Eh

(3) X � A
(4) Y � A
(5) Z � Wh D
(6) W� Bh C

Grammar 5.1

The optimally packed shared parse forest for this sentence is shown in figure 5.1. The L� parser,

however, does not produce this parse forest. Instead it produces the forest shown in figure 5.2.

There are two sources of non-optimality in this parse forest. The L� parser creates two separate

nodes for S, instead of packing the two parses of S together into a single forest node. This is

because the L� algorithm as stated does not perform local ambiguity packing. This problem is

addressed in chapter 6.

X Y Z

S

A B C D E

W

Figure 5.1: Optimal parse forest for the sentence “A B C D E” with grammar 5.1.

X Y

A B C D E

S 1 S 2

Z 1 Z 2

W 2W 1

Figure 5.2: L� parse forest for the sentence “A B C D E” with grammar 5.1.

72

STATE ACTION

A B C D E $ EAG S X Y Z W
0 s3 g2 g4 g1
1 s11 g13 g12
2 acc
3 r4, r3
4 s5 g7 g6
5 e6-1

s10, c6
6 e5-1 e5-1

s9, c5
7 e1-2 e1-2

s8, c1
8 r1
9 r5

10 r6
11 s16
12 s15
13 s14
14 r2
15 r5
16 r6

Table 5.1: L� parse table for grammar 5.1.

The other source of non-optimality is the missed opportunities to share nodes in the parse

forest. The nodes W1 and W2 are identical: they have the same nonterminal and the same children.

Only one node for W should be created, and this node should be shared wherever needed. The

L� parser, however, creates the two separate forest nodes W1 and W2. This in turn leads to two

separate nodes Z1 and Z2 (one for each W), when only one node for Z should be created.

To see how these problems arise, it is useful to trace the actions of the parser in processing

this sentence. The parser employs the parse table shown in table 5.1.

1. The parser shifts A onto the stack, then reduces it to X1 by rule 3, and Y1 by rule 4.

2. The parser shifts B onto the stack, leaving the stack as shown in figure 5.3. Next, on the

upper branch of the stack, the parser eagerly reduces B1 to W1 by rule 6. This is followed by

a cascaded eager reduction by rule 5, creating the incomplete node Z1. A further cascaded

reduction by rule 1 then establishes the right-attachment of Z1 to the previously parsed X1,

creating S1. On the lower branch of the stack with Y followed by B, no eager reduction is

performed because no attachments would result from the eager reduction.

73

4

X1

5

B1

e6−1, s10, c6

1

Y1

11

B1

s16

0

B
1

A
1

X
1

Y
1

C

Figure 5.3: State of the L� parser after processing “A B” with table 5.1.

6

W1

[5 → Z 1 :7]

11

B1

4

X1

5

B1

10

C1

[6 → W1:6]

r6

1

Y1

16

C1

r6

0

2

S1

7

Z 1

[1 → S1 :2]

B 1A 1

X1 Y 1

W
1

C 1

Z 1

S 1

D

Figure 5.4: State of the L� parser after processing “A B C” with table 5.1.

3. The parser shifts C onto both branches of the stack separately, and also combines C into

W1, which was created from eager reduction by rule 6. The stack at this point is shown in

figure 5.4. Next, the parser performs a completing reduction by rule 6 on the upper branch

of the stack, marking W1 as complete. On the lower branch of the stack, the parser then

performs a separate reduction by rule 6, creating a second derivation of W.

4. The parser shifts D onto both branches of the stack, and also combines D into Z1, on the

upper branch of the stack. This leaves the stack as shown in figure 5.5. Following this, the

parser performs a completing reduction by rule 5 on the upper branch of the stack. The

parser also performs a separate reduction by rule 5 on the lower branch of the stack, creating

a second derivation of Z.

74

0

2

S1

4

X1

7

Z 1

[1 → S1 :2]

6

W1

9

D1

[5 → Z 1 :7]

r5

1

Y1

12

W2

15

D1

r5

Z 1

W
1

D1C 1B 1A 1

X1 Y 1

S 1

W
2

E

Figure 5.5: State of the L� parser after processing “A B C D” with table 5.1.

0

2

S1

1

Y1

13

Z 2

14

E1

r2

4

X1

7

Z 1

8

E1

[1 → S1 :2]

r1

S 1

X1 Y 1 Z 1

W
1

W
2

E1D1C 1A 1 B 1

Z 2 $

Figure 5.6: State of the L� parser after processing “A B C D E” with table 5.1.

5. The parser shifts E onto the stack, and combines E into the incomplete node S1 (as shown

in figure 5.6). A completing reduction by rule 1 on the upper branch of the stack, and a

reduction by rule 2 on the lower branch of the stack create the complete parses S1 and S2

of the sentence “A B C D E”, as shown in figure 5.2.

The non-optimal sharing in the parse forest results from contextual distinctions in the states

of the parse table, which restrict the opportunities to share. Sharing only occurs when branches of

the stack are rejoined. Results from the common branch are shared by all the rejoined branches.

For example, in figure 5.7, if “A B” at the top of the stack is reduced to an X, this X can be shared

by both branches Y and Z. Branches of the stack are only rejoined, however, when the states

pushed onto those branches are equal, as shown in figures 5.8 and 5.9. Two states of the table

may not be equal as a result of contextual differences encoded in the state, even though they both

75

Z

Y

A B

Figure 5.7: Rejoining of the stack allows sharing.

s1

s1

�� 1

Figure 5.8: The stack is rejoined when states are equal.

s1

s2

��

1

2

Figure 5.9: The stack is not rejoined when states are not equal.

represent the parser being at the same point in processing the same set of grammar rules. When

two or more such states both occur in the stack at the same time, they will be on different branches

that cannot be rejoined, and will therefore cause the same grammar rules to be applied separately

on each branch.

To see how such contextual distinctions arise, consider states 5 and 11 from the previous

example. These states both represent the same position in processing the same set of rules. This

can be seen by examining the DFA shown in figure 5.10, from which the parse table of table 5.1

was constructed. Both states consist of a single item containing the grammar rule W � Bh C,

with the dot after the B. The two items (and therefore states) are not equal, however, because of a

difference in the setting of their attachment flag. This difference results from a difference in the

context from which the items were created. The attachment flag of the item �W � Bh � C, T� in

76

16

→ , TChBW 10

S → , FhX Z E

S → , FhX Z E

, FS→S ′

S → , FhX Z E

, T→X A

S → Y , FZ hE

,→Y A F

,T→X A

,→Y A F

→Z DhW , F

→Z DhW , F

YS → , FZ hE

→ ChB , FW

→ ChB , FW

→ , TChBW→ , TZ DhW

→ , TZ DhW

S → , FhX Z E

→ , TZ DhW

→ , TBh CW

, FS→S ′
S

E

Y

A

Z

D

W B

C

E

Z

BW

D

C

X

0

2

1

4

3

11

13

12

15

14

56

9

7

8

→Z DhW , F

→ Bh C , FW

YS → , FZ hE

hEYS → , FZ

Figure 5.10: L� DFA for grammar 5.1.

77

state 5 is set because the item comes from a context of having first parsed an X, meaning that an

attachment can be established by rule 1 after the head of W � Bh C is parsed. The attachment

flag of the item �W � Bh � C, F� in state 11 is not set, because the item comes from a context

of having first parsed a Y, meaning that no attachment results from parsing W � Bh C. Because

the states are differentiated by the setting of the attachment flag, the parser incorrectly creates

separate derivations of W depending on whether an X or a Y was first parsed. This can be seen

in figure 5.4, where a reduction by rule 6 is specified separately on both the upper and lower

branches of the stack, creating the two separate forest nodes W1 and W2.

Increasing the contextual information encoded in a state results in an increase of missed

opportunities for sharing. For example, adding lookahead to items can reduce sharing in the parse

forest (Billot and Lang, 1989; Lankhorst, 1991).

0

2

S1

4

X1

7

Z 1

[1 → S1 :2]

6

W1

9

D1

[5 → Z 1 :7]

r5

1

Y1

12

W1

15

D1

r5 A 1 B 1 C 1

W
1

Z 1X1 Y 1

S 1

1D

E

Figure 5.11: State of the L� parser (reusing derivations) after processing “A B C D”.

Rekers (1992) has also studied this problem. He proposes a solution that bases the decision

to share on the equality of derivations in the parse forest, rather than equality of states in the parse

table. When the parser performs a reduction, it searches for an existing derivation with exactly

the same children as the symbols being used in the current reduction. If such a derivation exists,

the parser reuses it instead of creating a new one. This results in an optimally shared parse forest.

However, it does not eliminate unnecessary actions performed by the parser. The stack is still

constructed as in GLR parsing, with branches only being rejoined when states are equal. Thus

reductions are duplicated on separate branches of the stack, although the same derivation is used

as the result of both reductions.

For example, applying Rekers’s algorithm in the previous example of parsing the sentence

78

“A B C D E” with grammar 5.1, the parser processes “A B C” in exactly the same way as explained

above, resulting in a stack identical to that shown in figure 5.4. However, when the reduction by

rule 6 is performed on the lower branch of the stack, the parser searches for an existing derivation

of W with children B and C, and finds the node W1. Therefore it reuses W1 as the result of the

reduction on the lower branch of the stack. Having performed this reduction, the parser shifts

D onto the stack, leaving the stack as shown in figure 5.11 (cf. figure 5.5). There are still two

distinct branches in the stack, and the reduction by rule 6 is still performed twice, even though

the same result was used both times.

, FS→S ′

S → , FX hY

→ , FhA BX

S
0

1

2

3

4

5

, FS→S ′

7

6

9

8

B

A

X

C

A

B

X

Y
S → , FX hY

→ , FhA BX

→ , TY hC X

→ hA BX , T

→ , TY hC X

S → , FX hY

→ , FhA BX

→ hA BX , T → hA BX , T

→ , TY hC X

Figure 5.12: L� DFA for grammar 5.2.

An alternative approach worth considering is to merge states that have a common core. The

core of a state is the set of cores of the items in that state, where the core of an item is the rule and

position of its dot. For example, in figure 5.10, states 5 and 11 both have the core f�W � Bh � C�g.

79

7

, FS→S ′

S → , FX hY

→ , FhA BX

S

0

1

2

3

4

5

, FS→S ′

6

X

C

A

B

X

Y
S → , FX hY

→ , TY hC X

→ hA BX , T

→ , TY hC X

S → , FX hY

→ hA BX , T → hA BX , T

→ , TY hC X

A

Figure 5.13: L� DFA, after merging common core, for grammar 5.2.

STATE ACTION

A B C $ EAG S X Y
0 s1 g2 g3
1 e3-1

s7, c3
2 acc
3 s4 g5
4 e2-1, s1 g6, c2
5 r1 e1-2
6 r2 e2-2
7 r3 r3

Table 5.2: L� parse table for grammar 5.2.

By merging states with a common core, the effect of extra contextual information such as the

attachment flag is removed. The idea of merging states is used in LALR table building. States

in an LR DFA with the same core are merged together, with the lookahead of the resulting state

being the union of the lookahead of the merged states.

80

Unfortunately, using this method to construct an L� parse table means that the parser may

perform eager reductions where no attachments result. For example, consider the following

grammar:

(1) S � X Yh

(2) Y � Ch X
(3) X � Ah B

Grammar 5.2

Figure 5.12 shows the L� DFA of this grammar. States 1 and 6 have common cores, so are

merged into a single state, as are states 8 and 9. The resulting DFA is shown in figure 5.13. Table 5.2

shows the parse table constructed from this DFA. Now consider parsing the sentence “A B C A B”

with this parse table. Firstly, the parser shifts A onto the stack, leaving the parser in state 1, and

making B the next word to process. The table entry ACTION[1, B] = fe3-1, s7, c3g, so the

parser eagerly reduces A to an X by rule 3. However, ACTION[3, EAG] = fg, so no further eager

reductions are performed. No attachments have been established, so the parser has performed the

extra work of the eager reduction for no gain.

STATE EQUIV. ACTION

CLASS A B C D E $ EAG S X Y Z W
0 0 s3 g2 g4 g1
1 1 s11 g13 g12
2 2 acc
3 3 r4, r3
4 4 s5 g7 g6
5 5 e6-1

s10, c6
6 6 e5-1 e5-1

s9, c5
7 7 e1-2 e1-2

s8, c1
8 8 r1
9 9 r5

10 10 r6
11 5 s16
12 6 s15
13 11 s14
14 12 r2
15 9 r5
16 10 r6

Table 5.3: New L� parse table for grammar 5.1, constructed from the DFA in figure 5.10.

81

To avoid unjustified eager reductions, states should only be merged when warranted by the

parse. If, during parsing, two states with the same core occur together at the top of the stack, they

should be merged. To identify such states, the parser uses equivalence classes. An equivalence

class contains all items with the same core. The equivalence class is encoded as an integer stored

with each state in the parse table. For example, the L� parse table with equivalence classes

for grammar 5.1 is shown in table 5.3. This parse table is calculated from the DFA shown in

figure 5.10. States 5 and 11 are both members of equivalence class 5, because they both have the

same items with dots in the same position. Similarly, states 10 and 16 both belong to equivalence

class 10.

When the parser is about to create two or more vertices with states from the same equivalence

class, it merges these states into a single vertex. The actions to perform at this vertex are the union

of the actions to perform in the individual states.

For example, consider parsing the sentence “A B C D E” using the new parse table shown in

table 5.3. There is one difference to the stack diagrams drawn previously. The equivalence class

of a vertex is drawn above a list of states stored in the vertex. Both these numbers are drawn

inside the vertex.

0
0

1
1

Y1

s11

4
4

X1

s5

A
1

X
1

Y
1

B

0
0

1
1

Y1

5
5, 11

B1

e6−1, s10, c6, s164
4

X1

B
1

A
1

X
1

Y
1

C

Figure 5.14: State of the L� parser after processing “A B” with table 5.3.

82

0
0

1
1

Y1

6
6, 12

W1

e5−1

5
5, 11

B1

[6 → W1 :6]

s10, c6, s164
4

X1

B 1A 1

X1 Y 1

W
1 C

0
0

1
1

Y1

11
13

Z 1

6
6, 12

W1

[5 → Z 1 :7,11]

5
5, 11

B1

[6 → W1 :6]

s10, c6, s164
4

X1

7
7

Z 1

e1−2

B 1A 1

X1 Y 1

W
1

Z 1

C

Figure 5.15: State of the L� parser after processing “A B C” with table 5.3.

1. The parser shifts A onto the stack, then reduces it to an X by rule 3, and a Y by rule 4,

leaving the stack as shown in the first diagram of figure 5.14.

2. There are outstanding shift actions to states 5 and 11. However, rather than creating two

separate vertices from these shifts, the parser creates only a single vertex which represents

the merger of states 5 and 11, because both states belong to equivalence class 5. The actions

to perform at the new vertex are the union of the actions to perform in states 5 and 11. The

result is shown in the second diagram of figure 5.14. Next, the parser eagerly reduces B to

a W by rule 6. The entries ACTION[4, W] = fg6g and ACTION[1, W] = f12g determine

the states of the resulting vertices. Both states 6 and 12 belong to equivalence class 6,

so again, the parser creates a single vertex representing the merger of these two states

83

0
0

2
2

S1

1
1

Y1

11
13

Z 1

6
6, 12

W1

[5 → Z 1 :7,11]

5
5, 11

B1

10
10, 16

C1

[6 → W1 :6]

r64
4

X1

7
7

Z 1

[1 → S1 :2]

B 1A 1

X1 Y 1

W
1

C 1

Z 1

S 1

D

0
0

2
2

S1

4
4

X1

7
7

Z 1

[1 → S1 :2]

6
6, 12

W1

9
9, 15

D1

[5 → Z 1 :7,11]

r5

1
1

Y1

11
13

Z 1

A 1 B 1 C 1

W
1

Z 1X1 Y 1

S 1

1D

E

Figure 5.16: State of the L� parser after processing “A B C D” with table 5.3.

(first diagram of figure 5.15). Next, the parser performs a cascaded reduction by rule 5

at the new vertex, creating the incomplete node Z1. Note that the parser also creates two

separate vertices in the stack as a result of this reduction because ACTION[4, Z] = fg7g

and ACTION[1, Z] = fg13g, and states 7 and 13 belong to different equivalence classes.

This leaves the stack as shown in the second diagram of figure 5.15. The parser then

performs a further cascaded eager reduction by rule 1 that establishes the right-attachment

of Z1 to the previously parsed X1, creating the incomplete node S1.

84

0
0

2
2

S1

1
1

Y1

11
13

Z 1

12
14

E1

r2

4
4

X1

7
7

Z 1

8
8

E1

[1 → S1 :2]

r1

A 1 B 1 C 1

W
1

Z 1X1 Y 1

S 1

1D E
1

$

Figure 5.17: State of the L� parser after processing “A B C D E” with table 5.3.

3. There are two outstanding shift actions to perform at the stack top with equivalence class 5.

However, both state 10 and state 16 belong to equivalence class 10, so the parser only

creates a single vertex as a result of shifting C onto the stack. The parser also combines C

into the incomplete W1 because c6 � ACTION[5, C] (first diagram of figure 5.16). Next,

the parser performs a completing reduction by rule 6, marking W1 as complete.

4. The parser shifts D onto the stack, and D is combined into Z1. This leaves the parser

as shown in the second diagram of figure 5.16. Next, the parser performs a completing

reduction by rule 5, marking Z1 as complete.

5. The parser shifts E onto the stack, and E is combined into the incomplete node S1 (as shown

in figure 5.17). A completing reduction by rule 1 on the upper branch of the stack and a

reduction by rule 2 on the lower branch of the stack create the complete parses S1 and S2

of the sentence “A B C D E”, as shown in figure 5.1.

The parser performed only one reduction by rule 6, and one reduction by rule 5, and therefore

only created one forest node for W and one node for Z.

As discussed earlier, increasing the length of lookahead k in LR(k) parse tables results in

a loss of sharing and therefore a loss of efficiency that makes these parse tables impractical.

Equivalence classes can also be employed to eliminate the contextual distinctions introduced by

lookahead in LR(k) tables, making parsing with such tables practical.

85

5.2 Integrating the L� parser with an external oracle

The L� parser is intended to form part of a modular natural language processing system. The

NLP system can provide feedback to the L� parser on the validity or plausibility of the parses

it is pursuing, which hopefully leads to greater efficiency because the system only pursues those

parses which are syntactically, semantically, and pragmatically consistent.

The larger NLP system can be modelled as an oracle that evaluates parses. The oracle may

reject a parse on the basis of information such as mismatched grammatical features, selectional

restrictions, or pragmatic information. Whenever a reduce or a combine action is performed, the

L� parser accepts input from the oracle, giving an evaluation of the new structure.

When the oracle rejects a parse, the parser should cease all further work on that parse. When

it is a full reduction that created the rejected parse, this can be achieved by deleting any vertices

created by the rejected reduction. For example, consider parsing the sentence “A B C D” with the

following grammar, a parse table for which is shown in figure 5.4:

(1) S � V Xh

(2) S � W Yh

(3) V � A
(4) W � A
(5) X � Bh C D
(6) Y � Zh D
(7) Z � B Ch

Grammar 5.3

0 4

A1

r3, r4
��

(a) 0

2

W1

s6

1

V1

s10

(b) 0 2

W1

s6

Figure 5.18: Two possible outcomes of performing reductions by rules 3 and 4.

86

STATE ACTION

A B C D $ EAG S W V X Y Z
0 s4 g3 g2 g1
1 s10 g11
2 s6 g7 g5
3 acc
4 r3, r4
5 e6-1 e6-1

s9, c6
6 s8
7 r2 e2-2
8 r7
9 r6
10 e5-1

s12, c5
11 r1 e1-2
12 s13, c5
13 r5

Table 5.4: L� parse table for grammar 5.3.

Firstly, the parser shifts A onto the stack, leaving the stack as shown on the left-hand side of

figure 5.18. The actions to perform next are given by ACTION[4, B] = fr3, r4g. The parser

performs each of these reductions and passes the result to the oracle for evaluation. If the oracle

does not reject either reduction, then the parser operates as usual, and the stack after the two

reductions is as shown in figure 5.18(a). If, however, the oracle rejects the reduction by rule 3,

then the parser deletes the vertex with state 1, leaving the stack as shown in figure 5.18(b).

If the rejected parse was created by an eager reduction or combine action, then there are

additional complications. It is insufficient just to delete the vertices created by the rejected action.

No missing constituents of a rejected incomplete derivation should be parsed and combined into

the derivation. Nor should any completing reduction of a rejected derivation be attempted.

A rejected parse may also contain incomplete children, in which case no further work should

be done to complete these children. Therefore, the complete definition of a rejected parse is a

parse that has been rejected by the oracle, or a parse for which all possible parents have been

rejected.

For example, consider parsing the sentence “A B C D” again with grammar 5.3. First, the

parser shifts A onto the stack, and reduces it to both a V and a W. Next, the parser shifts B onto the

stack, leaving the state of the parser as shown in the first diagram of figure 5.19. The parser then

eagerly reduces by rule 5, creating an incomplete derivation of X (second diagram of figure 5.19).

87

0 2

W1

6

B1

s8

1

V1

10

B1

e5−1, s12 1B1A

1VW 1

C

0 2

W1

6

B1

s8

1

V1

10

B1

[5 → X1 :11]

s12

11

X1

e1−2

1B1A

1VW 1 1X

C

0 2

W1

6

B1

s8

1B1A

W 1

C

Figure 5.19: Trace of the L� algorithm parsing “A B C D” with grammar 5.3.

This triggers a cascaded reduction by rule 1, producing an incomplete parse of an S. Suppose that

the oracle rejects this incomplete parse. Not only should all further work on the S be abandoned,

but any further work on parsing X1 should also be stopped. The only way X1 can be used in a

complete parse of the sentence has been rejected, so it is pointless to complete X1. Thus the parser

deletes both the vertex with state 11 and the vertex with state 10, leaving the stack as shown in

the third diagram of figure 5.19.

Care must be taken when deleting vertices in the stack. A state of the parse can represent the

parser being part way through parsing a number of different rules. In this case, the vertex cannot

be deleted until all possible parses have been rejected. For example, consider parsing the sentence

“A B C D” with grammar 5.4, which is a slight modification of grammar 5.3. A parse table for

this new grammar is shown in table 5.5.

88

(1) S � W Xh

(2) S � W Yh

(3) W � A
(4) X � Bh C D
(5) Y � Zh D
(6) Z � B Ch

Grammar 5.4

STATE ACTION

A B C D $ EAG S W X Y Z
0 s3 g2 g1
1 s4 g7 g6 g5
2 acc
3 r3
4 e4-1

s9, c4
5 e5-1 e5-1

s8, c5
6 r2 e2-2
7 r1 e1-2
8 r5
9 r6

s10, c4
10 r4

Table 5.5: L� parse table for grammar 5.4.

The parser shifts A onto the stack and reduces it to a W. Next, it pushes B onto the stack

and eagerly reduces it to an X by rule 4 (first diagram of figure 5.20). This triggers a cascaded

reduction by rule 1; suppose that the oracle rejects the resulting incomplete derivation of S. The

only possible parent of the eagerly created X has been rejected, so the parse of X is rejected, and

the vertex with state 7 is deleted (second diagram of figure 5.20). The vertex with state 4 cannot

be deleted, however, because C may still be used as part of parsing a Z, and needs to be shifted

onto the stack to continue this parse. State 4 represents being part way through two different

partial parses of the input seen so far, namely X � Bh C D and Z � B Ch, as can be seen by

examining the items in the DFA for state 4 (figure 5.21).

More generally, state 4 contains two kernel items—items where the dot is not at the start

of the RHS. The number of kernel items valid for a given lookahead determines the number of

partial parses represented by the vertex. This can be calculated during the parse table building

process and stored in a separate table. An entry KCOUNTS[cl, L] in this table is the number of

89

0 1

W1

7

X1

e1−2

4

B1

[4 → X1 :7]

s9
1B1A

W 1 1X

C

0 1

W1

4

B1

[4 → X1 :]

s9

1B1A

W 1

C

Figure 5.20: Trace of the L� algorithm parsing “A B C D” with grammar 5.4.

, T→ hCZ B

→X Bh C D , T

Y
S

X

, FS→S ′

A
B

C

Z

S → , FhXW

hYS → , FW

, T→Y hZ D

, T→Y hZ D

, FS→S ′

S → , FhXW

hYS → , FW

→ AW , F

→ AW , F

S → , FhXW

hYS → , FW

, T→Y hZ D

, T→ hCZ B

→X Bh C D , T

→X Bh C D , T

W

, T→ hCZ B

→X Bh C D , T

D

D

0

1

2

3

4

5

7

6

8

9 10

Figure 5.21: DFA for the grammar 5.4.

90

kernel items that are valid in equivalence class cl with L as the lookahead. It is straightforward

to construct this table: for each kernel item �X � � � �, a� of a state I , increment the count

KCOUNTS[I , x] for every x � FIRST(�), or if � is empty, then for every x � FOLLOW(X). The

entry KCOUNTS[I , EAG] is the total number of kernel items in state I . For example, table 5.6

shows the KCOUNTS table constructed by this method from the DFA of figure 5.21.

CLASS KCOUNTS

A B C D $ EAG
0 0 0 0 0 0 0
1 0 2 0 0 0 2
2 0 0 0 0 1 1
3 0 1 0 0 0 1
4 0 0 2 0 0 2
5 0 0 0 1 0 1
6 0 0 0 0 1 1
7 0 0 0 0 1 1
8 0 0 0 0 1 1
9 0 0 0 2 0 2

10 0 0 0 0 1 1

Table 5.6: L� kernel counts table for grammar 5.4.

During parsing, the KCOUNTS table is used to determine the number of possible parses being

pursued at a vertex and therefore the number of parses that must be rejected before the vertex can

be deleted. Associated with each vertex is a counter of the number of parses being tracked at that

vertex. When a parse is rejected, the counter is decremented by one until it reaches zero, at which

time the vertex is deleted.

There is also a problem that, because vertices may not be deleted when a parse is rejected,

combine actions may be performed when they should not be because there are still pointers to the

rejected vertices elsewhere in the stack. The parse associated with this vertex has been rejected,

so references to it stored in combine pointer elsewhere in the stack should be deleted. To be able

to locate these combine pointers, a reverse kill pointer is maintained at each vertex. A kill pointer

points to the combine pointer created by the eager reduction that created the vertex now being

deleted. Thus when a vertex is rejected, the parser follows the kill pointer to identify the combine

pointer from which reference to the deleted vertex is then removed.

If, by this process, the combine pointer is left not pointing to any vertices, then the parse

associated with that combine pointer has been rejected, so the counter at the vertex where the

91

empty combine pointer is stored is decremented by one, and the whole procedure of testing the

counter and chasing kill pointers is recursively applied at this vertex. If the vertex is not deleted,

the empty combine pointer is retained, thus stopping completing reductions from being performed.

The count at a vertex is initialised from the KCOUNTS table, by indexing the table using the

current lookahead symbol, or the EAG symbol if the vertex is created from an eager reduction.

A full reduction always decrements the count at the vertex, because regardless of whether it

is rejected or not, the parser has finished tracking that parse.

Continuing the example of parsing the sentence “A B C D” with grammar 5.4 from figure 5.20,

the parser next shifts C onto the stack, creating a new vertex with state 9, and a counter initialised

from the entry KCOUNTS[9, D] = 2. The empty combine pointer is moved from the vertex with

state 4 to the new vertex, but C is not combined into X1, which was created by eager reduction,

because the combine pointer is empty. Instead, the counter at the new vertex is decremented by

one because of the empty combine pointer. The counter is then tested for being zero, in which

case the vertex would be deleted. However, the counter is not zero, so the vertex is not deleted,

and the stack is left as shown in the first diagram of figure 5.22. Next, the parser performs a full

reduction by rule 6 at the vertex with state 9, which creates the node Z1, and the new stack vertex

with state 5. Also, the counter at the vertex with state 9 is decremented, making it 0. Thus the

vertex with state 9 is deleted, and the outstanding action s10 is never processed. This is because

the only possible use for this action is to extend the parse by rule 4, which has already been

rejected. The resulting stack is shown in the second diagram of figure 5.22.

0
0

1
1

W1

4
1

B1

9
1

C1

[4 → X1 :]

r6, s10

1B1A

W 1

1C

D

0
0

1
1

W1

5
1

Z 1

e5−1, s8

1B1A

W 1

1C

1Z

D

Figure 5.22: Trace of the L� algorithm parsing “A B C D” with grammar 5.4 (cont.).

92

5.3 An example of using the extended L� parser

Consider parsing the sentence “The courses taught at the academy were very demanding” with

grammar 5.5 using the extended L� algorithm, which includes equivalence classes and an interface

to an external oracle.

(1) S � NP VPh

(2) RCl � VP
(3) NG � Det Nh

(4) NP � NGh

(5) NP � NGh RCl
(6) VP � Vh PP
(7) VP � Vh Adv Adj
(8) PP � Preph NG

Grammar 5.5

To illustrate the L� algorithm in detail, the state of the parser at different stages of the example is

shown in a diagram with three components:

	 The graph-structured stack.

The graph-structured stack is drawn as for the diagrams of chapter 4, except that the number

inside a vertex is the equivalence class of the vertex instead of the state. There is also a

second number in the lower right corner of each vertex which is the counter of the number

of live parses the vertex represents.

	 The parse forest.

The parse forest is drawn as for the diagrams of chapter 4. Parts of the parse forest that are

rejected are displayed in grey.

	 The current word.

As in chapter 4, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.

Table 5.7 shows the L� parse table for grammar 5.5. In addition to the the information stored

in the parse tables constructed in chapter 3, this parse table contains an extra column giving the

equivalence class of each state of the parse table, referred to as EQCLASS[st]. Table 5.8 shows

the new KCOUNTS table which store the number kernel items included in each state. This is

used determine the number of possible parses that a vertex represents.

93

STATE EQUIV. ACTION

CLASS Det N V Adv Adj Prep $ EAG S RCl VP NP NG PP
0 0 s1 g2 g4 g3
1 1 s16
2 2 acc
3 3 s5, r4 e4-1 g15 g14
4 4 s5 g6
5 5 e7-1 e6-1 g9

s8, c7 s7 c6
6 6 r1 e1-2
7 7 e8-1 g12

s11 c8
8 8 s10, c7
9 9 r6 r6 e6-2
10 10 r7 r7
11 1 s13
12 11 r8 r8 e8-2
13 12 r3 r3
14 13 r2 e2-1
15 14 r5 e5-2
16 12 r3 r3

Table 5.7: L� parse table for grammar 5.5.

CLASS KCOUNTS

Det N V Adv Adj Prep $ EAG
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
3 0 0 2 0 0 0 0 2
4 0 0 1 0 0 0 0 1
5 0 0 0 1 0 1 0 2
6 0 0 0 0 0 0 1 1
7 1 0 0 0 0 0 0 1
8 0 0 0 0 1 0 0 1
9 0 0 1 0 0 0 1 1
10 0 0 1 0 0 0 1 1
11 0 0 1 0 0 0 1 1
12 0 0 1 0 0 0 1 1
13 0 0 1 0 0 0 0 1
14 0 0 1 0 0 0 0 1

Table 5.8: L� kernel counts table for grammar 5.5.

94

0
0 s1 The

0
0

1
1

Det1

s16
Det1
The

courses

0
0

3
2

NG1

r4, s5 Det1 N1
The

1NG

courses

taught

0
0

4
1

NP1

s5

3
1

NG1

s5

Det1 N1
The

1NG

NP1

courses

taught

0
0

4
1

NP1

5
1

V1

e6−1, s73
1

NG1

Det1 N1 1V
taughtThe

1NG

NP1

courses

at

Figure 5.23: Trace of the L� algorithm parsing “The courses taught� � � ”.

The remainder of this section presents a detailed trace of the L� algorithm parsing the sentence

“The courses taught at the academy were very demanding”. The parser is initialised with a single

vertex with state 0 (first diagram of figure 5.23). To begin, the parser shifts the word “The” onto

the stack, creating a new vertex that has equivalence class 1 because EQCLASS[1] = 1. The

kernel counter of the vertex is initialised from the entry KCOUNTS[1, Det] = 1. The resulting

stack is as shown in the second diagram of figure 5.23. Following this, the parser shifts the word

“courses” onto the stack and reduces Det1 and N1 to NG1 by rule 3 (third diagram of figure 5.23).

This NG is in turn reduced to NP1 by rule 4. The counter of the vertex with equivalence class 3

95

0
0

4
1

NP1

6
1

VP1

e1−2

5
1

V1

[6 → VP1 :6,13]

s73
1

NG1

13
1

VP1

e2−1

Det1 N1 1V
taught

1VP

The

1NG

NP1

courses

at

0
0

4
1

NP1

5
1

V1

[6 → VP1 :13]

s73
1

NG1

13
1

VP1

e2−1

NP1

Det1 N1 1V
taught

1VP

The

1NG

NP1

courses

at

Figure 5.24: Trace of the L� algorithm parsing “The courses taught� � � ” (cont.).

is decremented because one parse has been processed completely. The stack now has with two

branches, both of which have an outstanding s5 action at the end (fourth diagram of figure 5.23),

so the parser rejoins the stack by shifting the word “taught” onto the stack, as shown in the fifth

diagram of figure 5.23.

The next word to process is “at”. An eager reduction by rule 6 creates the incomplete node

VP1. The eager reduction also establishes a combine pointer at the vertex with equivalence class 5,

and a kill pointer that points to this combine pointer at the vertex with equivalence class 6 (first

diagram of figure 5.24). At this point, the parser performs an eager reduction by rule 1 at the

vertex with equivalence class 6. This reduction attempts to construct an S from NP1 “the courses”

and the incomplete VP1 “taught � � � ”. When this parse of S is passed to the oracle for evaluation,

the oracle uses the knowledge that courses cannot teach to reject this parse. Thus the parser stops

all further work pursuing this parse. Accordingly, the counter at the vertex with equivalence

class 6 is decremented. This makes the counter 0, so the vertex is deleted. The kill pointer at this

vertex is used to identify the combine pointer at the vertex with equivalence class 6, and the vertex

96

0
0

4
1

NP1

5
1

V1

[6 → VP1 :13]

s73
1

NG1

13
1

VP1

[2 → RCl1 :14]

14
1

RCl1

e5−2

Det1 N1 1V
taught

1VP

The

1NG

RCl1NP1

courses

at

0
0

4
1

NP2

4
1

NP1

5
1

V1

[6 → VP1 :13]

s73
1

NG1

13
1

VP1

[2 → RCl1 :14]

14
1

RCl1

[5 → NP2 :4]

Det1 N1 1V
taught

1VP

The

1NG

RCl1

NP2

NP1

courses

at

Figure 5.25: Trace of the L� algorithm parsing “The courses taught� � � ” (cont.).

with equivalence class 6 is removed from the combine pointer (second diagram of figure 5.24).

The eager reduction of V1 to VP1 is not yet rejected, however, because there is one other place it

may be used, represented by the vertex with equivalence class 13 stored in the combine pointer,

at which there is an unprocessed eager reduction by rule 2. This reduction is processed next by

the parser, creating the incomplete node RCl1 from VP1 (first diagram of figure 5.25). A cascaded

eager reduction by rule 5 then creates NP2 from NG1 and RCl1, leaving the stack as shown in the

second diagram of figure 5.25.

The parser shifts the word “at” onto the stack and eagerly reduces it to PP1 by rule 8. This

incomplete PP is combined into the previously created node VP1 (first diagram of figure 5.26).

Next, the words “the academy” are shifted onto the stack, and reduced to an NG by rule 3. This

97

0
0

4
1

NP2

4
1

NP1

5
1

V1

9
1

PP1

[6 → VP1 :13]

7
1

Prep1

[8 → PP1 :9]

s13
1

NG1

13
1

VP1

[2→RCl1:14]

14
1

RCl1

[5 → NP2 :4]

Det1 N1 1V
taught

Prep1
at

1PP
1VP

The

1NG

RCl1

NP2

NP1

courses

the

0
0

4
1

NP2

4
1

NP1

5
1

V1

9
1

PP1

[6 → VP1 :13]

7
1

Prep1

11
1

NG2

[8 → PP1 :9]

r83
1

NG1

13
1

VP1

[2→RCl1:14]

14
1

RCl1

[5 → NP2 :4]

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy

1PP
1VP

The

1NG NG2

RCl1

NP2

NP1

courses

were

Figure 5.26: Trace of the L� algorithm parsing “The courses taught� � � ” (cont.).

NG is combined into the incomplete PP1, leaving the stack as shown in the second diagram

of figure 5.26. Next, the parser performs a completing reduction by rule 8, marking PP1 as

complete (first diagram in figure 5.27). This is followed by a completing reduction by rule 6,

marking VP1 as complete. Note how, although there are two paths connected to the vertex with

equivalence class 5, the completing reduction only gets propagated back along one of them. The

other path was rejected in the earlier rejected eager reduction, and the resulting vertex was deleted

from the combine pointer. Thus the branch of the stack with NP1 in it disappears after this

reduction is completed, because it cannot participate in any complete parse. This leaves the much

simpler looking stack shown in the second diagram of figure 5.27. Next, the parser performs

98

0
0

4
1

NP2

4
1

NP1

5
1

V1

9
1

PP1

[6 → VP1 :13]

r63
1

NG1

13
1

VP1

[2 → RCl1 :14]

14
1

RCl1

[5 → NP2 :4]

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy

1PP
1VP

The

1NG NG2

RCl1

NP2

NP1

courses

were

0
0

4
1

NP2

3
1

NG1

14
1

RCl1

[5 → NP2 :4]

13
1

VP1

[2 → RCl1 :14]

r2
Det1 N1 1V

taught

Prep1
at

Det2
the

N2
academy

1PP
1VP

The

1NG NG2

RCl1

NP2

NP1

courses

were

0
0

4
1

NP2

s5

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy

1PP
1VP

The

1NG NG2

RCl1

NP2

NP1

courses

were

Figure 5.27: Trace of the L� algorithm parsing “The courses taught� � � ” (cont.).

a completing reduction by rule 2, marking RCl1 as complete, which is followed by a further

completing reduction marking NP2 as complete. At this point, the stack is as shown in the third

diagram of figure 5.27.

The parser completes the parse of the sentence by shifting the word “were” onto the stack

(first diagram in figure 5.28), eagerly reducing it VP2, which is used in conjunction with NP2 to

form S1 (second diagram in figure 5.28). The parser then shifts the words “very demanding” onto

the stack and combines them into the incomplete VP1. Completing reductions by rule 7 (third

99

0
0

4
1

NP2

5
1

V2

e7−1, s8, c7

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy were

V2

1PP
1VP

The

1NG NG2

RCl1

NP2

NP1

courses

$

0
0

2
1

S1

4
1

NP2

6
1

VP2

[1 → S1 :2]

5
1

V2

[7 → VP2 :6]

s8, c7

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy were

V2

S1

1PP
1VP

VP2

The

1NG NG2

RCl1

NP2

NP1

courses

$

0
0

2
1

S1

4
1

NP2

6
1

VP2

[1 → S1 :2]

r1

Det1 N1 1V
taught

Prep1
at

Det2
the

N2
academy were

V2
demanding

Adv1
very

1Adj

S1

1PP
1VP

VP2

The

1NG NG2

RCl1

NP2

NP1

courses

$

0
0

2
1

S1

acc

S1

1PP
1VP

VP2

Det1
The

N1 1V
taught

Prep1
at

Det2
the

N2
academy were

V2
demanding

Adv1
very

1Adj

1NG NG2

RCl1

NP2

NP1

courses

$

Figure 5.28: Trace of the L� algorithm parsing “The courses taught� � � ” (cont.).

diagram in figure 5.28) and rule 1 make S1 complete , and the parser finishes the parse with S1 as

the root of the parse forest (fourth diagram in figure 5.28).

100

5.4 Formal Algorithm

Input

A parse table ACTION[state, symbol] for the context-free grammar G � hN�T�R� Si and an

input string z � T �. Entries in the parse table are sets of parsing actions. Each action has the form

“shift s”, “reduce r”, “eager-reduce r–k”, “goto s”, “combine r”, or “accept”.

N is a set of nonterminals, T is a set of terminals, R is a set of grammar rules of the form X��,

where X � N and � � �N � T ��, and S is the start symbol. The state s0 is designated as the

start state.

A table EQCLASS[state] that gives the equivalence class of each state.

A table KCOUNTS[class, symbol] that gives the number of kernel items of an equivalence

class that are valid for a given input symbol.

Output

A list of root nodes of a shared parse forest for z if z � L�G�, otherwise an error indication.

Data Structures

A vertex in the graph-structured stack is a tuple he�S� n� o� k� C�Pi, where e is an equivalence

class, S is a set of states, n is a forest node, o is a count of unprocessed paths, k is a kill pointer,

C is a set of combine pointers, and P is the set of successor vertices in the stack. For notational

convenience, the elements of a vertex v can be referenced using the functions Class(v), States(v),

Node(v), KCount(v), Kill-Ptr(v), Combine-Ptrs(v), and Successors(v).

A node in the shared forest is a tuple hX� di, where X � N , and d is a derivation, written

as a list of child forest nodes. The elements of a node n can be referenced using the functions

Nonterm(n) and Children(n).

A combine pointer is a tuple hr� d�Vi, where r � R, d is a derivation, and V is a set of vertices.

The elements of a combine pointer c can be referenced using the functions Rule(c), Deriv(c), and

Vertices(c).

A kill pointer is a pair hv� ci, where v is a vertex, and c is a combine pointer. The elements of

a kill pointer k can be referenced using the functions Kill-Vert(k), and Kill-Cptr(k).

A path is a contiguous sequence of vertices v1� � � � � vk in the stack. That is, for i � 2� � � � � k,

vi � Successors(vi�1).

101

FRONTIER stores a set of pairs hv� ai, where v is a vertex and a is a parse action yet to be

performed at v. The vertices within the pairs of this list form the active stack tops.

KILL-CHECK is a set of vertices for which the number of unprocessed paths must be checked.

� denotes the current input symbol.

Main Loop

� Add a terminator symbol $ to the end of the input
string z

� � � The first symbol of z
� v0 � hEQCLASS�s0�� fs0g�NIL� 0�NIL� fg� fgi � Initialise the stack

� Call Schedule(v0� �)
� Loop
� Call Reduce()
� Call Check-Kills()
� Call Shift()
� If FRONTIER contains only pairs of the form

hv� “accept”i then halt and return
fNode�v� j hv� “accept”i � FRONTIERg

� If FRONTIER = fg then halt and signal an error.

� Perform reductions followed by shifts un-
til acceptance or rejection.

102

Reduce()

Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Non-eager
reduce actions are processed first, followed by eager reduce actions.

� While �x � FRONTIER of the form
hv� “reduceX��”i :

� Process all outstanding non-eager reduc-
tions at stack tops.

� Remove x from FRONTIER
� C � fc � Combine-Ptrs�v� j Rule�c� = X��g
� If C 	� fg then
� Call Completing-Reduce(v� C)

Else
� P � fp j p is a path of length j�j starting at v in

the stackg
� KCount(v) � KCount(v) � jPj � 1
� �p � P , call Full-Reduce(p�X��)

� Each element of C corresponds to a previ-
ous eager reduction that is now complete.

� While �x � FRONTIER of the form
hv� “eager-reduce r–k”i :

� Process all outstanding eager reductions
at stack tops.

� Remove x from FRONTIER
� P � fp j p is a path of length k starting at v in

the stackg
� �p � P , call Eager-Reduce(p� r)

Completing-Reduce(v� C)

Perform a completing reduction at vertex v. As this reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and all that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

� KCount(v) � KCount�v�� 1
� Add v to KILL-CHECK
� �c � C
� Remove c from Combine-Ptrs(v)
� �v� � Vertices�c�
� Call Schedule(v�� �)

� C is a set of combine pointers that point
to the vertices created earlier by an eager
reduction that is now being completed.

103

Full-Reduce(v1� � � � � vk� X��)

Non-eagerly reduce by the ruleX��, creating a new forest nodeX whose children are the nodes of vertices
v1� � � � � vk. Combine this new node into other partial derivations created previously by eager reduction, and
schedule any further actions triggered by this reduction.

� KCount(v1) � KCount�v1�� 1
� Add v1 to KILL-CHECK
� Propose reduction of Node�vk�� � � � �Node�v1� byX��

to the Oracle
� If the Oracle does not reject the reduction then
� n� � hX� �Node�vk�� � � � �Node�v1��i � Create a new forest node.

� A � fhv� ai jv � Successors�vk�� s � States�v��
a � ACTION�s�X�� a = “goto s� ”g

� Π � A partition of A s.t. hv� ai � �e if and only if
a = “goto s” � EQCLASS[s] = e

� ��e � Π
� S � fs j hv� ai � �e � a = “goto s”g
� V � fv j hv� ai � �eg
� o� KCOUNTS�e� ��
� v� � he�S� n�� o�NIL� fg� �ei

� Create new vertices containing the new
forest node, one for each element of Π.

� �v � V
� �s � States�v�
� �a �ACTION[s, �] s.t. a = “combine r”
� Call Combine(v� v�� r)

� Call Schedule(v�� �)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

v1v k

π
1

π
2e

e

Figure 5.29(a): Stack before full reduction.

X

X

1

2

π
1

π
2

v1v k

v1
′

v ′
2

n k nn 1

n k n 1

X
n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

e

e

e

e

Figure 5.29(b): Stack and new forest node af-
ter full reduction.

104

Eager-Reduce(v1� � � � � vk� X��)

Eagerly reduce by the rule X��, creating a new incomplete forest node X whose children are the nodes
of vertices v1� � � � � vk. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

� Propose reduction of Node�vk�� � � � �Node�v1� byX��

to the Oracle
� If the Oracle rejects the reduction then
� KCount(v1) � KCount�v1�� 1
� Add v1 to KILL-CHECK

Else
� d� �Node�vk�� � � � �Node�v1��

� n� � hX� d i � Create a new forest node.

� c� hX��� d� fgi � Create a new combine pointer.

� A � fhv� ai jv � Successors�vk�� s � States�v��
a � ACTION�s�X�� a = “goto s� ”g

� Π � A partition of A s.t. hv� ai � �e if and only if
a = “goto s” � EQCLASS[s] = e

� ��e � Π
� S � fs j hv� ai � �e � a = “goto s”g
� V � fv j hv� ai � �eg
� o� KCOUNTS�e� ��
� k � hv� ci
� v� � he�S� n�� o� k� fg�Vi
� Add v� to Vertices(c)

� Create new vertices containing this new
node, one for each element of Π.

� �v � V
� �s � States�v�
� �a �ACTION[s, �] s.t. a = “combine r”
� Call Combine(v� v�� r)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

� Call Schedule(v�� EAG)
� Add c to Combine-Ptrs(v1)

v1v k

π
1

π
2e

e

Figure 5.30(a): Stack before eager reduction.

X

1

v ′
2

2

π
1

π
2

X

v1v k

v1
′

n k n 1

X

n k n 1

n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

d→αX〈 , 〉v ′2{ }v ′1,c = ,

e

e
e

e

Figure 5.30(b): Stack and new forest node af-
ter eager reduction.

105

Combine(vf � vt� r)

Combine Node(vt) into partial derivations created by eager reduction whose rightmost element is currently
Node(vf). These derivations are identified by the combine pointers associated with vf .

� �c � Combine-Ptrs(vf) s.t. Rule(c) = r

� Remove c from Combine-Ptrs(vf)
� If Vertices(c) = fg then
� KCount(vt) � KCount�vt�� 1

Else
� Propose combining Node(vt) into Deriv(c)

to the Oracle
� If the Oracle rejects combine then
� KCount(vt) � KCount�vt�� 1
� Vertices(c) � fg
� Add c to Combine-Ptrs(vt)

Else
� Add Node(vt) to the end of Deriv(c) � All elements of Vertices(c) have the same

forest node.
� Add c to Combine-Ptrs(vt) � Move the combine pointers forward to vt

so that further combines (or completing
reductions) can be performed there.

,

v k

v

X

v f v t

n k nn f n t

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt
X

n k nn f

→αX 〉〈 { }v,()Combine−Ptrs =vf
}{ d

Figure 5.31(a): Stack and forest node before
combine.

,

v k

v

X

v f v t

n k nn f n t

X

n k nn f n t

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt

=()vCombine−Ptrs t
{ }→αX 〉〈 { }v,d

Figure 5.31(b): Stack and forest node after
combine.

106

Check-Kills()

Kills off any actions at dead vertices.

� While �v � KILL-CHECK
� Remove v from KILL-CHECK
� If KCount(v) = 0 then
� Remove any actions of the form hv� ai from

FRONTIER
� k � Kill-Ptr�v�
� Delete v from Kill-Cptr(k)
� If Vertices(Kill-Cptr(k)) = fg
� KCount(Kill-Vert(k)) � KCount(Kill-Vert(k)) �1
� Add Kill-Vert(k) to KILL-CHECK

Shift()

Shift the next terminal symbol onto all the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule
any actions triggered by the shift.

� n� h�� fgi
� � � The next symbol of the input string

� Create a new forest node for the shifted
input symbol.

� A � fhv� ai � FRONTIER j a = “shift s”g
� FRONTIER � FRONTIER �A

� A is the set of all shift actions to perform.

� Π � A partition of A s.t. hv� ai � �e if and only if
a = “shift s” � EQCLASS[s] = e

� ��e � Π
� S � fs j hv� ai � �e � a = “shift s”g
� V � fv j hv� ai � �eg
� o� KCOUNTS�e� ��
� ve � he�S� n� o�NIL� fg�Vi

� Create a new vertex for each member of
Π.

� �x � FRONTIER of the form hv� “combine r”i s.t.
v � V
� Remove x from FRONTIER
� Call Combine(v� ve� r)

� Call Schedule(ve� �)

� Combine the newly created n into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

1ss

1v

2v

ss

s s

v 3

π
1

π
2

e

e 3

2

Figure 5.32(a): Stack tops with outstanding
shift actions.

2

π
1

1v

2v

v 3

π
1

π
2

v
1

v
2

e

e
e

1e

e

e

Figure 5.32(b): Stack after shifting.

107

Schedule(v� L)

Add to FRONTIER all possible actions to be performed at vertex v.

� �s � States�v�
� A � fa � ACTION�s� L� j

�a = “eager-reduce r–k” �
�c � Combine-Ptrs�v� s.t. Rule�c� = r)

� �a � A, add hv� ai to FRONTIER if not already there

� Schedule all actions except eager reduc-
tions that repeat an eager reduction car-
ried out earlier.

�

108

Chapter 6

Local Ambiguity Packing

The ambiguity of natural language is such that the number of valid parses of a sentence can be

exponential in the length of the sentence (Maruyama, 1990), and there are often hundreds of parses

for an average sentence in a newspaper (Jacobs et al., 1991). To avoid the cost of processing each

parse individually, the GLR algorithm uses local ambiguity packing. Local ambiguity packing can

reduce the amount of stack and parse forest structure, created during parsing, by an exponential

factor, because it allows reuse of computation between parses.

Section 6.1 examines how a GLR parser performs local ambiguity packing. Section 6.2 then

describes the modifications of the L� algorithm of chapter 4 that are needed to perform packing.

Section 6.3 presents a complete example of parsing using the new L� algorithm. Section 6.4

presents a formal specification of the L� algorithm with packing.

6.1 Determining packing in a GLR parser

It is the job of the parser to determine opportunities to pack. Derivations should be packed when

they are headed by the same nonterminal and cover the same input substring. The GLR parser

verifies that derivations cover the same input substring by determining that the derivations have the

same start and end points in the input. It does this using the configuration of the graph-structured

stack. Derivations start at the same point if the vertices resulting from the reductions have the

same state and the same successors in the stack. Derivations finish at the same point if they are

created by reductions at the same word.

109

The GLR parser therefore packs any derivations that are created by reductions which meet the

following criteria:

1. The reductions all result in the same nonterminal.

2. The reductions are specified at the same input word.

3. The reductions result in vertices in the stack with the same state and the same successors.

For example grammar 2.3 from chapter 2 (reproduced here as grammar 6.1), allows two

different parses of S—either as an NP followed by a VP (rule 1) or an S followed by a PP (rule 2).

(1) S � NP VP
(2) S � S PP
(3) NP � N
(4) NP � Det N
(5) NP � NP PP
(6) PP � Prep NP
(7) VP � V NP

Grammar 6.1

Both forms of the S can be derived from the sentence “John saw a man in the park”:

(1) ��John� NP �saw a man in the park� VP � S

(2) ��John saw a man� S �in the park� PP � S

These two different derivations of S should be packed together in the same forest node because they

cover the same input substring. When parsing this sentence, the parser reaches a state as shown in

the first diagram of figure 6.1. The next action the parser executes from this state is the reduction

by rule 1, creating a derivation of S from NP1 and VP2. The table entry ACTION[0, S] = fg2g

determines the state of the vertex resulting from the reduction. Thus the parser should create a

new vertex with state 2 whose successor is the vertex with state 0. However, such a vertex already

exists, so the parser performs local ambiguity packing instead, adding the new derivation of S to

S2, the node associated with the already existing vertex (second diagram in figure 6.1).

6.2 Determining packing in an L� parser

The L� parser uses the method of the GLR parser to decide when full reductions should be packed

together. Eager reduction, however, introduces a complication: it becomes difficult to determine

110

0 4

NP1

7

VP2

r1

2

S2

acc
NP2

NP4

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

VP2

N3Det 2Det1 Prep11V

$

0 2

S2

acc
NP2

NP4

John saw man

NP1

N2N1

in thea park

2S

S1

NP3

1PP1VP

VP2

N3Det 2Det1 Prep11V

$

Figure 6.1: State of the GLR parser after processing “John saw a man in the park”.

the input substring that a derivation covers. The starting point of an incomplete derivation

created by eager reduction can be determined using the graph-structured stack, as in GLR parsing.

However, the word where the eager reduction is performed is not the word where the derivation

will be complete. Indeed, the word at which the derivation will be complete is unknown when the

eager reduction is performed. It follows that the method used to determine packing opportunities

in a GLR parser cannot be applied to derivations created by eager reduction.

The solution of the L� parser is to provisionally pack incomplete derivations together if

they start at the same input word and derive the same nonterminal. The parser provisionally

packs derivations, even though it cannot determine whether the packing will be correct, to avoid

unnecessarily repeating work. Whether or not to provisionally pack is also determined using

the graph-structured stack. The L� parser packs any incomplete derivations created by eager

reductions which meet the following criteria:

1. The reductions all result in the same nonterminal.

2. The reductions result in vertices in the stack with the same state and the same successors.

111

For example, consider parsing the sentence “A B C” using grammar 6.2. An L� parse table

for this grammar is shown in table 6.1. The following notation is employed in diagrams of the

parse forest. A provisionally packed node is depicted in diagrams of the parse forest as a box

with a dotted line. Individual derivations in a packed node are identified by appending a letter

to the name of the forest node containing them. For example, if there are two derivations of a

nonterminal X1, they are labelled X1(a) and X1(b).

(1) S � A Xh

(2) X � Bh Y
(3) X � Bh Z
(4) Y � C
(5) Z � C
(6) Z � C D

Grammar 6.2

STATE ACTION

A B C D $ EAG S X Y Z
0 s1 g2
1 s3 g4
2 acc
3 e2-1, e3-1 g7, c2 g6, c3

s5
4 r1 e1-2
5 s8 r5, r4
6 r3 e3-2
7 r2 e2-2
8 r6

Table 6.1: L� parse table for grammar 6.2.

To begin the parse of “A B C”, the parser shifts “A B” onto the stack, leaving the stack as

shown in the first diagram of figure 6.2. At the stack top with state 3, there are outstanding eager

reductions by rules 2 and 3. The parser first executes the eager reduction by rule 2, creating the

incomplete node X1, as shown in the second diagram of figure 6.2. Next, the parser eagerly reduces

by rule 3. This creates another incomplete derivation of X. The table entry ACTION[1, X] = fg4g

determines the state of the vertex resulting from the reduction. Thus the parser should create a

new vertex with state 4, whose successor is the vertex with state 1. However, there is already

an eagerly created vertex in the stack that matches this description, so the parser provisionally

packs the new derivation of X into the forest node X1 (third diagram of figure 6.2). This X is then

eagerly reduced to S1 by rule 1 (fourth diagram of figure 6.2).

112

0 1

A1

3

B1

e2−1, e3−1, s5 A1 B1 B

0 1

A1

4

X1

e1−2

3

B1

[2→ X1(a) :4]

e3−1, s5
A1 B1

X1
(a)

C

0 1

A1

4

X1

e1−2

3

B1

[2→ X1(a) :4]
[3→ X1(b) :4]

s5

A1

X1

B1

(a) (b)

C

0

2

S1

1

A1

4

X1

[1→ S1 :2]

3

B1

[2→ X1(a) :4]
[3→ X1(b) :4]

s6

A1

X1

B1

(a) (b)

S1

C

Figure 6.2: Trace of the L� algorithm parsing “A B C� � � ” with grammar 6.2.

Complete and incomplete derivations are never packed together because they cover different

substrings. At a given point in the input, any incomplete derivations created at that point must

extend to cover at least the next word, while any complete derivation can extend no further.

113

6.2.1 Checking provisional packing

The final decision about whether a provisional packing is correct or not can only be made once the

derivations of the provisionally packed node are completed. Derivations are marked as complete

by completing reductions. When a node contains only one derivation, this is the same as marking

the forest node storing the derivation as complete. However, packed nodes are only marked as

complete when the provisional packing of the node has been checked. The packing of a node

should be checked after derivations in the node are completed, and before the next word is shifted

onto the stack. Complete derivations should remain packed together, because they must cover

the same input substring—they finish at the same point, and they must start at the same point

because they were provisionally packed. Incomplete derivations should be separated out of the

node because they must extend over a longer substring of the input. These incomplete derivations

cannot be deleted, however, because although the provisional packing was incorrect, they may

still be completed at a later point in the parse. Instead, the incomplete derivations are put in a

newly created forest node. A new vertex is also created in the stack, representing the parses of

these incomplete derivations. It has the same state and same successors as the vertex at which the

packing check was executed, but it is an eager vertex, because the derivations stored in the node

associated with the vertex are incomplete.

The parser specifies that the packing of a node should be checked with the packing check

action. This is a new action, not stored in the parse table, that is scheduled by the parser at vertices

where a completing reduction has completed a derivation of the packed node associated with the

vertex. It is written as “pc” at stack tops in diagrams of the stack.

For example, again consider grammar 6.2. This grammar accepts the two sentences “A B C”

and “A B C D”, depending on whether Z is parsed using rule 5 or rule 6. For both these sentences,

the parser eagerly reduces by rules 2 and 3 after processing “A B” and provisionally packs the

result, as discussed in the previous section, and shown in figure 6.2. This provisional packing is

correct only if the sentence is “A B C”.

If the input sentence is “A B C”, the parser continues processing from the fourth diagram of

figure 6.2 by shifting C onto the stack, and reducing it to both a Y by rule 4 and a Z by rule 5

(first diagram of figure 6.3). Next, the parser performs a completing reduction by rule 3, making

derivation X1(a) complete. Because one of the derivations of X1 has been completed, a packing

check action is scheduled at the vertex with state 4 (second diagram of figure 6.3). Before this

114

0

2

S1

1

A1

4

X1

[1 → S1 :2]

3

B1

6

Z 1

[3→ X1(b) :4]

r3

7

Y1

[2→ X1(a) :4]

r2

A1

X1

B1

S1

Z 1Y1

1C

(a) (b)

$

0

2

S1

1

A1

3

B1

7

Y1

[2→ X1(a) :4]

r2

4

X1

[1 → S1 :2]

pc

A1

X1

B1

S1

Z 1Y1

1C

(a) (b)

$

0

2

S1

1

A1

4

X1

[1 → S1 :2]

pc

A1

X1

B1

S1

Z 1Y1

1C

(a) (b)

$

0

2

S1

1

A1

4

X1

[1 → S1 :2]

r1

A1

X1

B1

S1

Z 1Y1

1C

(a) (b)

$

0 2

S1

acc

A1

X1

B1

S1

Z 1Y1

1C

(a) (b)

$

Figure 6.3: Trace of the L� algorithm parsing “A B C” with grammar 6.2.

115

action is executed, however, the parser performs a completing reduction by rule 2, marking the

derivation X1(b) as also complete (third diagram of figure 6.3). The parser now checks the packing

of X1, and because both derivations of the packed node are complete, the parser marks the node X1

as complete (fourth diagram of figure 6.3). Having verified that the packing of X1 is correct, the

parser performs a completing reduction by rule 1, marking S1 as complete, thus completing the

parse (fifth diagram of figure 6.3).

If the input sentence is “A B C D”, the parser continues processing from the fourth diagram

of figure 6.2 by shifting C and D onto the stack and reducing them to a Z by rule 6 (as shown

in the first diagram of figure 6.4). The parser next performs a completing reduction by rule 3,

marking the derivation X1(b) as complete. Again, a derivation of X1 has been completed, so the

parser schedules a packing check action at the vertex with state 4 (second diagram in figure 6.4).

There are no other actions to perform, so the parser executes the packing check of X1. Derivation

X1(b) is complete, but X1(a) is not, so the two derivations must be separated. The parser puts the

incomplete derivation X1(a) into a newly created forest node. It also creates a new vertex in the

stack whose associated forest node is X1(a), and whose state and successors are the same as those

of the vertex at which the packing check action was performed. The new vertex is an eager vertex

because its associated forest node contains only incomplete derivations. This leaves the stack as

shown in the third diagram of figure 6.4. Having separated the incomplete derivation into a new

forest node, the node X1(b) can be used as part of a completing reduction by rule 1, marking S1

as complete (fourth diagram of figure 6.4).

6.2.2 Processing order of parse actions

It is important that the parser performs all completing reductions that might possibly affect a

forest node before the packing of the forest node is checked. If the parser does not do this, then

it may incorrectly unpack a forest node, because a derivation in the node has not been marked

as complete when the packing is checked. For example, in the second diagram of figure 6.3, the

parser schedules a packing check action at the vertex with state 4, having performed a completing

reduction for X1(b). There is then a choice between performing the packing check action, or

performing the completing reduction by rule 2. If the packing check is performed next, the parser

will incorrectly unpack the node X1, because X1(a) has not yet been marked as complete by the

outstanding completing reduction by rule 2.

116

0

2

S1

1

A1

4

X1

[1 → S1 :2]

3

B1

[2→ X1(a) :4]

6

Z 1

[3→ X1(b) :4]

r3

A1

X1

B1

S1

Z 1

1C 1D

(a) (b)

$

0

2

S1

1

A1

4

X1

[1 → S1 :2]

pc

A1

X1

B1

S1

Z 1

1C 1D

(a) (b)

$

0

2

S1

1

A1

4

X1 (a)

4

X1 (b)

[1 → S1 :2]

r1

A1 B1

S1

Z 1

1C 1D

X1 (a) X1(b)

$

0 1

A1

4

X1 (b)

2

S1

acc

A1 B1

S1

Z 1

1C 1D

X1 (a) X1(b)

$

Figure 6.4: Trace of the L� algorithm parsing “A B C D” with grammar 6.2.

Completing reductions must also be performed before full reductions. If they are not, deriva-

tions created by full reductions at a word will not be packed with derivations that are completed

by a completing reduction at the same word.

117

0

2

S1

1

A1

4

X1

[1 → S1 :2]

3

B1

5

Y1

r3

6

C1

[2→ X1(a) :4]

r2

A1 B1

S1

1C

X1 (a)

1Y $

0

2

S1

1

A1

3

B1

5

Y1

r3

4

X1

[1 → S1 :2]

r1

A1 B1

S1

1C

X1 (a)

1Y $

0

2

S1

1

A1

4

X1

[1 → S1 :2]

r1

A1 B1

S1

1C

1Y

X1
(a) (b)

$

Figure 6.5: Trace of the L� algorithm parsing “A B C” with grammar 6.3.

For example, consider parsing the sentence “A B C” using grammar 6.3.

(1) S � A Xh

(2) X � Bh C
(3) X � B Yh

(4) Y � Ch

Grammar 6.3

Firstly, the parser shifts “A B” onto the stack. Next, it reduces B to X1(a) by rule 2, which is then

used in a cascaded reduction to S1 by rule 1. The parser then shifts C onto the stack, combining

it into X1(a), and also reducing it to Y1 by rule 4. The stack at this point is shown in the first

diagram of figure 6.5. If the parser next performs the full reduction by rule 3 at the stack top with

state 5, it will incorrectly create a new forest node instead of packing the resulting derivation of X

with X1(a), because X1(a) is still incomplete. Instead, the parser must first perform the completing

reduction by rule 2, marking X1(a) as complete (second diagram in figure 6.5), so that when the

parser performs the full reduction by rule 3, it packs the resulting derivation with the complete

X1(a) (third diagram in figure 6.5).

118

To ensure correct ordering of reductions, scheduled reductions are ordered according to depth

of the vertex that they create in the stack. The depth of a vertex is the length of the longest path

from the vertex to the root of the stack.

6.3 An example of parsing using the L� parser with packing

To demonstrate the L� algorithm with local ambiguity packing, consider the problem of parsing

the sentence “John saw a man in the park” with the grammar 6.4, which is the same as grammar 2.3

used in chapter 2, except the rules of the grammar are annotated with syntactic heads. Table 6.2

shows a parse table for this grammar.

(1) S � NP VPh

(2) S � Sh PP
(3) NP � Nh

(4) NP � Det Nh

(5) NP � NPh PP
(6) PP � Preph NP
(7) VP � Vh NP

Grammar 6.4

Throughout the example, the state of the parser is again shown in a diagram with three components:

	 The graph-structured stack.

The graph-structured stack is drawn as in the diagrams of chapter 4. There is one new

action displayed to the right of a stack top—the packing check action, written pc. This

action is not stored in the parse table, but is scheduled by the L� parser when necessary.

	 The parse forest.

The parse forest is drawn as in the diagrams of chapter 4. Packed nodes are drawn as a box

containing the different possible parses for the symbol of the node. A provisional packing

of incomplete derivations in a forest node is depicted by the box being drawn with a dotted

line. When the provisional packing of a node is checked, the box is changed from a dotted

to a solid line. Individual derivations of a packed node are identified by appending a letter

to the name of the forest node containing them. For example, two derivations of a packed

node X1 would be labelled X1(a) and X1(b).

119

	 The current word.

As in chapter 4, the word the parser is currently processing is shown in a box at the

right-hand edge of the diagram.

STATE ACTION

N Det Prep V $ EAG S VP NP PP
0 s1 s3 g2 g4
1 r3 r3 r3
2 s5 acc g16
3 s15
4 s5 s6 g8 g7
5 s9, e6-1 s10, e6-1 g14, c6
6 s9, e7-1 s10, e7-1 g11, c7
7 r5 r5 r5 e5-2
8 r1 r1 e1-2
9 r3 r3 r3
10 s13
11 s5, r7 r7 e7-2 g12
12 r5 r5 r5 e5-2
13 r4 r4 r4
14 s5, r6 r6 r6 e6-2 g12
15 r4 r4 r4
16 r2 r2 e2-2

Table 6.2: L� parse table for grammar 6.4.

The remainder of this section presents a detailed trace of the L� algorithm parsing the sentence

“John saw a man in the park”. The parser is initialised with a single vertex with state 0 (first

diagram of figure 6.6). The parser begins by shifting the word “John” onto the stack, and reducing

it to NP1 by rule 3 (second diagram of figure 6.6). Next, the parser shifts the word “saw” onto the

stack, and eagerly reduces it to VP1 by rule 7. This node is used in a cascaded eager reduction by

rule 1, creating the incomplete node S1 (third diagram of figure 6.6).

Next, the parser shifts the words “a man” onto the stack, and reduces them to NP2 by rule 4.

This NP is combined into the eagerly created node VP1 (fourth diagram of figure 6.6). The parser

then performs a completing reduction by rule 7, which marks the node VP1 as complete. This is

followed by a completing reduction by rule 1, marking S1 as complete (fifth diagram of figure 6.6).

The parser next rejoins the stack by shifting the word “in” onto the stack, as shown in the

first diagram of figure 6.7. Following this, the parser eagerly reduces by rule 6, creating the

incomplete node PP1, and two new vertices—one on each branch of the stack (second diagram of

120

0 s1 John

0 4

NP1

s6

John

NP1

N1

saw

0

2

S1

4

NP1

8

VP1

[1→ S1 :2]

6

V1

[7→ VP1 :8]

s10
John saw

NP1

N1

S1

1V

1VP

a

0

2

S1

4

NP1

8

VP1

[1→ S1 :2]

6

V1

11

NP2

[7→ VP1 :8]

r7, s5

NP2

John saw man

NP1

N2N1

a

S1

Det11V

1VP

in

0 4

NP1

6

V1

11

NP2

s5

2

S1

s5

NP2

John saw man

NP1

N2N1

a

S1

Det11V

1VP

in

Figure 6.6: Trace of the L� algorithm parsing “John saw a man in the park”.

figure 6.7). At the vertex with state 12, the parser performs a cascaded eager reduction by rule 5

which creates the node NP3 from NP2 and PP1. This NP is used in a cascaded reduction by rule 7

to create the incomplete node VP2, which is then used in a further cascaded reduction by rule 1,

creating the incomplete node S2 from NP1 and VP2 (third diagram of figure 6.7).

The next action the parser performs is an eager reduction by rule 2, at the stack top with

121

0 4

NP1

6

V1

11

NP2

5

Prep1

e6−1, s10

2

S1

NP2

John saw man

NP1

N2N1

ina

S1

Det1 Prep11V

1VP

the

0 4

NP1

6

V1

11

NP2

12

PP1

e5−2

5

Prep1

[6→ PP1 :16,12]

s10

2

S1

16

PP1

e2−2

NP2

John saw man

NP1

N2N1

ina

S1

1PP

Det1 Prep11V

1VP

the

0

2

S2

4

NP1

8

VP2

[1→ S2(a):2]

6

V1

11

NP3

[7→ VP2 :8]

11

NP2

12

PP1

[5→ NP3 :11]

5

Prep1

[6→ PP1 :16,12]

s10

2

S1

16

PP1

e2−2

NP2

John saw man

NP1

N2N1

ina

S1

1PP

VP2

Det1 Prep11V

NP3

1VP

2S (a)

the

Figure 6.7: Trace of the L� algorithm parsing “John saw a man in the park” (cont.).

state 16. This reduction creates an incomplete derivation of S from S1 and PP1. The parse table

entry ACTION[0, S] = fg2g specifies that the state of the vertex resulting from the reduction is

state 2. There already exists an eager vertex with the same state (state 2) and the same successors

(the vertex with state 0) as the one the parser would create from this reduction. Therefore,

the parser provisionally packs the new incomplete derivation into the node S2 (first diagram of

figure 6.8).

Having provisionally packed S2, the parser then shifts the words “the park” onto the stack,

and reduces them to NP4 by rule 4. This NP is combined into PP1, leaving the stack as shown

122

0

2

S2

4

NP1

8

VP2

[1→ S2(a):2]

6

V1

11

NP3

[7→ VP2 :8]

11

NP2

12

PP1

[5→ NP3 :11]

5

Prep1

[6→ PP1 :16,12]

s10

2

S1

16

PP1

[2→ S2(b) :2]

NP2

John saw man

NP1

N2N1

ina

S1

1PP

VP2

Det1 Prep11V

NP3

1VP

(a) (b)
2S

the

0

2

S2

4

NP1

8

VP2

[1→ S2(a):2]

6

V1

11

NP3

[7→ VP2 :8]

11

NP2

12

PP1

[5→ NP3 :11]

5

Prep1

14

NP4

[6→ PP1 :16,12]

r6

2

S1

16

PP1

[2→ S2(b) :2]

NP2

John saw man

NP1

N2N1

in thea park

S1

1PP

VP2

N3Det 2Det1 Prep11V

NP3

NP4

1VP

(a) (b)
2S

$

Figure 6.8: Trace of the L� algorithm parsing “John saw a man in the park” (cont.).

in the second diagram of figure 6.8. Next, the parser performs a completing reduction by rule 6,

marking PP1 as complete (first diagram of figure 6.9). This is followed by a completing reduction

by rule 5, marking NP3 as complete, then a further completing reduction by rule 7, marking VP2

as complete (second diagram of figure 6.9).

Next, the parser performs a completing reduction by rule 1, marking derivation S2(a) as

complete. This is shown in the first diagram of figure 6.10 by changing the dotted lines connecting

the children of S2(a) to solid lines. Because one of the derivations of the node S2 has been

completed, the packing of S2 must be checked, hence a packing check action is scheduled at the

stack top with state 2. However, this packing check action is not executed until all other reductions

that could affect S2 have been performed. Thus the completing reduction by rule 2 at the stack

top with state 16 is performed first, marking the derivation S2(b) as complete (second diagram of

figure 6.10). Now that all reductions that can affect S2 have been performed, the parser checks

123

0

2

S2

4

NP1

8

VP2

[1→ S2(a):2]

6

V1

11

NP3

[7→ VP2 :8]

11

NP2

12

PP1

[5→ NP3 :11]

r5

2

S1

16

PP1

[2→ S2(b) :2]

r2

NP2

John saw man

NP1

N2N1

in thea park

S1

1PP

VP2

N3Det 2Det1 Prep11V

NP3

NP4

1VP

(a) (b)
2S

$

0

2

S2

4

NP1

8

VP2

[1→ S2(a):2]

r1

2

S1

16

PP1

[2→ S2(b) :2]

r2

NP2

John saw man

NP1

N2N1

in thea park

S1

1PP

VP2

N3Det 2Det1 Prep11V

NP3

NP4

1VP

(a) (b)
2S

$

Figure 6.9: Trace of the L� algorithm parsing “John saw a man in the park” (cont.).

the packing of node S2 and discovers that all derivations of the provisionally packed node are

complete, therefore the provisional packing is correct, and S2 is marked as complete. This is

depicted by changing the dotted box to a solid one in the third diagram of figure 6.10. Having

determined that the packing of S2 is correct, the parser accepts the input, with S2 as the root of

the resulting parse forest.

124

0 2

S1

16

PP1

[2→ S2(b) :2]

r2

2

S2

pc
NP2

NP4

John saw man

NP1

N2N1

in thea park

S1

NP3

1PP

VP2

N3Det 2Det1 Prep11V

1VP

(a) (b)
2S

$

0 2

S2

pc

NP2

John saw man

NP1

N2N1

in thea park

S1

1PP1VP

VP2

N3Det 2Det1 Prep11V

NP3

NP4

(a) (b)
2S

$

0 2

S2

acc

NP2

John saw man

NP1

N2N1

in thea park

S1

1PP1VP

VP2

N3Det 2Det1 Prep11V

NP3

NP4

(a) (b)
2S

$

Figure 6.10: Trace of the L� algorithm parsing “John saw a man in the park” (cont.).

125

6.4 Formal Algorithm

Input

A parse table ACTION[state, symbol] for the context-free grammar G � hN�T�R� Si and an

input string z � T �. Entries in the parse table are sets of parsing actions. Each action has the form

“shift s”, “reduce r”, “eager-reduce r–k”, “goto s”, “combine r”, or “accept”.

N is a set of nonterminals, T is a set of terminals, R is a set of grammar rules of the form X��,

where X � N and � � �N � T ��, and S is the start symbol. The state s0 is designated as the

start state.

Output

The root node of a packed shared parse tree for z if z � L�G�, otherwise an error indication.

Data Structures

A vertex in the graph-structured stack is a tuple hs� n� l� C�Si, where s is a state, n is a forest

node, l is the length of the longest path back to the base of the stack, C is a set of combine pointers,

and S is the set of successor vertices in the stack. For notational convenience, the elements of a

vertex v can be referenced using the functions State(v), Node(v), Depth(v), Combine-Ptrs(v), and

Successors(v).

A node in the shared forest is a tuple hX�Di, where X � N , and D is a set of derivations.

The elements of a node n can be referenced using the functions Nonterm(n) and Derivs(n).

A derivation is a pair hc� xi, where c is a list of child forest nodes and x � fcomplete,

incompleteg indicates whether the derivation is complete or not. The elements of a derivation

d can be referenced using the functions Children(d), and Status(d).

A combine pointer is a tuple hr� d�Vi, where r � R, d is a derivation and V is a set of vertices.

The elements of a combine pointer c can be referenced using the functions Rule(c), Deriv(c), and

Vertices(c).

A path is a contiguous sequence of vertices v1� � � � � vk in the stack. That is, for i � 2� � � � � k,

vi � Successors(vi�1).

RFRONTIER and SFRONTIER store sets of pairs hv� ai, where v is a vertex and a is a parse

action yet to be performed at v. The vertices of these pairs form the active stack tops. Shift,

combine, and accept actions are stored in SFRONTIER. Reduce, eager-reduce, and

pack-check actions are stored in RFRONTIER. RFRONTIER is a priority queue. Items on

126

RFRONTIER are ordered by the depth of the vertices that their actions create in the stack. Actions

that create vertices deeper in the stack have a higher priority and are run earlier.

The sets CURRENT-V and EAGER-V are used to keep track of possible packing opportunities.

CURRENT-V is a set of all vertices whose associated forest node contains at least one derivation

that was completed at the current input word. EAGER-V is a set of all vertices created by eager

reduction whose associated forest node as yet contains no complete derivation.

� denotes the current input symbol.

Main Loop

� Add a terminator symbol $ to the end of the input
string z

� � � The first symbol of z
� v0 � hs0�NIL� 0� fg� fgi � Initialise the stack

� CURRENT-V � fv0g
� EAGER-V � fg
� Call Schedule(v0� �)
� Loop
� Call Reduce()
� Call Shift()
� If SFRONTIER = fhv� “accept”ig then halt and

return Node(v)
� If SFRONTIER = fg then halt and signal an error.

� Perform reductions followed by shifts un-
til acceptance or rejection.

127

Reduce()

Perform all outstanding reductions by calling the subroutine appropriate to each reduce action. Actions
with the same priority are processed in the following order: completing reduces, full reduces, packing
checks, then eager reduces.

� While RFRONTIER 	� fg

� B � The set of all items in RFRONTIER with the
highest priority

� If �x � B s.t. x = hv�“reduceX��”i

� C � fc � Combine-Ptrs�v� j Rule�c� = X��g
� If C 	� fg

� Each element of C corresponds to a previ-
ous eager reduction that is now complete.

� Call Completing-Reduce(v� C)
Else
� P � fp jp is a path of length j�j starting at v in

the stackg
� �p � P , call Full-Reduce(p�X��)

Else If �x � B s.t. x = hv� “pack-check”i
� Call Packing-Check�fv j hv�“pack-check”i�Bg�

Else If �x � B s.t. x = hv�“eager-reduce r–k”i
� P � fp j p is a path of length k starting at v in

the stackg
� �p � P , call Eager-Reduce(p� r)

Completing-Reduce(v� C)

Perform a completing reduction at vertex v. As this reduction covers the same ground as a previous eager
reduction, there is no new parse structure to create, and all that needs to be done is schedule any actions at
the vertices associated with the result of the completing reduction.

� �c � C
� Status(Deriv(c)) � complete
� Remove c from Combine-Ptrs(v)
� �v� � Vertices�c�

� C is a set of combine pointers that point
to the vertices created earlier by an eager
reduction that is now being completed.

� Remove v� from EAGER-V
� Add v� to CURRENT-V
� Add hv��“pack-check”i to RFRONTIER with

priority Depth(v�)
� Check that the packing of Node(v�) is still

correct.

128

Full-Reduce(v1� � � � � vk� X��)

Non-eagerly reduce by the rule X��, creating a derivation of X whose children are the nodes of vertices
v1� � � � � vk. Combine this new node into other partial derivations created previously by eager reduction, and
schedule any further actions triggered by this reduction.

� d� h�Node�vk�� � � � �Node�v1���completei

� Π � A partition of Successors(vk) by goto value on
symbol X

� v belongs to the set �s � Π if and only if
“goto s” � ACTION[State(v),X]. See
figure 6.11(a).

� If �v � CURRENT-V s.t.
Successors(v) � Π � Nonterm�Node�v�� = X

� Add d to Derivs(Node(v))
� Pack using an existing vertex in

CURRENT-V whose nonterminal and left
context match the current reduction.

Else
� n� � hX� fdgi � Create a new forest node.

� ��s � Π
� l � Max�fDepth�v� j v � �sg� � 1
� v� � hs� n�� l� fg� �si
� Add v� to CURRENT-V

� Create new vertices containing this node,
one for each element of Π.

� �v � �s
� �a � ACTION[State(v), �] s.t.

a = “combine r”
� Call Combine(v� v�� r)

� Call Schedule(v�� �)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

v1v k

π
1s

π s 2

Figure 6.11(a): Stack before full reduction

X

X

X

1s

s 2

π
1s

π s 2

v1v k

v1
′

v ′
2

n k nn 1

n k n 1

n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

Figure 6.11(b): Stack after full reduction

129

Eager-Reduce(v1� � � � � vk� X��)

Eagerly reduce by the rule X��, creating a new incomplete derivation of X whose children are the nodes
of vertices v1� � � � � vk. Combine this new node into other partial derivations created previously by eager
reduction, and schedule any further actions triggered by reduction.

� d� h�Node�vk�� � � � �Node�v1���incompletei � The new derivation is incomplete because
it is created by an eager reduction.

� Π � A partition of Successors(vk) by goto value on
symbol X

� v belongs to the set �s � Π if and only if
“goto s” � ACTION[State(v),X]. See
figure 6.12(a).

� c� hX��� d� fgi � Create a new combine pointer.

� �v � EAGER-V
� If Successors(v) � Π � Nonterm�Node�v�� = X

� Add v to Vertices�c�

� Collect the set of existing eager vertices
whose nonterminal and left context match
the current reduction.

� If Vertices�c� 	� fg then � Pack using an existing vertex created by
a previous eager reduction.

� v � An arbitrary element of Vertices(c)
� Add d to Derivs(Node(v))

� All elements of Vertices(c) have the same
forest node.

Else
� n� � hX� fdgi � Create a new forest node.

� ��s � Π
� l � Max�fDepth�v� j v � �sg� � 1
� v� � hs� n�� l� fg� �si
� Add v� to EAGER-V
� Add v� to Vertices(c)

� Create new vertices containing this new
node, one for each element of Π.

� �v � �s
� �a � ACTION[State(v), �] s.t.

a = “combine r”
� Call Combine(v� v�� r)

� Combine the newly created n� into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

� Call Schedule(v�� EAG)

� Add c to Combine-Ptrs(v1)

� Use EAG because appropriate lookahead
symbols are not available.

v1v k

π
1s

π s 2

Figure 6.12(a): Stack before eager reduction.

X

1s

v ′
2

s 2

π
1s

π s 2
X

v1v k

v1
′

→αX ,d, 〉〈 v ′2,{ }v ′1c=

n k n 1

X

n k n 1

n

n ()Nonterm= Node)(n k vk

vn (Nonterm Node)(=1)1

Figure 6.12(b): Stack after eager reduction.

130

Combine(vf � vt� r)

Combine Node(vt) into partial derivations created by eager reduction whose rightmost element is currently
Node(vf). These derivations are identified by the combine pointers associated with vf .

� �c � Combine-Ptrs(vf) s.t. Rule(c) = r

� Add Node(vt) to the end of Children(Deriv(c))
� Remove c from Combine-Ptrs(vf)
� Add c to Combine-Ptrs(vt)

� Move the combine pointers forward to vt
so that further combines (or completing
reductions) can be performed there.

v k

v

X

v f v t

n k nn f n t

}}→αX ,d, 〉〈 {v{=()vCombine−Ptrs f

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt

n k nn f

X

Figure 6.13(a): Stack before combine.

X

}

v k

v

X

v f v t

n k nn f n t

}→αX ,d, 〉〈 {v

n k nn f n t

=()vCombine−Ptrs t
{

vfnn f ()Nonterm= Node)(

n ()Nonterm= Node)(n k vk

()n t Nonterm= Node)(vt

Figure 6.13(b): Stack after combine.

131

Packing-Check(L)

Check the provisional packing of nodes in the parse forest. If there are both complete and incomplete
derivations packed together in the same node, then the packing was incorrect and the incomplete and com-
plete derivations must be separated and unpacked into two distinct forest nodes. The complete derivations
were created by completing reductions at the current input word, so schedule any actions these completing
reductions trigger at the vertices whose associated forest node contain the complete derivations.

� Π � A partition of L according to associated forest
node

� ��n � Π

� Each v belongs to the set �n � Π if and
only if Node(v) = n.

� C � fd � Derivs�n� j Status�d� = complete g
� I � fd � Derivs�n� j Status�d� = incomplete g

� If C 	� fg then

� If I 	� fg then � Forest node n contains both complete and
incomplete derivations, so it is necessary
to unpack.

� n� � hNonterm�n�� Ci
� Derivs�n�� I

� Remove the complete derivations from n

and put them into a new node n�. See
figure 6.14(b).

� �v � �n
� Remove v from CURRENT-V
� Add v to EAGER-V
� v��hState�v��n��Depth�v��fg�Successors�v�i
� Add v� to CURRENT-V

� Create new vertices associated with the
newly created node.

� Call Schedule(v�� �) � Node(v�) contains the complete deriva-
tions, so schedule further actions at v�

Else
� �v � �n
� Call Schedule(v� �)

� All v � �n have forest node n, and all
derivations of n are complete; therefore
schedule further actions at these vertices.

State(v)s =

= Nonterm()nX

v ∈ π n

s

X

v

Figure 6.14(a): Stack before unpacking.

s

s

v ′

v

X

X

State(v)s =

= Nonterm()nX

v ∈ π n

′n = Node(′)v

Figure 6.14(b): Stack after unpacking.

132

Shift()

Shift the next terminal symbol onto all the stack tops and create a new node for it in the parse forest.
Combine this new node into other partial derivations created previously by eager reduction, and schedule
any actions triggered by the shift.

� n� h�� fgi
� � � The next symbol of the input string
� CURRENT-V � fg

� Create a new node for the shifted input
symbol.

� S � fhv� ai � SFRONTIER j a = “shift s”g
� SFRONTIER � SFRONTIER � S

� S is the set of all shift actions to perform.

� Π � A partition of S according to goto state of the
shift actions

� Each �s � Π consists of elements of the
form hv� “shift s”i.

� ��s � Π
� V � fv j hv� ai � �sg
� l � Max�fDepth�v� j v � Vg� � 1
� vs � hs� n� l� fg�Vi
� Add vs to CURRENT-V

� Create a new vertex for each member of
Π.

� �x� SFRONTIER s.t. x= hv�“combiner”i�v�V
� Remove x from SFRONTIER
� Call Combine(v� vs� r)

� Call Schedule(vs� �)

� Combine the newly created n into pre-
vious eager reductions by rule r whose
corresponding partial derivations have
Node(v) as their rightmost element.

1ss

1v

2v

s 2s

s s 1

v 3

π
1s

π s 2

Figure 6.15(a): Stack tops with outstanding
shift actions.

s 1

s 2

π
1s 1v

2v

v 3

π
1s

π s 2

vs 1

vs2

Figure 6.15(b): Stack after shifting.

Schedule(v� L)

Add to RFRONTIER and SFRONTIER all possible actions to be performed at vertex v.

� �a � ACTION�State�v�� L� s.t.
a = “eager-reduce r–k” �
�c � Combine-Ptrs�v� s.t. Rule�c� = r

� p� Depth�v�� k � 1
� Add hv� ai to RFRONTIER with priority p

� Filter out reductions that would repeat an
eager reduction carried out earlier.

� �a � ACTION�State�v�� L� s.t. a = “reduceX��”
� p� Depth�v�� j�j� 1
� Add hv� ai to RFRONTIER with priority p

� �a � ACTION�State�v�� L� s.t. a is a shift,
combine, or accept action

� Add hv� ai to SFRONTIER

�

133

Chapter 7

Conclusion

This thesis has described L� parsing—a method of parsing designed to improve the efficiency of

a natural language processing system by facilitating the early resolution of ambiguity. L� parsing

defines a general framework for specifying parsers with different control strategies.

7.1 Summary of L� parsing

L� parsing facilitates early resolution of ambiguity by allowing grammar rules to be applied

whenever they are likely to provide syntactic information that permits an NLP system to perform

useful semantic or pragmatic work.

L� parsing is a table-driven algorithm. It has been implemented by extending the bottom-up

GLR parser to include two new parse actions—the eager-reduce and combine actions. These

actions are stored in the parse table. The eager-reduce action allows an L� parser to perform a

reduction by a grammar rule before all symbols of the rule’s RHS have been parsed, creating an

incomplete derivation. The combine action then incorporates the missing RHS symbols into the

incomplete derivation when they are derived from later input.

Control strategies for the L� parser are expressed by specifying the circumstances in which

eager reductions are to be performed. One particular approach to performing eager reductions

is to eagerly reduce only when doing so generates a syntactic attachment. Syntactic attachment

provides a way of determining whether or not a reduction is likely to allow useful semantic

processing. A method of compiling this approach into an L� parse table has been designed and

implemented.

135

To make the L� algorithm practical, a method for removing contextual distinctions encoded

in states of the parse table has been designed and implemented. Contextual distinctions reduce

opportunities for the L� parser to share and pack parses. This makes the parser inefficient because it

unnecessarily repeats work. Contextual distinctions are removed by the use of equivalence classes.

An equivalence class contains all states that are differentiated only by contextual distinctions.

When parsing, all states of the same equivalence class at the top of the stack are merged together.

Equivalence classes can also be used with LR(k) grammars to remove the contextual distinctions

introduced by lookahead.

The L� parser is intended to be used as part of a larger natural language processing system.

A prototype interface for the interaction of the parser and an oracle that evaluates parses has been

designed and implemented. When the oracle rejects parses created by eager reduction, the parser

stops all work on completing the parse. To implement this, an extra table storing the number of

kernel items in each state is built in conjunction with building the parse table.

7.2 Work in progress

This thesis describes an ongoing research project. Current lines of research are summarised in

the following sections.

7.2.1 Integration of equivalence classes, oracle, and packing

A version of the L� parser that combines the algorithms described in chapters 5 and 6 has been

implemented. While there appear to be no problems with the integration of the two algorithms,

further testing is needed.

7.2.2 Extending L� parsing to a larger class of context-free grammars

The current version of the algorithm does not function correctly with grammars involving null

rules (grammar rules that specify that a nonterminal derives the empty string). Any context-free

grammar with null rules can be transformed to a grammar with no null rules (Aho and Ullman,

1972). However, the number of rules resulting from such a transformation can be impractically

high. Also, transformations of the grammar are generally undesirable, because the relationships

136

between symbols in the grammar may have implications for semantic processing that are altered

by transforming the grammar.

Tomita’s version of the GLR algorithm did not process null rules correctly either. Although

the GLR parser could parse with grammars involving null rules, the method for dealing with them

produced inefficient parse forests, and could not cope with cyclic grammars. A better method of

parsing grammars with null rules is to allow cycles in the graph-structured stack (Nozohoor-Farshi,

1991; Rekers, 1992).

A version of the L� algorithm without packing that processes null rules has been implemented,

though not fully tested. Also, the implications of null rules when using the L� parser with packing

have not yet been investigated. In particular, reductions by null rules may cause problems for

determining the order in which reductions should be performed.

7.2.3 Extending L� parsing to other grammar formalisms

Although context-free grammars can model a useful subset of natural language, they cannot

express all features. Also, describing some features of natural language with a context-free

grammar may take many grammar rules, and fail to capture underlying structure and regularities.

For example, to express subject-verb agreement in a context-free grammar requires different rules

for singular and plural subjects.

A common method of addressing these problems is to augment context-free grammars with

some form of parameter mechanism. This is the approach of constraint-based grammar for-

malisms (Shieber, 1992), examples of which include FUG (Kay, 1982), LFG (Kaplan and Bresnan,

1982), and PATR (Shieber, 1992). Tomita has addressed issues in parsing augmented context-free

grammars with the GLR algorithm (Tomita, 1987a).

The L� algorithm has been extended to use affix grammars over a finite lattice (AGFLs) (Neder-

hof and Sarbo, 1993), which are a restricted form of affix grammars (Koster, 1991). However,

the implementation does not perform local ambiguity packing, and has not been fully tested.

Sample AGFLs of English and Turkish have been obtained from the University of Nijmegen, The

Netherlands, through Mark-Jan Nederhof, for testing purposes.

Parsing with parameters presents additional problems for L� parsing. In particular, an eager

reduction may be create an incomplete derivation with the value of a parameter unbound. Cas-

caded reductions may then place constraints on the possible values of this unbound parameter.

137

When performing a later combine action, the parser may discover inconsistencies between these

constraints and the value of the parameter for the derivation being combined. The currently

implemented solution to this problem is to split forest nodes when performing combine actions

to remove any inconsistencies.

7.2.4 Experimentation and evaluation of L� parsing

The L� algorithm has currently been tested on a number of grammars specially designed to exploit

the various mechanisms of L� parsing. However, no evaluation of the effects of L� parsing has

been performed on a wide coverage grammar of natural language, with the parser interacting with

a larger NLP system.

Work is in progress to perform such an evaluation. The PUNDIT natural language processing

system (Lang and Hirschman, 1988) has been obtained under an educational licence for this

purpose. PUNDIT is an NLP system written in Quintus Prolog. It analyses the syntax of

sentences according to a restriction grammar of natural language (Hirschman and Puder, 1986,

1982). Work to date has seen PUNDIT ported to Sicstus Prolog.

7.3 Future work

There are a number of possible extensions to the work described in this thesis.

7.3.1 Changing the way the L� parser pursues parses

An important modification for use in natural language would be to change the current breadth-first

pursuit of all parses to a best-first search. The most promising parse would always be considered,

without expending effort on parsing less likely interpretations. The parser would receive goodness

ratings on the current parses, and always pursue the one with the highest goodness rating. This

would involve some interesting changes, because input can no longer be processed in a strict

left-to-right fashion. A promising parse might be pursued for a number of words before it is

discovered to be wrong (such as in a garden-path sentence), at which time the parser might back

up in the input and pursue a different interpretation.

138

7.3.2 Determining where to eagerly reduce

Another major area for future research is determining eager reduction points in the grammar.

This thesis has presented one strategy for producing eager reductions from a grammar. This is

far from the only possibility, however, and there is scope for investigating other possible methods

of determining eager reduction points. One interesting possibility is to explore probabilistic,

corpus-based approaches.

7.3.3 Dealing with ungrammatical input

Dealing with ungrammatical input is a serious problem for real NLP systems. Work in this area

addressing adapting the GLR algorithm to handle ungrammatical input (Malone and Felshin,

1991) could be extended to the L� parsing framework.

7.4 Summary

This thesis has described a new parsing algorithm for natural language processing that is intended

to increase the efficiency of an NLP system by facilitating early resolution of ambiguity. The

initial design and implementation has been completed. However, many issues still remain to be

addressed.

139

References

Abney, S. P. and Johnson, M. (1991) Memory requirements and local ambiguities of parsing

strategies. Journal of Psycholinguistic Research, 20(3), 233–250.

Aho, A. V. and Ullman, J. D. (1972) The Theory of Parsing, Translation, and Compiling, Vol. 1:

Parsing. Prentice-Hall.

Aho, A. V. and Ullman, J. D. (1977) Principles of Compiler Design. Addison-Wesley Publish-

ing Co.

Billot, S. and Lang, B. (1989) The structure of shared forests in ambiguous parsing. In Proceedings

of the 27th Annual Meeting of the Association for Computational Linguistics, pp. 143–151.

Vancouver, British Columbia. Also published as INRIA Rapports de Recherche 1038.

Birnbaum, L. (1986) Integrated Processing in Planning and Understanding. Ph.D. thesis, Yale

University, New Haven.

Crain, S. and Steedman, M. (1985) On not being led up the garden path: The use of context by

the psychological syntax processor. In Dowty, D., Karttunen, L., and Zwicky, A. (Eds.),

Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives,

chap. 10, pp. 320–358. Cambridge University Press.

DeRemer, F. L. (1971) Simple LR(k) grammars. Communications of the ACM, 14(7), 453–460.

Earley, J. (1970) An efficient context-free parsing algorithm. Communications of the ACM, 13(2),

94–102. Reprinted in Readings in Natural Language Processing, Grosz et. al (Eds.).

140

Frazier, L. (1987) Theories of sentence processing. In Garfield, J. L. (Ed.), Modularity in

Knowledge Representation and Natural Language Understanding, chap. 15, pp. 291–307.

MIT Press.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985) Generalised Phrase Structure

Grammar. Basil Blackwell.

Gazdar, G. and Mellish, C. (1989) Natural Language Processing in Prolog. Addison-Wesley

Publishing Co.

Hirschman, L. and Puder, K. (1982) Restriction grammar in prolog. In Van Canegham, M.

(Ed.), Proceedings of the First International Logic Programming Conference, pp. 85–90.

Marseilles. Association pour la Diffusion et le Developpement de Prolog.

Hirschman, L. and Puder, K. (1986) Restriction grammar: A prolog implementation. In Warren,

D. and Van Canegham, M. (Eds.), Logic Programming and its Applications, pp. 244–261.

Ablex Publishing Corporation.

Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Publishing Co.

Jacobs, P. S., Krupka, G. R., and Rau, L. F. (1991) Lexico-semantic pattern matching as a

companion to parsing in text understanding. In Proceedings of the Speech and Natural

Language Workshop, pp. 337–341. Pacific Grove, CA. Morgan Kaufmann Publishers, Inc.

Jones, E. K. and Miller, L. M. (1992) Eager GLR parsing. In First Australian Workshop on

Natural Language Processing and Information Retrieval, pp. 1–8. Melbourne, Australia.

Jones, E. K. and Miller, L. M. (1993) The L� parsing algorithm. Technical Report CS-TR-93/9,

Victoria University of Wellington.

Jones, E. K. and Miller, L. M. (1994a) L� parsing: A general framework for syntactic analysis

of natural language. In Proceedings of the National Conference on Artificial Intelligence

(AAAI-94). Washington. In press.

141

Jones, E. K. and Miller, L. M. (1994b) Table-driven parsing with flexible control. In Gupta, G.

(Ed.), Proceedings of the Seventeenth Annual Computer Science Conference, pp. 105–113.

Christchurch, New Zealand.

Kaplan, R. M. (1973) A general syntactic processor. In Rustin, R. (Ed.), Natural Language

Processing, pp. 193–241. Academic Press.

Kaplan, R. M. and Bresnan, J. (1982) Lexical-functional grammar: A formal system for gram-

matical representation. In Bresnan, J. (Ed.), The Mental Representation of Grammatical

Relations, pp. 172–281. MIT Press.

Kay, M. (1982) Parsing in functional unification grammar. In Dowty, D. R., Karttunen, L.,

and Zwicky, A. M. (Eds.), Natural Language Parsing, pp. 251–278. Cambridge University

Press.

Kay, M. (1986) Algorithm schemata and data structures in syntactic processing. In Grosz,

B. J., Jones, K. S., and Webber, B. L. (Eds.), Readings in Natural Language Processing,

pp. 35–70. Morgan Kaufmann Publishers, Inc.

Koster, C. H. A. (1991) Affix grammars for natural language. In Attribute Grammars, Applications

and Systems, International Summer School SAGA, Vol. 545 of Lecture Notes in Computer

Science, pp. 358–373. Springer-Verlag.

Lang, B. (1974) Deterministic techniques for efficient non-deterministic parsers. In Loeckx,

J. (Ed.), Proceedings of the 2nd Colloquium on Automata, Languages and Programming,

Vol. 14 of Lecture Notes in Computer Science, pp. 255–269. Saarbrücken. Springer-Verlag.

Lang, F. M. and Hirschman, L. (1988) Improved portability and parsing through interactive

aquisition of semantic information. In Proceedings of the Second Conference of Applied

Natural Language Processing, pp. 49–57. Austin, Texas. ACL.

Lankhorst, M. M. (1991) An empirical comparison of Generalised LR tables. In Proceedings of the

Workshop on Tomita’s Algorithm—Extensions and Applications, pp. 92–98. P. O. Box 217,

Enschede, The Netherlands. University of Twente, Computer Science Department.

Leermakers, R. (1989) How to cover a grammar. In Proceedings of the 27th Annual Meeting of

the Association for Computational Linguistics, pp. 135–142. Vancouver, British Columbia.

142

Malone, S. and Felshin, S. (1991) GLR parsing for erroneous input. In Tomita, M. (Ed.),

Generalized LR Parsing, chap. 9, pp. 129–139. Kluwer Academic Publishers.

Maruyama, H. (1990) Structural disambiguation with constraint propagation. In Proceedings

of the 28th Annual Meeting of the Association for Computational Linguistics, pp. 31–38.

Pittsburgh, Pennsylvania.

Miller, L. M. and Jones, E. K. (1992) Eager GLR parsing. In Proceedings of the New Zealand

Computer Science Research Students’ Conference, pp. 175–178. Hamilton, New Zealand.

Nederhof, M.-J. (1993) Generalised left-corner parsing. In Proceedings of the 6th Conference

of the European Chapter of the Association for Computational Linguistics, pp. 305–314.

Utrecht, The Netherlands.

Nederhof, M.-J. and Sarbo, J. J. (1993) Efficient decoration of parse forests. In Trost, H. (Ed.),

Feature Formalisms and Linguistic Ambiguity, chap. 4, pp. 53–78. Ellis Horwood.

Nirenburg, S., Carbonell, J., Tomita, M., and Gooman, K. (1992) Machine Translation:

A Knowledge-Based Approach. Morgan Kaufmann Publishers, Inc.

Nozohoor-Farshi, R. (1991) GLR parsing for �-grammars. In Tomita, M. (Ed.), Generalized LR

Parsing, chap. 5, pp. 61–75. Kluwer Academic Publishers.

Palmer, M. S., Passonneau, R. J., Weir, C., and Finin, T. (1993) The KERNEL text understanding

system. Artificial Intelligence, 63, 17–68.

Pereira, F. C. N. and Warren, D. H. D. (1980) Definite clause grammars for language analysis—a

survey of the formalism and a comparison with augmented transition networks. Artifical

Intelligence, 13, 231–278.

Perrault, C. R. (1984) On the mathematical properties of linguistic theories. Computational

Linguistics, 10, 165–176. Reprinted in Readings in Natural Language Processing, Grosz

et. al (Eds.).

Pollard, C. J. and Sag, I. A. (1987) Information-based Syntax and Semantics. No. 13 in CSLI

Lecture Notes. Center for the Study of Language and Information.

143

Rau, L. F. and Jacobs, P. S. (1988) Integrating top-down and bottom-up strategies in a text

processing system. In Proceedings of the Second Conference of Applied Natural Language

Processing, pp. 129–135. Austin, Texas. ACL.

Rekers, J. (1992) Parser Generation for Interactive Environments. Ph.D. thesis, University of

Amsterdam.

Sager, N. (1981) Natural Language Information Processing: A computer grammar of English

and its applications. Addison-Wesley Publishing Co.

Schabes, Y. (1991) Polynomial time and space shift-reduce parsing of arbitrary context-free

grammars. In Proceedings of the 29th Annual Meeting of the Association for Computational

Linguistics, pp. 106–113. Berkeley, CA.

Shann, P. (1991) Experiments with GLR and chart parsing. In Tomita, M. (Ed.), Generalized LR

Parsing, chap. 2, pp. 17–34. Kluwer Academic Publishers.

Shieber, S. M. (1987) Evidence against the context-freeness of natural language. In Savitch,

W., Bach, E., Marsh, W., and Safran-Naveh, G. (Eds.), The Formal Complexity of Natu-

ral Language, Vol. 33 of Studies in Linguistics and Philosophy, pp. 320–335. D. Reidel

Publishing Co.

Shieber, S. M. (1992) Constraint-Based Grammar Formalisms: Parsing and type inference for

natural and computer languages. MIT Press.

Steele Jr., G. L. (1990) Common Lisp—The Language (second edition). Digital Press.

Stowe, L. A. (1991) Ambiguity resolution: Behavioural evidence for a delay. In Proceedings of

the Thirteenth Annual Conference of the Cognitive Science Society, pp. 257–262. Cognitive

Science Society.

Taraban, R. and McClelland, J. L. (1988) Constituent attachment and thematic role assignment

in sentence processing: Influences of content based expectations. Journal of Memory and

Language, 27, 597–632.

144

Tomita, M. (1985) An efficient context-free parsing algorithm for natural language. In Pro-

ceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85),

pp. 756–764. Los Angeles, California. Morgan Kaufmann Publishers, Inc.

Tomita, M. (1986) Efficient Parsing for Natural Language. Kluwer Academic Publishers.

Tomita, M. (1987a) An efficient augmented-context-free parsing algorithm. Computational

Linguistics, 13(1-2), 31–46.

Tomita, M. (1987b) The universal parser architechture for knowledge-based machine transla-

tion. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence

(IJCAI-87), pp. 718–721.

Tomita, M. (1988) Graph-structured stack and natural language parsing. In Proceedings of

the 26th Annual Meeting of the Association for Computational Linguistics, pp. 249–256.

Buffalo, New York. ACL.

Tomita, M. and Ng, S. (1991) The generalized LR parsing algorithm. In Tomita, M. (Ed.),

Generalized LR Parsing, chap. 1, pp. 1–16. Kluwer Academic Publishers.

Tyler, L. K. and Marslen-Wilson, W. (1977) The on-line effects of semantic context on syntactic

processing. Journal of Verbal Learning and Verbal Behaviour, 16, 683–692.

Winograd, T. (1983) Language as a Cognitive Process. Volume 1: Syntax. Addison-Wesley

Publishing Co.

145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

