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It was a dark and stormy night. A lone psychophysicist
hurried up the slope of the beach to the shelter of the bush,
the right angle of her tracks in the sand recording her abrupt
change in direction. She pulled her cell phone from her map
pocket, dialed quickly, and held the phone under the hood
of her parka.

“Dunedin Police.”
“Hi, I’m on Tautuku Beach in the Catlins, and I think I

just saw an emergency flare over the head at the south end.”
“Are you sure you’re right about that?”
“Not really. The weather is a mess here. I’m pretty sure I

saw a red light arc through the sky, but there are houses on
the peninsula, and I suppose it could have come from there.
But it seemed too far away for that. Anyway, I didn’t want

to read about a wreck with all hands lost in the Times to-
morrow and then wish I’d called.”

“Righto. I’ll tell Balclutha to get their woollies on. Stay
on the line, please.”

How good are people at telling when their decisions are
right or wrong? This skill is an important factor in learning
from experience and predicting the consequences of our
choices. The ability to assess one’s decisions is the target
of research in specialist fields, such as transport safety,
medical diagnosis, witness reliability, and interpersonal
relationships. It is surprising, then, that such an important
metacognitive faculty has rarely been analyzed using the
criterion-free measures developed within the theory of
signal detectability (TSD). 

The task of discriminating between one’s own correct and
incorrect decisions was first described and named the Type 2
task in TSD by Clarke, Birdsall, and Tanner (1959) and
Pollack (1959). In a Type 1 task, an observer decides which
of two or more events defined independently of the ob-
server has occurred (e.g., deciding that there was a flare or
that there was not a flare, in our introductory example). In
this article, we consider only Type 1 choices between two
events, and we refer to these generically as signal (S ) and
noise (N ) events. At the time a Type 1 decision is made, an-
other event occurs: The observer is either correct (C ) or in-
correct (I ). The task of discriminating between one’s own
correct and incorrect Type 1 decisions is called a Type 2
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task (Clarke et al., 1959; Pollack, 1959). The only funda-
mental difference between the two tasks lies in the kind of
events to be discriminated.

For either the Type 1 or the Type 2 task, the basis for dis-
criminating between the two events is the decision axis.
The decision axis is the evidence associated with the events,
or some transformation of the evidence, such as the like-
lihood ratio, used to make the decisions. For each task, two
probability functions1 show how values of the decision
axis are distributed conditional on the occurrence of each
of two events (S and N for Type 1, and C and I for Type 2). 

The appropriate pair of conditional probability func-
tions can be used to generate theoretical receiver operating
characteristic (ROC) curves for each task. The conven-
tional Type 1 ROC curve is a plot of the probability that an
observer will report that a signal has occurred when it has
occurred against the probability that the observer will re-
port a signal event has occurred when it has not occurred,
for each possible criterion applied to the decision axis. The
Type 1 ROC curve illustrates an observer’s ability to dis-
criminate one Type 1 event from another. The Type 2 ROC
curve is a plot of the probability that an observer will re-
port a Type 1 decision as correct when it was correct against
the probability that the observer will report a decision as
correct when it was not correct for each possible criterion
applied to the Type 2 decision axis. The Type 2 ROC curve
illustrates an observer’s ability to discriminate one Type 2
event from another. 

Although Clarke et al. (1959) described and named the
Type 2 task over 40 years ago, their classification was not
accompanied by the development of a general mathemat-
ical theory enabling a comparison of empirical results with
theoretical predictions. In this article, we show how the abil-
ity to discriminate correct from incorrect is related to the
ability to discriminate signal from noise and discuss the im-
plications of this relationship for psychological research.

Although there have been no theoretical curves with
which to compare them, empirical Type 2 ROC curves do
exist in the literature. We begin by describing some of this
research. We then formally define Type 1 and Type 2 tasks
and show how to compute discrete theoretical Type 2
probability functions from theoretical Type 1 functions for
the dice game of Swets, Tanner, and Birdsall (1961). We
generalize this procedure by deriving a set of formulae
that can be applied to any pair of Type 1 probability func-
tions (i.e., those conditional on events S and N ) of some
decision variable to produce Type 2 probability functions
(conditional on the events C and I ) of that variable. We
show how to use transformations of these Type 2 functions
to produce Type 2 probability functions for other decision
axes (such as likelihood ratio). We also present six corol-
laries to the Type 2 theory that highlight some interesting
properties of Type 2 ROC curves and measures of Type 2
performance. We conclude by considering how Type 1 and
Type 2 confidence ratings are related.

A Brief History of Type 2 Decisions
The problem of Type 2 decisions grew out of an attempt

to apply TSD to research on communication between a

source and a receiver (Egan & Clarke, 1956; Egan, Clarke, &
Carterette, 1956; Pollack & Decker, 1958). In these source–
receiver experiments, one person, the source, would read
a word out loud over a noisy channel. The receiver would
select, from a prelearned list of words, the word thought
to have been read out and then would give a rating of con-
fidence that the identification had been correct. Pollack
(1959) and Clarke et al. (1959) realized that two funda-
mentally different kinds of tasks were being required of
the observer: One was to discriminate between (or among)
Type 1 events, and one was to assess, trial by trial, one’s
own correctness. Pollack’s main concern was to distin-
guish between measures of sensitivity for the two tasks,
whereas Clarke et al. attempted to formulate a mathemat-
ical theory that would incorporate the differences between
the tasks, as well as make clear the appropriate usage of
measures of sensitivity. Clarke et al. posed the problem of
producing a pair of Type 2 probability functions for a like-
lihood ratio ideal observer whose Type 1 task was based on
a pair of Gaussian distributions with equal variance. They
derived a pair of Type 2 probability functions that were
not the solution for the likelihood ratio observer but were
the probability functions for another Type 2 decision axis.
Their derivation did, however, make it clear that Type 1 prob-
ability functions can and should be used to generate Type 2
functions. We will consider their theory in Appendix A. 

Since 1959, the Type 2 classification has appeared in some
studies of memory but has been largely unused for four
decades, with Clarke et al. (1959) attracting a brief mention
in textbooks as a sort of a curiosity (e.g., Green & Swets,
1966; Macmillan & Creelman, 1991; Murdock, 1974;
Vickers, 1979). Macmillan and Creelman did note that “al-
though the analysis of Clarke et al. is almost as old as the
standard Type-1 method, it is little used. This is unfortu-
nate, for many experiments that are unsuitable for Type 1
are susceptible in principle to Type-2 description” (p. 82).
Type 2 decisions have been used, however, since the early
days of experimental psychology in the context of such
resurgent topics as calibration theory (Keren, 1988, 1991;
Peirce & Jastrow, 1884) and perception without awareness
(Galvin, Beuke, Keogh, & Robinson, 2000; Kolb & Braun,
1995; Kunimoto, Miller, & Pashler, 2001; Weiskrantz,
1986, 1998).

Type 2 tasks have also had a significant presence in the lit-
erature because of the popular technique of taking Type 2
ratings and converting these into what we will call here
pseudo-Type 1 ratings. If, for example, a choice between
events S and N is followed by a rating on a 4-point scale,
an 8-point pseudo-Type 1 scale can be created by assigning
ratings of 1 to 4 following an N decision to the ratings �4
to �1 and assigning ratings of 1 to 4 following an S decision
to ratings 1 to 4 (e.g., Norman & Wickelgren, 1969). The
rationale for this seems to be that both forms of question-
ing tap the same representation of confidence. We will dis-
cuss the wisdom of this once the theory has been elaborated. 

Type 2 ROC Analysis in the Study of Memory 
In the 1960s and 1970s, ROC analysis featured in the

debate between supporters of incremental learning and
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those of all-or-none learning. McFadden and Greeno (1966)
had observers perform recall and recognition tests for the
third letter in a three-letter stimulus. They compared ob-
servers’ performance in two tests using the same items, to
see whether items remembered incorrectly on the first test
could be remembered on the second test; if they were, it
would indicate partial learning for those items. Each indi-
vidual did two recall tests, two recognition tests, or a re-
call test followed by a recognition test. The observers fol-
lowed each test response with a rating of their confidence
that their decision had been right. McFadden and Greeno
gave a very clear explanation of the difference between
Type 1 and Type 2 tasks and used the confidence ratings
about the correctness of the Type 1 decisions to construct
Type 2 ROC curves. They found that although recognition
performance was generally better than recall, Type 2 analy-
sis showed that the observers were better able to discrim-
inate their correct and incorrect recall decisions than their
correct and incorrect recognition decisions. These results
provided an early demonstration that good Type 1 perfor-
mance does not necessarily imply good Type 2 performance.

Unfortunately, the early attempts to clarify the problem
of Type 2 decisions did not prevent some confusion about
the nature of Type 2 ROC analysis. Healy and Jones
(1973) noted that, in particular, there arose a tendency to
consider any confidence rating to be a Type 2 task. In fact,
either a Type 1 task or a Type 2 task can be done using ei-
ther a confidence rating scale or a binary choice. The dif-
ference between Type 1 and Type 2 tasks lies in which
events are being evaluated, not in whether the evaluation
is binary or a rating. An example of this confusion can be
found in a paper by Banks (1970). He asked observers to
learn a list of words and then presented them with a series
of test words, some from the list and some new. Observers
responded to each test word with a rating on a five-category
scale ranging from certain it was on the list to certain it
was not on the list. This is a Type 1 task, not a Type 2 task,
because the observers were rating their certainty that the
word was on the study list and were choosing between the
events old and new.2 However, Banks wrote that “The ROC
constructed from confidence ratings is termed the Type II
ROC” (p. 84), but he indicated no source for this defini-
tion. It is clear he was not claiming to coin the term Type
II, since he mentioned the paper by Clarke et al. (1959) as
pertinent to the question of how to treat Type II ROC
curves. It is possible that Banks associated the term Type II
with rating experiments because some of the earliest pa-
pers in which ROC curves were derived from ratings were
based on Type 2 data. Banks referred to one such paper, Pol-
lack and Decker (1958), as his model for this analysis.
Pollack and Decker’s ROC curves are Type 2 because the
observers are asked to give ratings that increase with in-
creasing confidence in the correctness of their word iden-
tifications and the ratings are tallied separately for correct
and incorrect word identifications in order to generate
Type 2 hit rates and false alarm rates. It is not the fact that
these ROC curves are based on ratings that makes them
Type 2.

Another possible confusion could arise if an observer
were asked to give a binary choice between signal and
noise and to follow this with a rating of confidence that the
trial was a signal trial. The fact that the second decision is
a rating and follows a binary Type 1 decision does not make
it a Type 2 decision. If the second decision is a rating of
confidence in the signal event, rather than in the correct-
ness of the first decision, then it is a Type 1 rating, no mat-
ter when it occurs.

Even when observers have performed what is clearly a
Type 2 task and the data have been correctly analyzed to
give measures of Type 2 performance, authors have found
it difficult to interpret these measures. Murdock (1966)
attempted to use Type 2 ratings of correctness to evaluate
criterion shifts in a Type 1 task in which subjects were re-
quired to recall a word from a list of previously learned
word pairs that would match a word read out by an exper-
imenter. Although he noted that the measures of discrim-
inability and criterion were derived from a Type 2 analy-
sis, he, nonetheless, claimed that his results, “show rather
clearly that there are criterion changes in STM” (p. 323).
He claimed this without acknowledging that they were not
the Type 1 criterion changes he had intended to examine.
Healy and Jones (1973), in responding to Murdock, cor-
rectly pointed out that “values of d� and shifts in criteria
revealed by Type 2 analysis reflect only [the] evaluation
process, not the subject’s memory state” (p. 336).

More recently, Critchfield (1993) has used a close anal-
ogy of the Type 2 task to assess the self-reports made by
students about a delayed-match-to-sample task. The stu-
dents had to identify which stimulus from a set of test
stimuli belonged to a previously presented set of to-be-
remembered stimuli and to report their choices within
800 msec. They then judged whether they had made the
correct choice and reported it in time. Critchfield was in-
terested in students’ bias toward thinking themselves cor-
rect, and correctly interpreted his bias measure in terms of
Type 2, not Type 1, discrimination. Higham (2002) also used
a Type 2 analysis to study bias, using an observer’s choice
not to respond at all to a test item as an indication of low
confidence in the response they had generated (but not re-
ported). In neither study did the nature of the Type 1 task
lend itself to the analysis we present here, but both authors
recognized the ability of TSD measures to yield separate
information about discriminability and bias in a Type 2 task.

Type 2 Decisions and Calibration 
in Decision Theory

Our general theory of Type 2 decisions is related to
studies of calibration, which assess whether observers’
confidence in the occurrence of an event, reported as a
probability that the event occurred, matches the propor-
tion of times the event actually occurred in the set of tri-
als ascribed each probability. A graph of the observers’
confidence plotted against the actual proportions is called
a calibration curve and can reveal interesting discrepan-
cies between observers’ confidence and their actual perfor-
mance (Keren 1988, 1991; Lichtenstein, Fischhoff, &
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Phillips, 1982). Studies of calibration require observers to
either (1) state their confidence that a designated event
occurred, or will occur, or that a statement is true, in a se-
ries of trials, or (2) rate their confidence that they were
correct after making a binary choice. These are called the
full-range task and the half-range task, respectively (Fer-
rell & McGoey, 1980; Lichtenstein et al., 1982). The pur-
pose of the full-range task is to see whether observers can
achieve correspondence between the gauged occurrence
of an event and its actual occurrence. The purpose of the
half-range task is to see how well observers believed they
performed in a binary choice task. In our TSD context, the
full-range task is similar to a Type 1 rating task, and the
half-range task is similar to a Type 1 binary choice followed
by a Type 2 rating task. In neither case do calibration curves
provide measures of an observer’s discrimination, but the
ratings could be used to generate ROC curves in cases in
which the task is worded appropriately. Hosseini and Fer-
rell (1982) contributed a useful discussion of the relation
between calibration and the objective measures of Type 2
ROC analysis in their paper recommending Type 2 (with-
out calling it that) performance as a measure of the insight
of students into their own knowledge development.

Type 2 Decisions and the Measurement 
of Perception Without Awareness

The Type 2 task has recently taken its place in the psy-
chometric armory of those interested in perception with-
out awareness. Agreeing on a measure of awareness has
proved to be a significant challenge to cognitive scientists
(for an interesting review, see Merikle, Smilek, & Eastwood,
2001). Kunimoto et al. (2001) argued that a subjective re-
port of awareness is inadequate and that an objective mea-
sure is required. They proposed that observers who can
discriminate between signal and noise but cannot dis-
criminate between their own incorrect and correct deci-
sions exhibit perception without awareness. Kunimoto
et al. had observers follow a Type 1 decision with a binary
confidence report, which they used to calculate d� by
defining high confidence on correct trials as hits and high
confidence on incorrect trials as misses. They were able to
demonstrate an ability to identify a signal event (better-than-
chance Type 1 performance) at a signal-to-noise ratio that
yielded only chance discrimination between correct and
incorrect trials (chance Type 2 performance) and classed this
as subliminal perception. The rationale for this is that if
the observers can do the Type 1 task, but not the Type 2 task,
then they do not have conscious access to the evidence used
to do the Type 1 task when they give their Type 2 responses.

The criterion for perception without awareness pro-
posed by Kunimoto et al. (2001) has the virtues of re-
flecting a subjective quality (confidence) and the rigor of
objective psychophysics. However, various models of
Type 2 performance generated using our theory show that
even when Type 1 and Type 2 decisions are based on the
same evidence, performance in the two tasks is typically
not the same; the area under the Type 1 ROC curve often
exceeds the area under the Type 2 ROC curve. In general,

therefore, it is unwise to interpret a difference between
Type 1 and Type 2 performance as showing that the part
of the brain supporting the discrimination has access to
one piece of evidence but that the part of the brain sup-
porting visual awareness does not. Galvin et al. (2000) sug-
gested that, in general, to produce evidence of perception
without awareness, performance in the Type 2 task should
be compared with a prediction of Type 2 performance
based on Type 1 performance, rather than with Type 1 per-
formance itself. Corollary 6 of our theory shows that such
a prediction can be made regardless of the form of the
Type 1 probability functions or of the Type 1 criterion
used. We will revisit Kunimoto et al.’s study in the Dis-
cussion section, because it provides an interesting case in
which the comparison between Type 1 and Type 2 perfor-
mances is warranted when Type 2 performances is at
chance, given a set of limiting assumptions.

Kolb and Braun (1995) used Type 2 tasks to demonstrate
perception without awareness of regions of the visual field
with different visual texture from that of their surrounds.
In the key condition of their experiment, these regions were
masked by the presence of opposite motion (in the case of
texture defined by motion direction) or by binocular ri-
valry (in the case of texture defined by line orientation).
They obtained Type 2 ROC curves by requiring their ob-
servers to indicate which quadrant carried the anomalous
texture and then to rate their confidence that they were
correct on a 10-point scale. Although the Type 1 perfor-
mance was very good and similar for the two textures, they
found very good Type 2 performance for unmasked stim-
uli but near-chance Type 2 performance for the masked
stimuli. They interpreted this as reflecting “defective” con-
scious experience (p. 336). Like Kunimoto et al. (2001),
Kolb and Braun recognized the value of the Type 2 task of
TSD as a way to produce an objective measure of aware-
ness. Without a formal theory of Type 2 decisions, how-
ever, they did not realize that a direct comparison of Type 1
and Type 2 ROC curves could be inappropriate. We will
turn to such a formal theory now.

The Type 2 Task as an Extension 
of the Fundamental Detection Problem

The essence of a Type 2 task is to assess the correctness
of a Type 1 decision that has just been made. A Type 2 task
may follow any of several kinds of Type 1 task (e.g., sin-
gle interval or multiple interval, two event or multiple event).
In this article, we present an analysis based on a single-
interval or yes–no choice between two Type 1 events,
which will eventually provide the basis for analyses of
other forms of Type 2 tasks.

Figure 1 illustrates the Type 2 task as an extension of
the fundamental detection problem (FDP), which is the
cornerstone of the theory of signal detectability (Birdsall,
1955; Egan, 1975; Swets et al., 1961). The Type 1 task is
to indicate whether a signal event, S, or a noise event, N,
has occurred during the clearly marked observation inter-
val. The events S and N occur with prior probabilities P(S )
and P(N ), respectively. Some value, x, of a random vari-
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able, X, is associated with each observation interval, and
uncertainty arises about which event has occurred because
at least some of the values of evidence can occur as a re-
sult of either event. The values of X make up an ordered
decision axis and are referred to as values of the stimulus,
or evidence. Note that some authors use the term stimulus
to refer to whatever was presented to the observer by the
experimenter and the term evidence to refer to the variable
the observers actually use to make decisions after the
stimulus has undergone transformations in their sensory
systems. We use the terms stimulus and evidence inter-
changeably, in the tradition of Egan, because we are not
offering a theory of signal transduction and sensory pro-
cessing but, rather, are analyzing the degree to which pairs
of events are discriminable.3 Note also that the Type 1 task
in the FDP is not to identify the stimulus, as it was in the
old source–receiver experiments, but to identify the event
that gave rise to the stimulus. 

We assume for now that to make a Type 1 decision, an
observer adopts some criterion, k, on the decision axis X;
we will address the use of other Type 1 decision axes later.
On any trial, the observer applies the following decision
rule: Say “Yes, the event S occurred” if x exceeds k; other-
wise, say “No, it was the N event.”

The observation interval and the decision interval for
the Type 1 task together may be seen as the observation in-

terval for the Type 2 task, because one of the events C or
I occurs when the observer makes the Type 1 decision. Al-
though, in general, the Type 1 decision in the FDP can be ei-
ther binary or a multipoint rating task, a meaningful Type 2
decision can be made only if the Type 1 task that precedes
it is binary, because the observer must be either right or
wrong for the event C or the event I to have occurred. Dur-
ing the decision interval for the Type 2 task, the observer
decides whether C or I has occurred, using the same evi-
dence, x, as that used to make the Type 1 decision. The
random variable, X, provides sufficient evidence for the
Type 2 decision because x, along with the criterion, k, de-
termines the decision made in the Type 1 task.4 If X is used
as the decision axis for the Type 2 decision, another crite-
rion on X, m, is established for that decision. This criterion
may or may not be the same as k. For the Type 2 task, the
observer will say “Yes, my decision was correct” if x ex-
ceeds m but will say “No, my decision was incorrect” if x
is less than or equal to m.5 Observers may use a Type 2 de-
cision axis other than X. If so, all the values of X must map
onto the decision axis (call it W ). The Type 2 decision is
then made by setting a single criterion on W.

It might appear that the Type 2 task is strange indeed,
for two reasons. First, it may seem odd to decide on any oc-
casion that a Type 1 decision is incorrect; this seems to
amount to changing one’s mind in the brief period be-

Figure 1. The binary Type 2 task as an extension of the fundamental detec-
tion problem. During the Type 1 observation interval, there occurs either the
signal event (S) or the noise event (N), along with a value, x, of the evidence
variable, X. In the Type 1 decision interval, the observer must respond either
“Yes, a signal occurred” or “No, a signal did not occur.” The observation and
decision intervals for the Type 1 task together become the observation interval
for the Type 2 task, because one of the events correct (C ) or incorrect (I ) oc-
curs when the observer makes the Type 1 decision and the same value of the ev-
idence, x, is used to evaluate whether the Type 1 decision was correct. The ob-
server states either “Yes, it was correct” or “No, it was not correct” during the
Type 2 decision interval. Ratings can be used, rather than binary choices, in ei-
ther task, but the Type 2 task makes sense only if it follows a binary Type 1
task.
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tween making the two decisions. However, the case of the
drenched psychophysicist provides an example in which
that choice would be rational. She noted that her Type 1
criterion was low because of the high cost (loss of life) of
not calling the police if the evidence was produced by a
flare. She knew that she might well be wrong about the
flare and might have chosen “Incorrect” if asked to make
a binary Type 2 decision, using a criterion not affected by
the outcomes of deciding whether to make the call. The
criteria for the Type 1 and the Type 2 decisions may be placed
according to very different sets of contingencies. Even
without extreme payoffs, observers will soon realize, with
explanation and feedback, that answering “I was correct”
on every trial will result in an inability to discriminate cor-
rect from incorrect.

It is also the case that an experimenter can avoid the ap-
parent paradox of reporting a decision just made as incor-
rect by using some other labels for the possible responses
in a Type 2 task. Unless one is interested in observers’ cal-
ibration, the actual values of confidence assigned to bi-
nary choices or to ratings are irrelevant to the job of mea-
suring how well observers can discriminate correct from
incorrect decisions. All that matters is that the labels be
ordinal and assigned in the correct order and that the ob-
servers understand that correctness is being assessed.
Type 2 binary choices between “low confidence that I was
correct” and “high confidence that I was correct” are quite
legitimate. In a Type 2 rating task a set of criteria, m1, m2,
m3, . . ., divides the decision axis into regions that will pro-
duce ratings of confidence that the Type 1 decision was
correct. This set could have “I was unsure I was right” at
one end of the scale and “I was sure I was right” at the
other. 

The second feature of the description of the Type 2 task
we have given so far that may be disconcerting to some is
the use of X as the Type 2 decision axis. Consider the fol-
lowing example, in which the observer would be unlikely
to use X as the Type 2 decision axis. The observer’s Type 1
task is to say whether an adult picked at random from the
population of New Zealand is male (event M ) or female
(event F ), on the basis of that adult’s height. Imagine that
the probability distributions of the evidence (height) con-
ditional on the events M and F can be approximated by
normal distributions with equal variance, with the mean of
the distribution conditional on M being somewhat higher
than the mean of the distribution conditional on F. As-
sume, also, that there are equal numbers of men and
women in New Zealand. A rational Type 1 decision rule
might be to respond “Male” if the person is 170 cm (5 ft 7
in) or taller and “Female” otherwise. Given that Type 1
criterion, it is difficult to come up with a sensible Type 2
decision rule with a single criterion applied to X as the de-
cision axis. The Type 2 probability functions in this case
will not be normal distributions, as we will show in an ex-
ample later. The probability function of X conditional on
the event C will be bimodal, and an observer will be most
confident of decisions based on very large or very small
heights. Using a single Type 2 criterion on the X-axis re-

quires the response “incorrect” when the heights are very
small, because they will fall below all but an extremely
low Type 2 criterion.6 A transformation of X will be nec-
essary to allow the observer to respond “highly confident”
about decisions based on both very large and very small
heights. Using the likelihood ratio of the Type 2 distribu-
tions would allow this and would provide a model of op-
timal performance. Another possible Type 2 decision axis
is W � |X � k |, the difference between the Type 1 crite-
rion and the evidence. The reason we concentrate on X as
the Type 2 decision axis is that to derive models for decision
axes that are transformations of X, we first derive the Type
2 probability functions of X and then produce the Type 2
distributions for other decision axes by using the standard
method of deriving distributions of transformations of
random variables. We give a worked example of this for a
pair of discrete Type 1 probability functions below and an
example for a pair of continuous probability functions in
Appendix A. Egan (1975) gave several useful examples
of transformations of decision variable in his Appendix B. 

Note also that we are not assuming that observers use X
as their decision axis in the Type 1 tasks. Researchers who
have developed a theory of the transformation of X that ob-
servers may use to make Type 1 decisions in their experi-
mental context can substitute the transformed variable, V �
t1(X ), for X in the derivation that follows. 

We reiterate this important point to emphasize that the
formulae we derive can be used in any context for which
an experimenter already has a model for Type 1 decision
making: By deriving the probability functions for the case
in which X has been used as decision axis for both Type 1
and Type 2 tasks, we do not mean to suggest that observers
will typically use X for either task. Our aim is to provide
a way to derive probability functions of some decision
variable conditional on C and I when the probability func-
tions of that decision variable conditional on S and N are
known. Transformations of variables before and after this
step are the responsibility of the user! Although we pres-
ent examples of Type 2 models to illustrate our deriva-
tions, none of these should be interpreted as our theory of
how observers approach specific tasks. Our goal is to en-
able readers to generate their own models for Type 2 tasks
and to understand how to use them. 

We proceed now by introducing notation for the proba-
bility functions and ROC curves for Type 1 and Type 2
tasks. For the Type 1 task, the random variable X has prob-
ability functions f (x | S ) and f (x | N ) conditional on the
events S and N, respectively;7 the corresponding cumula-
tive distribution functions of X are F(x | S ) and F(x | N ).8
The hit rate (HR1) and false alarm rate (FAR1) for the Type 1
task, given that the criterion used is k, are given by

HR1 � 1 � F(x | S ) (1)

and

FAR1� 1 � F(x | N ). (2)

The plot of HR1 against FAR1 for all criteria, k, on the X
axis is the Type 1 ROC curve.9
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From f (x | S ) and f (x | N ), another pair of probability
functions of x, f k(x | C), and f k(x | I ), conditional on C and
I, can be derived for each value of k. We refer to these as
Type 2 probability functions of X. Each pair of Type 2
functions has corresponding cumulative distribution func-
tions Fk(x | C ) and Fk(x | I ). The hit rate (HR2) and false
alarm rate (FAR2) for the Type 2 task, given that the Type 1
criterion was k and the Type 2 criterion was m, are given by

HR2 � 1 � Fk(m | C )

and

FAR2� 1 � Fk(m | I ).

The Type 2 ROC curve for a particular pair of probabil-
ity functions fk(x | C ) and fk (x | I ) is the plot of HR2 against
FAR2 for each possible criterion, m, on the X axis. The
number of Type 2 ROC curves that can be derived from a
pair of Type 1 probability functions is equal to the num-
ber of distinct criteria that may exist for the Type 1 task.
(This will be an infinite number for continuous Type 1
probability functions.) The reason for this will become clear
in the computational example below.

Type 2 ROC curves can also be derived for the case in
which the likelihood ratio of the probability functions
fk(x | C ) and fk(x | I ), lk(X ) � fk(x | C ) / fk(x | I ), or any other
transformation of X, is used as the Type 2 decision axis.
The Type 2 probability functions of lk (X ), gk [lk (x) | C ]
and gk[lk(x) | I ], are obtained by applying the transforma-
tion lk(X ) � fk(x | C ) / fk(x | I ) to the probability functions
fk(x | C ) and fk(x | I ). (We give an example of this in Ap-

pendix A, discussing the theory of Clarke et al., 1959.)
The Type 2 ROC curve for this task is then defined by 

HR2 � 1 � Gk(� | C )

and

FAR2� 1 � Gk(� | I ),

where Gk [lk (x) | C ], and Gk [lk (x) | I ], are the cumulative
distribution functions corresponding to gk [lk (x) | C ] and
gk[lk(x) | I ] and � is the value of lk(X ) used as the criterion
in the Type 2 decision.

Type 2 ROC Curves: A Computational Example
Swets et al. (1961) and Green and Swets (1966) used

the example of the dice game to illustrate how to produce
an ROC curve. We use the same device to show how to
compute a pair of Type 2 probability functions. In the dice
game, the experimenter throws three dice (hidden from
the observer’s gaze) and reports only the sum of the digits
on the three upturned faces. Two of the dice are ordinary,
but the third has a 0 printed on three sides and a 3 printed
on the other three sides. The observer’s task on each trial
is to use the sum to say whether the strange die has landed
with a three facing up (the S event has occurred) or a zero
facing up (the N event has occurred). 

Figure 2 shows how the possible values of the evidence
(the sums) are distributed conditional on the S and N
events. The light gray bars show that for the N event (the
odd die shows zero), the most common sum is 7 and that
the sums can range from 2 to 12. The probability function

P((X = x)|N)
P((X = x)|S)

2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Sum for three dice, x
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 =
 x

)

Figure 2. Distributions of the sum of three dice conditional on the N event (third die
shows 0) and the S event (third die shows 3) in the dice game. 



Table 1
Type 1 Probability Functions and Joint Probabilities 

of Type 1 Events and Values of Evidence

Sum Type 1 Functions Joint Probabilities

(x) P(X � x | N ) P(X � x | S ) P[(X � x)�N ] P[(X � x)�S ]

2 1/36 0 1/72 0
3 2/36 0 2/72 0
4 3/36 0 3/72 0
5 4/36 1/36 4/72 1/72
6 5/36 2/36 5/72 2/72
7 6/36 3/36 6/72 3/72
8 5/36 4/36 5/72 4/72
9 4/36 5/36 4/72 5/72

10 3/36 6/36 3/72 6/72
11 2/36 5/36 2/72 5/72
12 1/36 4/36 1/72 4/72
13 0 3/36 0 3/72
14 0 2/36 0 2/72
15 0 1/36 0 1/72

Total 1 1 P(N ) � .5 P(S ) � .5
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for the S event has the same shape as that for the N event
but is shifted three to the right. One can obtain an ROC
curve by plotting the observer’s hit rate and false alarm rate
for every possible criterion value, where a hit is saying that
the odd die showed a 3 when it did show a 3 and a false
alarm is saying that it showed a 3 when it actually showed
a 0. That ROC curve is shown as the solid line in Figure 3.

Columns 2 and 3 in Table 1 show the Type 1 probability
functions plotted in Figure 2. The first step in deriving the
Type 2 distributions is to calculate the joint probabilities
for the evidence and each event. Because the selection of
the event for any trial is independent of the selection of the
evidence value from the appropriate distribution, the joint
probabilities are just the product of the two probabilities,
and these are shown in the last two columns of Table 1.

At this point, we must assume a Type 1 criterion in order
to proceed. Any one will do, but readers of Green and
Swets (1966) and other keen persons will have realized
that the proportion of trials correct will be maximized by
choosing a criterion of 8, saying “signal” if the experi-
menter reports a sum of 9 or greater and “noise” if the sum
is 8 or less, so we will start with that. The dotted horizon-
tal line in Table 1 marks this Type 1 criterion. The shaded
probabilities are for event–evidence combinations that
yield correct decisions; the rest produce incorrect deci-
sions. For example, if the N event occurs but the evidence
value 11 turns up, the observer must say “signal,” because
11 is greater than 8. 

In Table 2 (columns 2 and 3), the joint probabilities have
been sorted according to whether each particular combi-
nation of event and evidence will produce a correct deci-
sion or an incorrect one. The shaded probabilities from
Table 1 are listed together under the heading “probability
that X takes the value x and the correct response is made,
given k � 8,” or P8[(X � x) ∩ C ]. The other probabilities
make up P8[(X � x) ∩ I ], giving the joint probabilities in
column 2. The sum of the probabilities in the P8[(X � x)

∩ C ] column is P8(C ) � .72, the probability of a correct
decision given the Type 1 criterion k � 8. 

Note that if a different Type 1 criterion, k, had been ap-
plied to columns 4 and 5 of Table 1, some of the joint
probabilities that were in the P8 [(X � x) ∩ C ] column
would end up in the P8[(X � x) ∩ I ] column, and some of
the joint probabilities that were in the P8[(X � x) ∩ I ] col-
umn would belong in the P8[(X � x) ∩ C ] column. This
would produce not only different values of Pk (I ) and
Pk(C ), but also different Type 2 probability functions. In
general, each distinct Type 1 criterion produces a different

Figure 3. Receiver-operating characteristic curves for a Type 1
task (solid line) and for Type 2 tasks based on X and a Type 1 cri-
terion of k = 8 (dotted line) and on l8(X ) (dashed line).
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pair of Type 2 probability functions and a different Type 2
ROC curve.

Finally, the Type 2 probability distributions are obtained
using the definition of conditional probability:

For example (from Table 2), 

Similarly, each entry in columns 2 and 3 can be divided by
the total of the column in which it appears [i.e., by P8(C ) or
P8(I )], giving the probability distributions conditional on
the events C and I, shown in columns 4 and 5 of Table 2.
These are plotted in Figure 4, and the Type 2 ROC curve for
the decision axis, X, is shown as the dotted line in Figure 3. 

Note that the Type 2 ROC curve lies partly below the
positive diagonal, which is the line indicating chance per-
formance. Points lying well below the chance line show
discrimination between correct and incorrect decisions
that is just as good as that recorded by points well above
the chance line, in the sense that the observer can be ex-
pected to give, in general, different Type 2 responses on
correct and incorrect trials. Points below the chance line
indicate, however, that for the criteria that yield these
points, the observer will report the majority of correct de-
cisions as incorrect, and vice versa. This is to be expected
in the case in which an observer used X as the Type 2 de-
cision axis. For the smallest values of evidence, the ob-
server reports that a noise event occurred but then must
give the Type 2 decision that that choice was incorrect for
any Type 2 criterion m greater than that value of evidence

x, because the Type 2 decision rule based on X requires
saying “My decision was incorrect” if x � m. As with
Type 1 ROC curves, having parts of the ROC curve fall
below the chance line indicates that better decision axes
are available (see Egan, 1975, p. 40).

We will now show how to produce Type 2 probability
functions for the case in which the likelihood ratio of the
Type 2 probability functions, l8(X ) � P8(X � x | C )/P8(X �
x | I ), is used as the decision axis for the Type 2 task. We
do this because predictions for the likelihood ratio ob-
server provide the upper bound on performance for all
possible decision axes for the Type 2 task.10 We have de-
rived probability functions for l8(X ) conditional on C and
I from f8(x | C ) and f8(x | I ) in the same way one would de-
rive probability functions for l(X ) � P(X | S ) /P(X | N )
from f(x | S ) and f (x | N ). The values of l8(X ) are shown in
the last column of Table 2. Some of the evidence values
have the same likelihood ratios, so when the likelihood
ratio values are rank ordered in Table 3, all the probabili-
ties for each likelihood ratio are combined within a col-
umn. For example, l8(x) � 25/26 appears twice, and its
probability conditional on I is the sum of 2/20 and 2/20.

The distributions in Table 3 can be used to produce a
Type 2 ROC curve for decision axis l8(X ), shown by the
dashed line in Figure 3. Note that this curve lies well below
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Table 2
Joint Probabilities of Type 2 Events and Values of Evidence, 
Type 2 Probability Functions, and Type 2 Likelihood Ratios

(x) P8[(X � x)�I ] P8[(X � x)�C ] P8[(X � x) | I ] P8[(X � x) | C ] l8(x)

2 0 1/72 0 1/52 ∞
3 0 2/72 0 2/52 ∞
4 0 3/72 0 3/52 ∞
5 1/72 4/72 1/20 4/52 20/13
6 2/72 5/72 2/20 5/52 25/26
7 3/72 6/72 3/20 6/52 10/13
8 4/72 5/72 4/20 5/52 25/52
9 4/72 5/72 4/20 5/52 25/52

10 3/72 6/72 3/20 6/52 10/13
11 2/72 5/72 2/20 5/52 25/26
12 1/72 4/72 1/20 4/52 20/13
13 0 3/72 0 3/52 ∞
14 0 2/72 0 2/52 ∞
15 0 1/72 0 1/52 ∞

Total P8(I) � 20/72 P8(C ) � 52/72 1 1

� .27 � .72

Table 3
Type 2 Probability Functions 

for Type 2 Likelihood Ratio Observer

Type 2
Likelihood Ratio Type 2 Probability Functions

[l8(x)] P8[(l8(X ) | I ] P8[(l8(X ) |C ]

25/52 8/20 10/52
10/13 6/20 12/52
25/26 4/20 10/52
20/13 2/20 8/52

∞ 0 12/52

Total 1 1
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the Type 1 ROC curve, even though the hypothetical observer
used the Type 1 criterion maximizing percentage correct in
the Type 1 task and the optimal Type 2 decision axis for
that case—namely, l8(X ). Drawing attention to the differ-
ence between these two curves is one of the main purposes
of this article, because it is stark evidence that the difference
between Type 1 and Type 2 tasks is not merely procedural.

Families of Type 2 Curves
In TSD, the term family of ROC curves usually refers to

the set of curves obtained by varying some parameter in
either or both of the underlying probability functions.
Each curve may represent a different signal-to-noise ratio,
for example. The members of a family of Type 2 ROC
curves are all obtained using the same pair of Type 1 func-
tions, but each member of the family is produced by the
use of a different Type 1 criterion. Figure 5 shows the fam-
ily of Type 2 ROC curves for all possible criteria for the
Type 1 probability functions in Table 1. When k � 2, the
observer must say “yes, signal” on every trial and is correct
only on S trials. This puts all and only the joint probabili-
ties involving the S event in the column of joint probabil-
ities involving C, making the Type 2 functions for k � 2
equal to the Type 1 functions. The ROC curve for k � 2 in
Figure 5 can be seen to be the same as the Type 1 ROC
curve in Figure 3. Also, when Type 2 curves are based on
X, there is often a sharp change in the slope of the ROC
curve at the point where the Type 2 criterion matches the
Type 1 criterion. The ROC curve for k � 10 has been high-
lighted in Figure 5 to make the distinct knee in the curve
readily seen.

A different pair of probability distributions of lk(x) can
be derived for each Type 1 criterion, k giving the family of
Type 2 curves shown in Figure 6. Like all ROC curves based
on a likelihood ratio decision axis, these curves all lie above

P ((X = x)|I )
P ((X = x)|C)

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sum for three dice, x

P
(X

 =
 x

)
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8
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Figure 4. Type 2 mass functions for Type 1 criterion k � 8.

Figure 5. The family of Type 2 receiver operating characteristic
(ROC) curves for all possible Type 1 criteria applied to the Type 1
probability distributions shown in Figure 2. The decision axis
used for the Type 2 task here is X. The Type 2 ROC curve for k � 2
is the same as the Type 1 ROC curve shown in Figure 3.
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the chance line and a monotonically decreasing slope (Egan,
1975, chap. 2). Because of the symmetry of the Type 2 dis-
tributions in Figure 4, the ROC curves for the Type 1 cri-
teria less than 8 are each identical to one of the ROC curves
for the criteria greater than 8. The Type 2 curve for k � 2
is the same as the Type 1 curve shown in Figure 3, because
X varies monotonically with l(X ) in the dice game.

It is interesting to consider how maximum possible per-
formance changes when the Type 1 criterion for the dice
game is varied. The first panel in Figure 7 shows the per-
centage correct for the Type 1 task and the area under the
Type 2 ROC curve plotted against the Type 1 criterion. For
this task, the Type 1 criterion that produces the highest
percentage correct in the Type 1 task produces the poor-
est performance in the Type 2 task. The areas under all the
Type 2 ROC curves are less than or equal to the area under
the Type 1 ROC (shown by the heavy dashed line) even
though parts of these curves lie above the Type 1 ROC curve

(see Figure 6). The maximum percentage correct obtain-
able in a binary Type 2 task based on lk(X ) is the same re-
gardless of Type 1 criterion and is equal to the maximum
percentage correct in the Type 1 task (shown by the light
dashed line). A Type 2 criterion on the lk(X ) axis can al-
ways be found that gives this performance for any k (see
Corollary 5 below).

If the dice game is changed slightly, so that there are five
zeros on the odd die and only one three, then the proba-
bility of an S event is reduced to one sixth, and the maxi-
mum possible performances change accordingly. This can
be seen in the second panel of Figure 7, which shows that
the area under some of the Type 2 ROC curves based on
lk(X ) exceeds the area under the Type 1 ROC curve (marked
by the heavy dotted line in Figure 7). Also, there is no
longer a simple inverse relationship between percentage
correct for the Type 1 task and the area under the Type 2
ROC curve. Such complicated relationships are common
in the Type 2 models we have derived. 

Derivation of General Equations 
for Type 2 Functions

The following derivation results in a set of equations
from which the Type 2 probability functions of a decision
variable can be obtained using any pair of Type 1 proba-
bility functions of that variable and a Type 1 criterion on
that decision variable. To keep things as simple as possi-
ble, we will refer to the decision variable as X, but the de-
cision variable can be any transformation of the evidence

Figure 6. The family of Type 2 receiver operating characteristic curves
for all the Type 1 criteria in the dice game, with lk(X ) used as the deci-
sion axis. 

Table 4
General Equations for Type 2 Probability Functions

x � k x � k

fk(x|I)

fk(x|C )

Note—k is the Type 1 criterion on the X axis.

f (x | S ) � P(S ) 
		

Pk(C)
f (x | N ) � P(N ) 
		

Pk(C )

f (x | N ) � P(N )
		

Pk(I)
f (x | S ) � P(S )
		

Pk(I )
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variable, V � t1(X ). The Type 2 probability functions of
the Type 1 decision variable can then be used to derive
probability functions for other decision axes that are trans-
formations of X. 

The derivation that follows generalizes the method for
obtaining Type 2 probability functions from any pair of
Type 1 probability functions. The method is embodied in
the expressions in Table 4. It is not necessary to follow every
step of the derivation in order to be able to apply the equa-
tions in Table 4, but following through the derivation will
give the reader confidence in Table 4. 

We have illustrated the proof by deriving Type 2 distri-
butions from a pair of normal probability density func-
tions with equal variance. However, the proof applies to
both discrete and continuous probability functions of any
form. The equations are also general with respect to the
Type 1 prior probabilities, although these probabilities are
equal [P(S ) � P(N ) � .5] in the example.

The hit rate for the Type 1 task for any criterion, k, is the
probability that the value, x, of the evidence variable, X,
exceeds that criterion, given that a signal event, S, occurs.
That gives

HR1(k) � P(X � k | S ).

The hit rate for the Type 2 task for any criterion, m, is the
probability that the same value of the evidence, x, exceeds
m, given that k was the criterion used in the Type 1 task
and given that the observer’s Type 1 decision was correct:

HR2, k(m) � Pk(X � m | C ).

By the definition of conditional probability,

, (3)

where Pk[(X � m) � C ] is the probability that X � m and
the Type 1 decision (using k as the criterion) was correct
and Pk(C ) is the probability of a correct Type 1 decision
using k as the criterion.

An equation for Pk(C ) based on the Type 1 probability
functions can be obtained as follows. In the Type 1 task,
the observer will state “yes” to all values of X that exceed
k, so these values of X will result in a correct decision only
if they occur during a signal interval. The observer states
“no” to values of X less than or equal to k, which will be
the correct decision only if those values of X are associ-
ated with the noise event. Thus,

Pk(C) � P(X � k | S ) � P(S ) 
 P(X � k | N ) �P(N ). (4)

The probability of an incorrect decision in the Type 1 task is

Pk(I ) � P(X � k | S ) � P(S ) 
 P(X � k | N ) �P(N ). (5)

We will now derive an expression, based on the Type 1
probability functions, for the numerator in the right-hand
side of Equation 3, Pk[(X � m) � C ]. Remember that m
is the criterion used in the Type 2 task, and x is the value
of X occurring on a particular trial. The observer will say
“yes, correct” if x � m and “no, incorrect” if x � m. If m
� k, x can exceed m only if x also exceeds k. Therefore,
for m � k, the only time that x � m and a correct Type 1
decision is made is when x � m for a signal event. The
probability of this happening on any trial is P(X � m | S ) �
P(S ). If m � k, the condition x � m allows either x � k or
x � k (see Figure 8). If x � m and x � k, the Type 1 deci-
sion will have been correct only if a noise event occurred.
The probability P(m � X � k | N ) is shaded vertically in
Figure 8. If x � m and x � k, x must have been associated
with a signal event for the Type 1 decision to have been cor-
rect. The horizontally shaded area in Figure 8 is P(X � k | S ).
Therefore,

Pk[(X � m) � C ] � P(m � x � k | N ) � P(N ) 


 P(X � k | S ) �P(S ), for m � k.

Equation 3 becomes [for Pk(C ) � 0] the following:

P X m C
P X m C

P C
P Ck

k

k
k>( ) =

>( ) ∩[ ]
( ) ( ) ≠| , 0

Figure 7. Percentage correct in the Type 1 task (light lines) and
the area under the Type 2 curve (heavy lines) for an lk(X ) observer
for all possible Type 1 criteria in the dice game. (A) P(S ) � .5. 
(B) P(S) � 1/6. Horizontal lines show the area under the Type 1 
receiver operating characteristic (ROC) curve (heavy line) and
the maximum percent correct obtainable in the Type 1 task (light
line).
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By a similar argument, values on the abscissa of the
Type 2 ROC curve are given [for Pk(I ) � 0] by 

In summary, the equations for points on the Type 2
ROC curve for X as the decision axis, given k as the Type 1
criterion, and presented as functions of the Type 2 crite-
rion, m, are shown in Table 5.

The Type 2 cumulative distribution functions can be ob-
tained as follows:11
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Similarly,

The probability functions of X conditional on C and on
I (which can be discrete or continuous) can be obtained
from these cumulative distribution functions by taking the
derivative of Fk(x | C ) and Fk(x | I ) in the continuous case
and by considering the limits of Fk (x | C ) and Fk (x | I )
from above and below in the discrete case.

For the continuous case,

because P(S ) and Pk(C ) are both constants.
For the discrete case, fk (x | C ) refers to a probability

mass function and is given by the equation at the top of
page 15, where fk (x | N ) and fk (x | S ) denote the Type 1
probability mass functions.

Similarly, using Equations 9a and 9b, it can be shown that
for both the discrete and the continuous cases,

In summary, the Type 2 probability functions can be de-
rived from the Type 1 probability functions by using the
equations in Table 4. The area under each of fk(x | C ) and
fk(x | I ) can be shown to be 1 for both continuous and dis-
crete cases, as is required of a probability function.

Figure 9 illustrates the Type 2 density functions ob-
tained when the equations in Table 4 are applied to the
density functions in Figure 8. The Type 1 functions here
are N(0,1), N(2,1), and k � 2. For equal priors, this gives
Pk � 2(C ) � .739. The Type 2 functions are obtained by

scaling the regions of each Type 1 density to the left and
right of the criterion by the factors indicated in Table 4.
For example, the region of fk � 2(x | C ) to the right of 2 is the
region of the N(2,1) function to the right of 2, scaled by
.5/.739, or .677. In general, Type 2 probability functions
based on continuous Type 1 probability functions of X will
be discontinuous, like these, unless l (k) � P(N ) /P(S ).

Figure 10 shows a family of Type 2 curves using X as
the decision axis obtained from the Type 1 densities N(0,1)
and N(2,1), using criteria k � �4, �1, 0, 1, 2, 3, and 6.
Note that the complete family has an infinite number of
ROC curves, because any real number can serve as the
Type 1 criterion on the decision axis in this example. 

Finally, a family of Type 2 curves for lk(X ) as decision
axis is shown in Figure 11. The curves for k � 0, �1, and
�4 are the same as the curves for k � 2, 3, and 6 and so are
not shown. The Type 2 ROC curve for the extreme criteria,
�4 and 6, is virtually the same as the Type 1 curve and is in-
visible in the figure. Note that the ROC curves for k � 1, 2,
and 3 are not symmetrical about the negative diagonal: The
Type 2 probability functions underlying these ROC curves
are not Gaussian with equal variance. (Thus, even if some
Type 1 task meets the criteria allowing the use of d�, this does
not mean it is appropriate to use d� as a measure of Type 2
performance.) The derivation of the Type 2 probability func-
tions of lk(X ) is similar to that given in Appendix A but is a
little more complicated when the Type 1 criterion is not
halfway between the peaks of the two Type 1 probability
functions and is longer than can be presented here.

Combining Different Decision Axes 
for the Type 1 and Type 2 Tasks

A key observation to be made about models for Type 2
performance is that the decision axes for the Type 1 and the
Type 2 tasks may be different and should be stated clearly
in any model. We introduce here the notation 1:t1(X ); 2:t2(X )
to indicate that the transformations t1(X ) and t2(X ) have
been used as the decision axes for Type 1 and Type 2 de-
cisions. For example, one possible model for performance in
the dice game with unequal priors is that the observer uses
X as the Type 1 decision axis, adopts criterion k � 10, and
uses distance from the Type 1 criterion as the Type 2 de-
cision axis. The notation for this is 1:X; 2: | X � 10 |. The
model for an observer using k � 10 and the likelihood ratio
of the Type 2 functions as the Type 2 decision axis is re-
ferred to as 1:X; 2:l10(X ).
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Table 5
Points on the Type 2 ROC Curve

m � k m � k

FAR2,k(m) 1 �

HR2,k(m) 1 �

Note—The Type 1 criterion is k and the Type 2 criterion is m, each applied to the decision axis X.

[1 �F(m | S )] � P(S )   
			

Pk(C )

F(m | N ) � P(N ) 
		

Pk(C )

[1 � F(m | N )] � P(N ) 
			

Pk(I )

F(m | S ) � P(S ) 
		

Pk(I )

(11a)

(11b)

(9a)

(9b)
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If the Type 1 decision axis is not X, it is likely that the
Type 2 decision axis will be a transformation of the Type
1 decision axis, and this must be made apparent in the no-
tation. Consider the case of deriving Type 2 performance
of an ideal observer for a Type 1 task based on Gaussian
probability density functions with different means and un-
equal variances (one of several possible models of mem-

ory tasks in which an observer must decide whether a test
word belongs to a previously learned list or is new). Be-
cause X and l(X ) are not monotonic in this case, a model
of optimal Type 1 performance uses l(X ) as the Type 1 de-
cision axis. A Type 1 criterion, �, on l(X ) is assumed on
the basis of what is known about P(S ) and the costs and
rewards of hits, misses, false alarms, and correct rejec-

Figure 9. Type 2 probability density functions based on N(0,1) and N(2,1)
Type 1 probability density functions with a Type 1 criterion k � 2.
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tions. Distributions of l(X ) conditional on S and N are de-
rived. The equations in Table 4 are applied to these Type
1 functions, g[l(x) | S ] and g[l(x) | N ] {with g[l(x) | S ] and
g[l(x) | N ] replacing f (x|S ) and f (x | N ) and � taking the
role of k}, to produce Type 2 functions g�[l(x) | C ] and
g�[l(x) | I ]. Note that because l(X ) is the likelihood ratio of
the Type 1 distributions, not of the Type 2 distributions,
the theoretical Type 2 ROC curves based on g�[l(x) | C ]
and g�[l(x) | I ] could include regions lying below the chance
line. It is therefore necessary to take their likelihood ratio,
l�[l(X )] � g�[l(x) | C ] /g�[l(x) | I ], as the decision axis in
the Type 2 task. A transformation of variable would then
give the functions underlying the Type 2 ROC curve,
h�{l�[x] | C} and h{l�[x] | I}. This task is called 1:l(X );
2:l�[l(X )].

Type 2 Models for Two-Interval Tasks
We have presented a method of obtaining Type 2 prob-

ability functions for tasks in which the Type 1 functions
underlying a yes–no task are known. However, theoretical
ROC curves can also be derived for two-interval12 tasks.
For example, the equations in Table 4 can be applied to
the probability functions of the variable W � X1 � X2 con-
ditional on the events “S in interval 1” and “S in interval
2,” where X1 and X2 are the evidence in the first and
the second intervals, respectively, to give the Type 2 prob-
ability functions of W.13 The two-interval task is often de-
scribed as criterion free, but the common decision rule
“Say S was in Interval 1 if x1 � x2” is equivalent to “Say
S was Interval 1 if w � 0,” so a criterion of zero on W is
implied (see also Luce, 1997). A Type 1 ROC curve for
the two-interval task can be produced by plotting hit rates

and false alarm rates for all possible criteria on W, and a
family of Type 2 ROC curves, one for each criterion on
W, can also be derived.

Corollaries to the General Equations
From the equations in Table 4, the following properties

of Type 2 probability functions, ROC curves, and perfor-
mance measures can be derived. Formal proofs of these
corollaries are given in Appendix B.

COROLLARY 1: Type 2 ROC Curves for Extreme
Type 1 Criteria

The 1:X; 2:X ROC curve obtained using the lowest possi-
ble Type 1 criterion (i.e., always saying “yes” in the Type 1
task) is the Type 1 ROC curve; the 1:X; 2:X ROC curve
obtained using the highest possible criterion in the Type 1
task (i.e., always say “no”) is the reflection of the Type 1
ROC curve in the chance line. The 1:X; 2:lk(X) ROC curve
obtained using the highest possible criterion in the Type 1
task is the reflection in the negative diagonal of the 1:X;
2:lk(X) ROC curve for the lowest possible criterion.

Because the 1:X;2:l�8(X ) and 1:X;2:l8(X ) ROC curves
are reflections of each other in the line joining (0,1) and
(1,0) in the ROC space, the areas under these two curves
are equal. Also, if X and l(X ) vary monotonically, this will
be the same as the area under the Type 1 curve. This means
that if an observer always gives the same answer in the
Type 1 task, the subsequent Type 2 task is exactly as dif-
ficult as the original Type 1 task (where difficulty is mea-
sured by the maximum area under the ROC curve that
could be achieved by an ideal observer). 

Figure 11. Family of Type 2 receiver operating characteristic
(ROC) curves based on N(0,1) and N(2,1) Type 1 probability den-
sity functions for Type 1 criteria k � 1, 2, 3, and 6 on decision
axis X; the Type 2 decision axis is lk(X ). The Type 2 ROC curve
for k � 6 is covered by the Type 1 ROC curve (solid line).

Figure 10. Family of Type 2 receiver operating characteristic
curves based on N(0,1) and N(2,1) Type 1 probability density
functions for criteria k � �4, �1, 0, 1, 2, 3, and 6. The decision
axis is X for both Type 1 and Type 2 decisions.
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COROLLARY 2: Likelihood Ratio 
for Type 2 Probability Functions

If l(X ) is monotonic with X for f(x /S) and f (x /N), lk(X ) is
proportional to 1/l(x) for x � k and to l(x) for x � k.
Hence, lk(x) will be monotonic with X only if k is the low-
est possible criterion.

This formalizes a point we have made using examples—
namely, that even if X is monotonic with l(X ), X will not
usually be the optimal Type 2 decision axis. This is not to
say that one must use lk(X ) as the Type 2 decision axis but
only that the use of X might lead to a predicted ROC curve
with parts lying below the chance line.

COROLLARY 3: Type 1 Curve as an Upper Bound
for Type 2 ROC Curves

If l(X ) is strictly monotonically increasing with X and P(S)
and P(N) are equal, the Type 1 ROC curve puts an upper
bound on all the Type 2 ROC curves for which X is the de-
cision axis. The whole Type 2 family of 1:X; 2:X ROC curves
lies between the Type 1 curve and its reflection in the
chance line.

The fact that the Type 2 curves based on X are all closer
to the chance line than the Type 1 ROC curve raises the
possibility that the Type 1 curve based on l(X ) puts an
upper bound on the Type 2 family based on lk(X ) for even
priors and l(X ) monotonic with X. We have been unable to
prove this so far, but we have not discovered any coun-
terexample either. Note, however, that Figure 7B illus-
trates that this boundary condition does not hold if the pri-
ors are uneven.

COROLLARY 4: Distance From Type 1 Criterion
as Type 2 Decision Axis

The Type 2 probability functions of the decision variable 
W � | X � k | are

Those who have attempted to model how Type 2 ratings
are generated using TSD have usually described the rat-
ings as increasing with the absolute distance of the evi-
dence, x, or its likelihood ratio, l(x), from the Type 1 cri-
terion on X or l(X ), respectively (Baranski & Petrusic,
1998; Clarke et al., 1959; Van Zandt, 2000). We showed,
in Corollary 1, that if l(X ) is monotonic with X, the Type
2 likelihood ratio increases as the distance between X and
the Type 1 criterion, k, increases. However, in Appendix A
we show that this relationship does not make |X � k | and
Type 2 likelihood ratio equivalent decision axes. Even in
the case in which values of X that are the same distance

above and below k have the same Type 2 likelihood ratio,
the Type 2 probability functions of these decision vari-
ables are different. 

COROLLARY 5: Maximum Percentage Correct 
for the 1:X; 2:lk(X) Task

The maximum probability of a correct decision attainable
in the 1:X; 2:lk(X ) task is equal to the maximum proba-
bility of a correct decision in the Type 1 task using l(X) as
the decision axis.

This is an important result because if the performance
measure of interest is simply the proportion of binary
Type 2 decisions answered correctly, it shows that, in the-
ory, one can always do as well in the Type 2 task as in the
Type 1 task. However, it will usually be the case that the
Type 1 task and the Type 2 task will have different prior
probabilities—that is, Pk(C ) � P(S ). If Pk(C ) is high, it
may be that percentage correct in the Type 2 task is max-
imized by the observer’s always responding “correct.”
This will make the percentage correct the same for the
Type 1 and the Type 2 tasks but will give a point lying on
the chance line in the ROC space [the point (1,1)], reveal-
ing no discrimination between correct and incorrect, as
will always be the case in any task in which the observer’s
response is chosen before the evidence is presented. In
general, the choice of Type 1 criterion will depend on
which Type 2 performance measure the observer wishes to
maximize.

COROLLARY 6: Different Functions 
with the Same Type 2 ROC Curves

If two pairs of probability functions give the same Type 1
ROC curve, two criteria (one applied to each pair) that gen-
erate a common point on that ROC curve will each gener-
ate the same Type 2 ROC curve when applied to their re-
spective probability functions.

An important consequence of Corollary 6 is that to gen-
erate a set of predicted Type 2 ROC curves associated with
a Type 2 task following a particular Type 1 task, there is
no need to know the probability functions underlying the
Type 1 task. All that is needed is any pair of probability
functions that give a Type 1 curve identical to the obtained
curve. Assume that the probability functions f (x | S ) and
f (x | N ) underlie the Type 1 task (these are the unknown
ones) and that Type 1 criterion k1 gives a particular point
on the observed Type 1 curve. Let q(x | S ) and q(x | N ) be
another pair of probability functions that give the same
Type 1 ROC curve as f (x | S ) and f (x | N ). There will exist
some Type 1 criterion, k2, that when applied to q(x | S ) and
q(x | N ), will give that same point on the Type 1 curve. The
pair of Type 2 probability functions produced by using k2,
q(x | S ), and q(x | N ) in the equations in Table 4 will gen-
erate the same Type 2 ROC curve as the pair of Type 2
probability functions produced by using k1, f (x | S ), and
f (x | N ) in the equations in Table 4, providing a prediction
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for Type 2 performance, given the observed Type 1 per-
formance.

Note that to predict performance for a set of Type 2 tri-
als using some set of stimuli, a separate set of trials using
the same stimulus set and a Type 1 rating task can be used
to generate a pair of probability functions that can serve as
q(x | S ) and q(x | N ). The function q(x | N ) can be obtained
by taking the number of times each rating was used on 
N trials and dividing that number by the total number of N
trials. Function q(x | S ) is given by the number of times
each rating was used on S trials and dividing by the total
number of S trials. This gives two discrete mass functions
over a random variable defined by the rating values used.
(It does not matter what the actual rating categories are,
only that they are ordered.) Because these rating tallies
were used to generate the Type 1 ROC curve in the first
place, it is known that they give the same ROC curve as
the underlying, unknown Type 1 functions, f (x | S ) and
f (x | N ). By Corollary 6, this qualifies q(x | S ) and q(x | N )
as having the same family of Type 2 ROC curves as f (x | S )
and f (x | N ).

Although it is a valid method in principle, using q(x | S )
and q(x | N ) to predict Type 2 performance is an art yet to
be fully developed; a number of factors must be consid-
ered. The Type 1 ratings will have been affected by both
common and unique noise14 and by the observer’s ability
(or inability) to maintain a consistent set of Type 1 crite-
ria and so might produce distributions q(x | S ) and q(x | N )
that are less discriminable than f (x | S ) and f (x | N ). Also,
it will be necessary to assume a Type 1 criterion on the set
of rating categories, which make up a Type 1 decision axis,
in order to use the equations in Table 4 to generate Type 2
probability functions. A Type 2 decision axis must also be
chosen, which is likely to involve a transformation of the
original rating category decision axis. However, in many
cases, Type 1 distributions of evidence are not known, and
these functions based on Type 1 ratings are all that is avail-
able as a means to make predictions.

Note that Type 2 ROC curves predicted in this way
should not be considered empirical Type 2 curves, despite
being based on empirical data, since the observer has not
made any Type 2 decisions to produce them. They are the-
oretical predictions of performance observers might ex-
hibit if they were to make Type 2 decisions constrained by
the assumptions made to generate the Type 2 ROC curve.
The fact that there are many choices of Type 2 decision
axis is a clear reminder that any such curve is only a pre-
diction, and not an empirical Type 2 curve.

Discussion
We have presented a general method of generating

models of Type 2 performance based on the assumption
that on any trial an observer uses the same piece of evi-
dence (albeit transformed somehow) to make both the
Type 1 and the Type 2 decisions. Models are produced by
assuming Type 1 probability functions of the evidence and
a Type 1 decision axis, deriving the transformed Type 1
functions for the Type 1 decision variable if it is not X, and

applying the equations in Table 4 to generate Type 2 prob-
ability functions. A Type 2 decision axis is chosen, and
Type 2 probability functions are calculated for the new de-
cision variable. An important revelation of the theory is
that Type 2 performance can be quite different from Type
1 performance and is highly dependent on the Type 1 cri-
terion. The relationship between Type 1 and Type 2 dis-
criminations depends on the performance measure cho-
sen, the decision axes chosen for each of the two tasks, the
Type 1 criterion used, the shape of the distributions un-
derlying the Type 1 decision, and the prior probabilities of
the Type 1 events. 

We have derived a number of corollaries from the gen-
eral equations that have important implications. In partic-
ular, we have shown why Type 2 curves based on X as de-
cision axis are likely to drop below the chance line. This
indicates that models for empirical Type 2 curves that do
not drop below the chance line will require some trans-
formation of X as the Type 2 decision axis. We have shown
how the Type 1 ROC curve and its reflection in the chance
line puts a bound on the family of Type 2 curves under
some conditions and have described how Type 2 curves
may be predicted from Type 1 ratings (Corollary 6). We
have given examples of how to calculate a transformation
of variable for a discrete (the dice game) and a continuous
(the model of Clarke et al., 1959) case.

We now return to two interesting issues raised in the 
introduction—namely, whether it can always be assumed that
both the Type 1 and the Type 2 decisions are based on the
same evidence and, when it can, what can be said about the
relationship between Type 1 and Type 2 confidence ratings. 

We raised the question of whether Type 1 and Type 2
decisions are always based on the same value of X in the
context of studies of perception without awareness. Kolb
and Braun (1995) found excellent Type 1 discrimination
accompanied by remarkably poor Type 2 performance.
Although we criticized the general method of comparing
Type 1 and Type 2 performance to reveal perception with-
out awareness, it is hard to come up with a model that
would predict such a large difference between Type 1 and
Type 2 performance; it is likely that Type 2 ROC curves
predicted from the Type 1 ratings in their study would be
higher than the empirical Type 2 ROC curves. Kunimoto
et al. (2001), alerted to the problem of directly comparing
Type 1 and Type 2 performance, used a model of Type 2
binary confidence ratings based on distance from the in-
tersection of two equal variance Gaussian density func-
tions and d� measures to show that Type 1 and Type 2 per-
formance should fall to chance at the same signal-to-noise
ratio. A calculation based on our model and the Type 2
likelihood ratio as the Type 2 decision axis gives the same
theoretical result. This suggests that in their study, signif-
icant Type 1 detection in the presence of a Type 2 d� of
zero was not produced by Type 1 and 2 decisions based on
the same source of evidence. It appears that the observer
is able to access information when making the Type 1
judgment that cannot be accessed at the time of the Type 2
judgment. This is a very curious result, given that the ob-
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servers in these studies could have done well in the Type 2
task by taking their Type 1 ratings and transforming them
into responses appropriate to the Type 2 task. This sug-
gests that the form of the instruction is very important to
the observer and that being asked to discriminate and to
give a commentary on one’s performance causes one to rely
on different sources of information. Busey, Tunnicliff, Lof-
tus, and Loftus (2000) influenced Type 2 confidence in-
dependently of accuracy in Type 1 decisions by using cues
that their observers imagined would improve or degrade
their performance. Their data were collected using Type 1
decisions followed by Type 2 ratings, but their measures
were of calibration, because they were looking for signs of
under- or overconfidence. It would be interesting to apply
Type 2 ROC analysis to their data to determine whether
the effects of their manipulations were on the Type 2 cri-
terion or on Type 2 discriminability, because only the lat-
ter would suggest the use of a different value of evidence
for the two decisions. 

Imagine a situation in which it is more likely that the
observer is using the same evidence for both decisions,
such as a memory experiment in which the observer sees
a test word and must say whether it belongs to a previously
learned list. Consider two tasks: a Type 1 rating task in
which the observer rates confidence that the presented
word is old and a Type 2 task in which a yes–no Type 1 de-
cision between old and new is followed by a Type 2 con-
fidence rating. What is the difference between these two
kinds of confidence ratings, apart from the obvious one
that high confidence that the N event occurred (i.e., that
the word is new) is indicated by a very low rating in the
first case and a very high rating in the second? We have
shown that the mathematical constraints on the task of dis-
criminating S from N are different from the constraints on
the task of discriminating C from I. But one could argue
that the difference between Type 1 and Type 2 perfor-
mance is due just to the difference in the form of the task,
analogous to the theoretical difference (a factor of �2�)
between the d� measures for yes–no and two-interval tasks
based on the same pair of Gaussian probability functions.
It is tempting to think that the information carried in a bi-
nary decision followed by a 4-point Type 2 rating is ex-
actly the same as that carried by an 8-point Type 1 rating.
The fact that the theoretical Type 2 distributions are pre-
dictable from the theoretical Type 1 distributions (given
knowledge of the prior probabilities and the Type 1 crite-
rion) seems to give credence to this view.

The answer to this question is crucial, because it affects
the status of what we have called pseudo-Type 1 ratings,
obtained by taking a binary choice between S and N fol-
lowed by a rating on a 4-point scale and expanding these
to an 8-point pseudo-Type 1 scale. Macmillan and Creel-
man (1991) presented pseudo-Type 1 ratings as equivalent
to Type 1 ratings and even used a study based on pseudo-
Type 1 ratings to illustrate their chapter on (Type 1) rating
experiments (Reber, Kassin, Lewis, & Cantor, 1980). 

We caution against the use of pseudo-Type 1 ratings, be-
cause (1) they rely on an untested Type 2 model, (2) they

are only predictions of Type 1 ratings, not empirical Type 1
ratings, and (3) there are factors affecting the Type 2 rat-
ing decision that would not have affected the Type 1 rating
decision the pseudo-Type 1 ratings are meant to mimic.

In generating pseudo-Type 1 ratings from Type 2 ratings,
using the algorithm described earlier, the experimenter as-
sumes that the observer is able to lay down n � 1 criteria on
the n-point Type 2 decision axis in such a way that when the
Type 2 decision axis is unfolded into the pseudo-Type 1 de-
cision axis with 2n � 1 criteria (the extra criterion being
the fold point), the criteria on each side of the fold point
will match, or transform to, the criteria the observer would
have used on the Type 1 decision axis if he or she had been
asked for Type 1 ratings on a 2n � 1-point scale. It is not
easy to come up with realistic models that have this property.
Consider the textbook case of Type 1 distributions that are
Gaussian with equal variance, a Type 1 criterion applied
at the place where the distributions cross, k, and Type 2
ratings based on 1:X;2: | X � k |. Here, pseudo- Type 1 rat-
ings generated from the Type 2 ratings can match Type 1
ratings taken using X as the decision axis if the Type 1 rat-
ing criteria are symmetrically laid out on either side of k.
But in any task for which X is not likely to be the Type 1 de-
cision axis or the Type 1 probability functions are not sym-
metric about the likely binary Type 1 criterion on whatever
Type 1 decision axis is used, models that generate Type 1
ROC curves that match pseudo-Type 1 ROC curves get very
complicated. Also, to our knowledge, no one has compared
Type 1 performance derived from pseudo-Type 1 ratings
and actual Type 1 ratings to see whether they do match.

Even if ROC curves generated from Type 1 ratings were
found to match ROC curves derived from pseudo-Type 1
ROC curves and someone proposed a Type 2 model that
gave a reasonable account of observers’ behavior in the
tasks used, all that can be said is that good predictions of
the Type 1 ratings could be made from the Type 2 ratings
under the assumptions of that model. Theoretical as-
sumptions about distributions and decision axes must be
made when producing models for data, but it is not a good
practice to manipulate data based on assumptions and re-
port these as raw data. 

The question of how confidence ratings are generated
has attracted many researchers, and there now exists a
wealth of literature on calibration and on the relations among
accuracy, confidence, and speed of response (see Link,
1992). Because a Type 1 decision followed by a Type 2 rat-
ing gives separate measures of accuracy and confidence,
the Type 2 task is the standard methodology in this litera-
ture (Baranski & Petrusic, 1998). One line of inquiry of par-
ticular interest here is to find out when the confidence rat-
ings are generated. In their model of confidence, Gigerenzer,
Hoffrage, and Kleinbölting (1991) assumed that the Type 1
judgment and the (Type 2) confidence assessment are pro-
duced at the same time. If this is true, one must consider
the possibility that a confidence assessment not reported
until the Type 2 decision interval may have degraded, due
to the time elapsed between the two decision intervals or
to interference from organizing the Type 1 response. One
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might then expect pseudo-Type 1 ratings created from
these world-weary Type 2 ratings to carry different infor-
mation from fresh Type 1 ratings. Baranski and Petrusic
suggested that the confidence rating may be decided on
during the Type 1 task if the observer is under pressure to
get the Type 1 decision correct, and not until afterward if
the experimenter stresses making the Type 1 answer quickly.
In the latter case, it is difficult to guess how the pseudo-
Type 1 ratings would compare with real Type 1 ratings
using the same evidence distributions. 

We conclude, therefore, that it is not a good idea to pre-
sent pseudo-Type 1 ratings as empirical Type 1 ratings,
because the theories that predict that Type 1 ROC curves and
pseudo-Type 1 ROC curves will be the same will not always
hold and, even when they hold, it is unwise to report a pre-
diction as a result. It is an unavoidable aspect of psycho-
logical experiments that no matter how well instructed, it
is the observer who determines how the task is done. In the
perception without awareness experiments, we see that the
observer may go so far as to put the response under the
control of different processing on the bases of the structure
of the tasks and the form of the instruction. If Type 1 ratings
are required, experimenters should request them. Finally, if
the Type 1 task is of the form that cannot be cast as a rat-
ing in the confidence in one of two events (e.g., in the
word identification task used by Pollack & Decker, 1958),
the ROC curve generated from the corresponding pseudo-
Type 1 ratings is likely to have no sensible meaning.

Summary and Conclusions
We have presented a theory for the task of identifying

one’s own correct decisions in the context of the TSD. The
theory applies to a Type 2 binary or rating task following
a binary Type 1 decision but will provide the basis for the-
ories of other, more complicated Type 2 tasks. The theory
predicts that, in general, the ability to discriminate signal
from noise is not equivalent to the ability to discriminate
correct from incorrect decisions, even if both decisions
are based on the same evidence.

The theory developed here can be used in any situation
involving a Type 1 yes–no task followed by a Type 2 bi-
nary or rating decision;15 studies of sensory discrimina-
tion, memory, vigilance, and clinical diagnosis are just
some examples. The reason for using a Type 2 analysis will
vary accordingly. For example, Podd (1975) was interested
in whether giving an observer knowledge of results would
effect a change in Type 2 decision axis from evidence, X,
to likelihood ratio. Since the theoretical ROC curves for
the Type 2 task often differ quite markedly for the differ-
ent decision axes, comparing Type 2 curves from each ex-
perimental condition can be a more sensitive test of change
in decision axis than comparing Type 1 curves. In another
kind of experiment, the ability of observers to assess their
own decisions might be under investigation for its own
sake, as in the studies of memory and of perception with-
out awareness described earlier.

Empirical ROC analysis of Type 2 data, as described
previously (Critchfield, 1993; Hosseini & Ferrell, 1982),
can be applied without knowledge of the Type 1 distribu-

tions, but to make predictions of Type 2 performance
based on the principles of TSD, theoretical Type 2 proba-
bility functions are required. If it is reasonable to assume
that Type 1 and Type 2 decisions are based on the same ev-
idence, our Type 2 equations provide the basis for predict-
ing performance. If the object of an experiment is to discover
whether the Type 1 and the Type 2 decisions are based on
the same evidence, as in studies of perception without
awareness, our equations provide the basis for predicting
Type 2 performance under the null hypothesis that Type 1
and Type 2 decisions are based on the same evidence.

REFERENCES

Banks, W. P. (1970). Signal detection theory and human memory. Psy-
chological Bulletin, 74, 81-99.

Baranski, J. V., & Petrusic, W. M. (1998). Probing the locus of confi-
dence judgements: Experiments on the time to determine confidence.
Journal of Experimental Psychology: Human Perception & Perfor-
mance, 24, 929-945.

Birdsall, T. G. (1955). The theory of signal detectability. In H. Quastler
(Ed.), Information theory in psychology (pp. 391-402). Glencoe, IL:
Free Press.

Busey, T. A., Tunnicliff, J., Loftus, G. R., & Loftus, E. F. (2000).
Accounts of the confidence–accuracy relation in recognition mem-
ory. Psychonomic Bulletin & Review, 7, 26-48.

Clarke, F. R., Birdsall, T. G., & Tanner, W. P., Jr. (1959). Two types
of ROC curves and definitions of parameters. Journal of the Acousti-
cal Society of America, 31, 629-630.

Critchfield, T. S. (1993). Signal-detection properties of verbal self-
reports. Journal of the Experimental Analysis of Behavior, 60, 495-514.

Egan, J. P. (1975). Signal detection theory and ROC analysis. New York:
Academic Press.

Egan, J. P., & Clarke, F. R. (1956). Source and receiver behavior in the use of
a criterion. Journal of the Acoustical Society of America, 28, 1267-1269.

Egan, J. P., Clarke, F. R., & Carterette, E. C. (1956). On the trans-
mission and confirmation of messages in noise. Journal of the
Acoustical Society of America, 28, 536-550.

Ferrell, W. R., & McGoey, P. J. (1980). A model of calibration for
subjective probabilities. Organizational Behavior & Human Perfor-
mance, 26, 32-53.

Galvin, S. J. (1988). The theory of Type II ROC analysis. Unpublished
master’s thesis, Victoria University, Wellington, New Zealand.

Galvin, S. J., Beuke, C. J., Keogh, D., & Robinson, T. (2000). Can utroc-
ular discrimination be subliminal? Investigative Ophthalmology & Vi-
sual Science, 41(Suppl.), S732.

Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilis-
tic mental models: A Brunswikian theory of confidence. Psychologi-
cal Review, 98, 506-528.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psy-
chophysics. New York: Wiley.

Healy, A. F., & Jones, C. (1973). Criterion shifts in recall. Psycholog-
ical Bulletin, 79, 335-340.

Higham, P. A. (2002). Strong cues are not necessarily weak: Thomson
and Tulving (1970) and the encoding specificity principle revisited.
Memory & Cognition, 30, 67-80.

Hosseini, J., & Ferrell, W. R. (1982). Detectability of correctness: A
measure of knowing that one knows. Instructional Science, 11, 113-127.

Keren, G. (1988). On the ability of monitoring non-veridical percep-
tions and uncertain knowledge: Some calibration studies. Acta Psy-
chologica, 67, 95-119.

Keren, G. (1991). Calibration and probability judgements: Conceptual
and methodological issues. Acta Psychologica, 77, 217-273.

Kolb, F. C., & Braun, J. (1995). Blindsight in normal observers. Na-
ture, 377, 336-338.

Kunimoto, C., Miller, J., & Pashler, H. (2001). Confidence and ac-
curacy of near-threshold discrimination responses. Consciousness &
Cognition, 10, 294-340.

Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration



DISCRIMINATING BETWEEN CORRECT AND INCORRECT DECISIONS 863

of probabilities: The state of the art to 1980. In D. Kahneman, P. Slovic,
& A. Tversky (Eds.), Judgement under uncertainty: Heuristics and bi-
ases (pp. 306-334). Cambridge: Cambridge University Press.

Link, S. W. (1992). The wave theory of difference and similarity. Hills-
dale, NJ: Erlbaum.

Luce, R. D. (1997). Some unresolved conceptual problems in mathemat-
ical psychology. Journal of Mathematical Psychology, 41, 79-87.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A
user�s guide. Cambridge: Cambridge University Press.

McFadden, D., & Greeno, J. G. (1966). Verbal learning: A some-or-none
process (Tech. Report). Indiana University Hearing and Communi-
cation Laboratory.

Merikle, P. M., Smilek, D., & Eastwood, J. D. (2001). Perception with-
out awareness: Perspectives from cognitive psychology. Cognition, 79,
115-134.

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to
the theory of statistics (3rd ed., International Student Edition). Singa-
pore: McGraw-Hill.

Murdock, B. B., Jr. (1966). The criterion problem in short term mem-
ory. Journal of Experimental Psychology, 72, 317-324.

Murdock, B. B., Jr. (1974). Human memory: Theory and data. Po-
tomac, MD: Erlbaum.

Norman, D. A., & Wickelgren, W. (1969). Strength theory of deci-
sion rules and latency in retrieval from short-term memory. Journal of
Mathematical Psychology, 6, 192-208.

Peirce, C. S., & Jastrow, J. (1884). On small differences in sensation.
Memoirs of the National Academy of Sciences, 3, 73-83.

Podd, J. V. (1975). Type I and Type II ROC analysis of change in human
decision axis. Unpublished master’s thesis, Victoria University, Welling-
ton, New Zealand.

Pollack, I. (1959). On indices of signal and response discriminability.
Journal of the Acoustical Society of America, 31, 1031.

Pollack, I., & Decker, L. R. (1958). Confidence ratings, message re-
ception, and the receiver operating characteristic. Journal of the
Acoustical Society of America, 30, 286-292.

Reber, A. S., Kassin, S. M., Lewis, S., & Cantor, G. W. (1980). On
the relationship between implicit and explicit modes in the learning of
a complex rule structure. Journal of Experimental Psychology:
Human Learning & Memory, 6, 492-502.

Swets, J. A. (1973). The relative operating characteristic in psychology.
Science, 182, 990-1000.

Swets, J. A., Tanner, W. P., Jr., & Birdsall, T. G. (1961). Decision
processes in perception. Psychological Review, 68, 301-340.

Taylor, A., Boven, R., & Whitmore, J. (1991). Reduction of unique
noise in the psychophysics of hearing by group operating characteris-
tic analysis. Psychological Bulletin, 109, 133-146.

Van Zandt, T. (2000). ROC curves and confidence judgements in
recognition memory. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 26, 582-600. 

Vickers, D. (1979). Decision processes in visual perception. New York:
Academic Press.

Weiskrantz, L. (1986). Blindsight: A case study and its implications.
Oxford: Oxford University Press.

Weiskrantz, L. (1998). Consciousness and commentaries. Interna-
tional Journal of Psychology, 33, 227-233.

NOTES

1. The term probability function here refers to either a continuous
probability density function or a discrete mass function.

2. In this context, a Type 2 rating would be one that followed a binary
Type 1 decision about whether the word was old or new. The Type 2 rat-
ing would record the observer’s confidence that the Type 1 binary response
had been correct. That was not the procedure used in Banks’s (1970) ex-
periment.

3. For the same reason, we prefer the original theory of signal de-
tectability to the now common signal detection theory (SDT). We also
wish to avoid the assumption sometimes attached to the label SDT that
the distributions of the evidence are Gaussian.

4. Clarke et al. (1959) used the terms stimulus-conditional and 
response-conditional to refer to the Type 1 and Type 2 tasks, respectively.
We have avoided the use of these terms because (1) both decisions are
made on the basis of the stimulus, as we describe here, and (2) the terms
stimulus–conditional and response-conditional are sometimes used to
distinguish classical from operant conditioning; this distinction is not re-
lated to that between Type 1 and Type 2 tasks.

5. Making an incorrect Type 2 decision should not be confused with the
Type 2 error of hypothesis testing. Although there is a relationship be-
tween TSD and the logic of hypothesis testing (see Swets, 1973), the use
of the term Type 2 in both systems does not reflect that relationship.

6. In this article, we consider decision rules that involve applying a
single criterion to some decision axis, and that axis may be X, or some
transformation of X. Therefore, in a situation in which one can produce
the same set of responses by applying either a single criterion to the like-
lihood ratio axis or more than one criterion to the X axis, we describe this
as using the likelihood ratio of X, not X, as the decision axis.

7. In the case of a model based on a Type 1 decision axis V � t1(X ),
the equations applied below to the Type 1 probability functions f (x | S )
and f (x | N ) should instead be applied to the probability functions of the
transformed variable, f (v | S ) and f (v | N ), respectively.

8. Cumulative distribution functions of X give the area under the prob-
ability function, f (x), to the left of each value of X—that is, F(k) � ∫ k

�∞
f (x)dx. For discrete functions, F(k) � P(X � k).

9. Most authors would use the decision rule “Say ‘yes’ if x is greater
than or equal to k.” For discrete probability functions, Equations 1 and
2 would then not hold. Our change to the decision rule is made for con-
venience in the discrete case and does not affect the generality of our re-
sults in either the discrete or the continuous case.

10. Green and Swets (1966) showed that the Type 1 likelihood ratio is
the optimal decision axis for Type 1 decisions for several decision goals,
regardless of the underlying Type 1 probability functions. The same ex-
planation applies to the likelihood ratio for Type 2 probability functions.

11. Although it makes no difference to the mathematics, we switch to
using the variable x rather than m at this point, since we are now thinking
of the variable as representing values of evidence, rather than as Type 2
criteria applied to the X axis.

12. In the two-interval task, the observer is presented with evidence
sampled from the S distribution in one spatial or temporal observation in-
terval, and evidence sampled from the N distribution in the other inter-
val. The observer’s task is to say in which interval (first or second, left
or right, etc.) the signal event occurred. This task is also known as two-
alternative forced choice, but because an observer is also forced to choose
between two alternatives in the yes–no task, we prefer to avoid the am-
biguity by using the term two-interval. 

13. Other decision variables might be used, such as W � X1/X2.
14. See Taylor, Boven, and Whitmore (1991) for a discussion of com-

mon and unique noise.
15. Type 2 ROC analysis can also be used on decisions that assess the

correctness of multiple-interval tasks (e.g., Kolb & Braun, 1995), but we
have not presented a model for that here. 

(Continued on next page)
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APPENDIX A
The Type 2 Theory of Clarke, Birdsall, and Tanner (1959)

Clarke et al. (1959) presented the only prior attempt we have seen to derive a pair of Type 2 prob-
ability density functions. They considered the case of the likelihood ratio observer’s attempting to
detect a signal known exactly in a background of white, Gaussian noise (see Green & Swets, 1966,
for details about this task). In this case, the Type 1 density function of the evidence variable, X, is
normal for each of the S and N events, and both functions have the same variance. The separation
of the means in standard deviation units is d �X.

Clarke et al. (1959) transformed the Type 1 evidence axis, X, using Y � log[l(X)] /d �X. The den-
sity functions of Y conditional on S and N can be shown to be normal, with unit variance and with
means at d �X /2. We refer to these density functions as g ( y | S ) and g ( y | N ). Note that d �Y for the
probability density functions of Y conditional on S and N is the same as d �X. This is expected, since
Y is a linear increasing transformation of X. The reason for the transformation was not, therefore,
to obtain an optimal decision axis, because X is already that; the advantage it confers is to simplify
the mathematics of deriving their Type 2 model. In particular, the functions g ( y | S ) and g( y | N )
intersect at zero, giving l(Y ) � 1 for positive values of Y only. 

Clarke et al. (1959) made the important point that the Type 2 functions would depend on the
value of Y used as the criterion in the Type 1 decision. They chose the optimal criterion for the Type 1
observer—namely, the Y value corresponding to an l(Y ) value of 1 [because the Type 1 priors, P(S)
and P(N ), were set to one half ]. If X is used as the decision axis, this criterion is some value of X
(call it x0); if Y is the decision axis, the criterion is y � 0.

Clarke et al. (1959) wrote that they were going to use a likelihood ratio as the decision axis for
the Type 2 decision, lr(x) � Pc(x)/PI (x), where r stands for response conditional (meaning Type 2).
Although Clarke et al. used X as the variable in that expression, we have taken this likelihood ratio
to correspond to our l0(Y ), the ratio of the Type 2 probability functions g0( y | C ) and g0( y | I ).
These are obtained by applying the Type 1 criterion y � 0 to g0( y | S ) and g0( y | N ), and this is how
they described what they were doing. Also, the rest of their derivation is expressed as functions of
Y, not of X. In fact, the density functions of lx0

(X ) and l0(Y ) conditional on C and I will produce
the same ROC curve, because X and Y increase strictly monotonically together.

At this point Clarke et al. (1959) wrote, “In this example, the decision rule for making identifi-
cation responses results in lr (x) � l(x) for y � 0 and lr (x) � 1/l(x) for y � 0.” We now know that,
even for equal Type 1 prior probabilities, these equations are out by a scale factor of Pk (I ) /Pk(C );
see Equations B8a and B8b in the proof of Corollary 2). However, lr (x) is proportional to l(x) for
y � 0 and to 1/l(X ) for y � 0. From this relationship between the Type 1 and the Type 2 likelihood
ratios, Clarke et al. concluded that the probability density functions conditional on C and I for the
likelihood ratio observer would be the probability density functions of W conditional on C and I,
where W � |Y | {recall that Y � log[l(X )]/d �X}. They obtained the probability density functions of
|Y | by scaling up parts of g( y | S ) and g( y | N ) for positive values of Y so that the area under each
was 1. This gave the same result that we get by applying our equations for the Type 2 decision axis
of |X � k | for k � 0 (see Corolla ry 4) to the probability functions of Y—namely (in our notation),

(A1)

and

(A2)

Although Clarke et al. (1959) correctly derived the Type 2 probability density functions for the
decision axis W � |Y |, that is not actually what they set out to do, and we will show below that those
functions are different from the Type 2 probability density functions for the intended decision axis,
l0(Y ). It is true, however, that although |Y | and l0(Y ) do not have the same Type 2 probability func-
tions, they do give the same Type 2 ROC curves in this case, because |Y | varies monotonically with
l0(Y ) for this particular choice of Type 1 probability functions and Type 1 criterion.

We derive the Type 2 functions for l0(Y ) by applying the equations in Table 4 to the probability
functions of the Type 1 decision variable, g( y | S ) and g( y | N ), to obtain the Type 2 functions based
on decision axis Y, g0( y | C ) and g0( y | I ). We use these probability functions to calculate how the
transformation of Y, l0(Y ), is distributed conditional on C and I. 

The Type 1 density functions of Y are given as
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From the equations in Table 4, the Type 2 probability density functions of Y, given y � 0 as the
Type 1 criterion and P(S ) � P(N ) � .5, are

and

for equal priors. The Type 2 likelihood ratio for these functions is
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Figure A1. Type 2 probability density functions of Y for k � 0 and d� � 1 and
their likelihood ratio.

(A4a)

(A4b)

(A3a)

(A3b)
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The distributions g0(y | C ) and g0(y | I) and their likelihood ratio are shown in Figure A1. 
We now derive the probability density functions of the likelihood ratio, l0(Y ), conditional on C

and I by a transformation of variable. In general, if Y has probability density function g( y), let ℵ �
{y : g ( y) � 0}; if z � t( y) defines a one-to-one transformation of ℵ onto � and 

is continuous and nonzero for z ∈ �, Z has probability density function

and h(z) � 0 elsewhere (Mood, Graybill, & Boes, 1974, p. 200). (We are using the variable Z here
to distinguish this transformation from the transformation W � |Y |; it has nothing to do with Z
scores.) Since the transformation function, z � l0(y) is many to one (see Figure A1), ℵ must be
broken into disjoint sets, ℵ1 . . . ℵn, in such a way that z � t( y) defines a one-to-one transforma-
tion of each ℵi onto ℜ. Then the density of Y given by

where the summation is over those values of i for which t( y) � z for some value of y in ℵi (Mood
et al., 1974, p. 201). For the transformation function z � l0(y), the positive and negative regions of
Y each support one-to-one functions, so the probability functions of l0(Y ) conditional on C and I
are the sum of contributions from these two regions. 

The transformation function is different for positive and negative regions of Y, so the inverse of
the transformation function is calculated separately for each, as follows:

(A5)
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The contribution to h0(z | C ), the probability density function of l0(Y ), for the region y � 0 is,
therefore,

which is the same as the contribution from t1(Y ).
The probability density function of Z [i.e., of l0(Y )] conditional on C is, therefore,

The contribution to h0(z | I ) for the region y � 0 is

and the contribution from the region y � 0 is

The probability density function of Z [i.e., of l0(Y )] conditional on I is, therefore,
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The integrals under each of the two Type 2 probability functions of Z can be shown to be equal
to one, and the likelihood ratio of the two functions is Z, as required of probability density func-
tion of likelihood ratios in general. The distributions h0(y | C) and h0(y | I ) are shown in Figure A2. 

The distributions h0(z | C ) and h0(z | I ) are the model for the Type 2 task described by Clarke
et al. (1959) and would produce the same ROC curve as Functions A1 and A2 derived by them.
However, h0(z | C ) and h0(z | I ) differ from those in Clarke et al. in two important ways. First, they
both have a range that starts at a point above zero. From Figure A1, it can be seen that the mini-
mum value of l0( y), which is derived by dividing g0( y | C ) by g0( y | I ), occurs at y � 0; note that
the vertical axis in Figure A1 is the same as the horizontal axis in Figure A2. The inequality at the
end of the sentence containing Equation A5 shows that this minimum value of l0( y) is
P0(I ) /P0(C ). Second, neither h0(z | C ) nor h0(z | I ) is a scaled portion of a Gaussian distribution,
as both of the functions in Clarke et al. were.

Figure A2. Type 2 probability density functions of l0(Y ), where the Type 1
functions of Y are normal with a variance of 1 and with means at 
0.5 and
�0.5, respectively.
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APPENDIX B
Proofs of Corollaries to the General Equations

COROLLARY 1: Type 2 ROC Curves for Extreme Type 1 Criteria

The 1:X; 2:X ROC curve obtained using the lowest possible Type 1 criterion (i.e., always say-
ing “yes” in the Type 1 task) is the Type 1 ROC curve; the 1:X; 2:X ROC curve obtained using the
highest possible criterion in the Type 1 task (i.e., always say “no”) is the reflection of the Type 1
ROC curve in the chance line. The 1:X; 2:lk(X) ROC curve obtained using the highest possible cri-
terion in the Type 1 task is the reflection in the negative diagonal of the 1:X; 2:lk(X) ROC curve
for the lowest possible criterion.

As the Type 1 criterion yielding the Type 2 ROC curve becomes smaller, the Type 2 curve ap-
proaches the Type 1 curve. This can be shown to be true for any pair of Type 1 probability func-
tions. If k � �∞, is taken as the criterion in the Type 1 task, the Type 2 probability functions are
completely defined by Equations 10b and 11b, since x is always greater than k. For k � �∞, the
observer always says “yes” in the Type 1 task, so the probability of being correct is the prior prob-
ability of a signal event—that is, P�∞(C ) � P(S ) and P�∞(I ) � P(N ). Equations 10b and 11b be-
come

fk(x |C ) � f(x | S ), for k � �∞ (B1)

fk(x | I) � f(x | N ), for k � �∞ (B2)

and the Type 2 curve coincides with the Type 1 curve.
If k � ∞, the observer always says “no,” so P∞(C ) � P(N ) and P∞(I ) � P(S ). Equations 10a

and 11a are sufficient to give the Type 2 probability functions, which are

fk(x | C ) � f(x | N ), for k � ∞ (B3)

fk(x | I) � f(x | S ), for k � ∞. (B4)

The Type 2 curve for k � ∞ is, therefore, given by HR2 � FAR1 and FAR2 � HR1. This exchange
of coordinates amounts to a reflection of the Type 1 curve in the line HR � FAR, the chance line.

The 1:X; 2:lk(X ) ROC curves for the highest and the lowest Type 1 criteria are also reflections
of each other, this time in the negative diagonal. The Type 2 likelihood ratios in this case are

l�∞(x) � l(x), from Equations B1 and B2 (B5)

and

l∞(x) � [l(x)]�1, from Equations B3 and B4. (B6)

Equations B5 and B6 give

l∞(x) � [l�∞(x)]�1,

which gives

l�∞(xi) � l�∞(xj) ⇔ l∞(xi) � l�∞(x). (B7)

The Type 2 probability functions for the 1:X; 2:lk(X ) case, gk[lk(x) | C] and gk[lk(x) | I ], are trans-
formations of the Type 2 probability functions, fk(x | C ) and fk(x | I). From Equations B1 and B4,
it can be seen that the functions g�∞[l�∞(x) | C ] and g∞[l∞(x) | I ] are both transformations of the
function f(x | S ); Equations B2 and B3 show that g�∞[l�∞(x) | I ] and g∞[l∞(X ) | C ] are both trans-
formations of f(x | N ).

For the discrete case, probabilities originally associated with x values become associated with
l�∞(x) values in the g�∞[l�∞(x) | C ] and g�∞[l�∞(x) | I ] functions and with l∞(x) values in the g∞
[l∞ (X ) | C ] and g∞[l∞(x) | I] functions. In the g∞[l∞(X) | C ] and g∞[l∞(x) | I ] functions, the order of
the probabilities is the reverse of their order in the g�∞[l�∞(x) | C ] and g�∞[l�∞(x) | I ] functions,
because of the relationship shown in Equation B7. However, for each value l∞(xi), there is still a
value l�∞(xi) equal to [l∞(xi)]�1 associated with the same pair of probabilities P(X � xi | S) and P(X
� xi | N ). Thus, the functions g�∞[l�∞(x) | C ] and g∞[l∞(x) | I ] consist of the same probabilities
[those from f(x | S )] occurring in opposite orders; g�∞[l�∞(x) | I ] and g∞[l∞(X) | C ] are made up of
the probabilities from f(x | N), appearing in opposite orders. Therefore, the HR for the Type 2 curve
based on l�∞(X ) for some criterion value, t, of l�∞(X ) is 

HR t P l X l x C

P l X l x I

FAR t
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Similarly,

For each criterion value on the l�∞(X ) axis, t, there is, therefore, a criterion value on the l∞(X ) axis
that yields an ROC point on the ROC2,∞ curve that is the reflection in the negative diagonal of the
point yielded by t on the ROC2,∞ curve.

COROLLARY 2: Likelihood Ratio for Type 2 Probability Functions

If l(X) is monotonic with X for f(x | S) and f(x | N), l k (X) is proportional to 1/ l(x) for x � k and
to l(x) for x � k. Hence, lk(x) will be monotonic with X only if k is the lowest possible criterion.

By the equations in Table 4, the likelihood ratios for the Type 2 probability functions (both dis-
crete and continuous) obtained using k as the criterion in the Type 1 decision are given by

Equation B8b ensures that if l(X ) increases monotonically with X, lk(X ) will also increase mono-
tonically with X for x � k, since lk(x) is equal to l(x) scaled by a constant for a given k. Also, by
Equation B8a, lk (x) will decrease monotonically with increasing X for x � k, since l(x) � 0 and
the function z � 1/y decreases for y � 0. Clearly, if l(X ) increases monotonically with X, lk(X ) will
not increase monotonically with X for all x unless k � �∞.

COROLLARY 3: Type 1 Curve as an Upper Bound for Type 2 ROC Curves

If l(X) is strictly monotonically increasing with X, and P(S) and P(N) are equal, the Type 1 ROC
curve puts an upper bound on all the Type 2 ROC curves for which X is the decision axis.

Let k be the criterion on the X axis that gives a pair of Type 2 probability functions. Let x1 be a
criterion for the Type 1 decision and x2 be the criterion for the Type 2 decision giving the same
FAR as x1 gives in the Type 1 task. Let HR1(x1) be the HR obtained using x1 as the criterion in the Type 1
decision and HR2(x2) be the HR for the Type 2 decision, using x2 as the criterion. All the Type 2
curves that can be derived from f(x | S ) and f(x | N ) will lie on or below the Type 1 curve if it is true
that

HR1(x1) � HR2(x2), �x1,x2,k. (B9)

Figure B1 illustrates this condition.
For an ROC curve based on likelihood ratio, HR is a strictly monotonically increasing function

of FAR, and the slope of the curve is monotonically decreasing (Green & Swets, 1966). This means
that the ROC points all lie on or above the chance line (HR � FAR). The following proof of Equa-
tion B9 assumes that l(X ) increases strictly monotonically with X, so the Type 1 curve based on X
will be such that 

HR1(x1) � FAR1(x1), �x1.

Equal Type1 prior probabilities are also assumed.
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Since the equations for HR2 and FAR2 are different for x2 � k and x2 � k, the proof is in two parts.
For x2 � k, equating the FARs gives

as P(N ) � .5, so

[1 � F(x1 | N )] � 2Pk(I ) �1 � F(x2 | N ). (B10)

For the ROC curve with monotonically decreasing slope,

HR(k) � FAR(k),

so

HR(k) � FAR(k) + 1 � 1,

and

.5[HR(k) + 1 � FAR(k)] � .5,

giving

Pk(C ) � .5 by Equations 4, 1, and 2.

For equal priors, therefore,

.5 � Pk(C ) � 1,

giving

1 � 2Pk(C ) � 2. (B11)

This also gives

2 � 1 � 2 � 2Pk(C ) � 2 � 2,

or

1 � 2 Pk(I ) � 0. (B12)

From Equations B10 and B12,

1 � F(x1| N ) � 1 � F(x2 | N ), 

1
1

21
2− ( ) =

− ( )
( )F x N

F x N

P Ik

, from Equation 7b,

Figure B1. Type 1 receiver operating characteristic (ROC)
curve and Type 2 ROC curve showing a pair of points with the
same false alarm rate.
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which implies

x1 � x2

and
HR1(x1) � HR2(x2),

as required.
It can be shown that the point on the 1:X; 2:X ROC curve obtained by using k as the Type 1 cri-

terion lies at the upper end of the part of the curve obtained from Type 2 criterion values x � k.
The upper segment of the curve (that for criterion values x � k) joins the point [FAR2,k(k), HR2,k(k)]
to the top right corner of the ROC space. For this part of the curve, the slope, given by lk(x), de-
creases with increasing x (see Equation B8a)—that is, the slope of the curve increases with in-
creasing FAR. Because the slope is always positive (because the likelihood ratio is always posi-
tive) and monotonically increasing, this part of the Type 2 curve is always concave upward. It will
intersect the Type 1 curve, which is concave downward, at only one point—namely, (1,1). Al-
though two curves of opposite concavity may intersect twice, the bottom end of the upper segment
of the Type 2 curve lies on or below the Type 1 curve. This means that no part of this segment lies
above the Type 1 curve, as is required.

A similar argument will also show that all the Type 2 curves of a 1:X; 2:X family [with X strictly
monotonic with l(X ) and equal Type 1 priors] lie above the Type 2 curve yielded by the greatest
possible Type 1 criterion. The whole family is, therefore, bounded by the Type 1 curve and its re-
flection in the chance line (by Corollary 1).

COROLLARY 4: Distance From Type 1 Criterion as Type 2 Decision Axis

The Type 2 probability functions of the decision variable W � t(X) can be obtained from the
Type 2 functions of X, fk(x | C ), and fk(x | I ), using

where the summation is over separate regions (indexed by i) for which w � t(x) is a one-to-one
transformation, as is explained in Appendix A. If the Type 2 decision is based on the distance be-
tween the evidence and the criterion, k, the appropriate transformation function is W � |X � k |, or

The inverse of the transformation function is 

Then

giving 

for both regions of X. (Note that w � 0 for the range x � k and w � 0 for x � k.) This means that
h(w | C ) is the sum of fk(t�1(w) | C ) for x � k and fk(t�1(w) | C ) for x � k, which gives
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Similarly,

(B14)

COROLLARY 5: Maximum Percent Correct for the 1:X; 2:lk (X) Task

The maximum probability of a correct decision attainable in the 1:X; 2:lk(X ) task is equal to the
maximum probability of a correct decision in the Type 1 task using l(X ) as the decision axis.

(The proof is given for the discrete case only.) To maximize percentage correct in either the 1:l(X )
or the 1:X; 2: lk(X ) task, the ratio of the prior probabilities for that task must be used as the crite-
rion. For the 1:l(X ) task, P�(C ) is maximized using the criterion �� P(N )/P(S); for the 1:X; 2:lk(X )
task, the criterion on the lk(X ) axis maximizing Pk,�(C2 ) is � � Pk(I )/Pk(C), where C2 is the event
that the observer gets the Type 2 decision correct. For the Type 1 task in the discrete case, this
means the maximum percentage correct, P�(C)max, is achieved by saying “yes, signal” whenever

Let all the elements x for which l(x) � P(N ) /P(S ) make up the set A; then, all the elements x
for which l(x) � P(N ) /P(S ) make up A�. P�(C )max is given by

For a given k, Pk,�(C2)max is achieved by saying “yes, correct” whenever

that is, when

and

which is when

l(x) � P(N ) /P(S ), for x � k

and

l(x) � P(N ) /P(S ), for x � k.

The observer should, therefore, say “no, incorrect” in the Type 2 task when

l(x) � P(N ) /P(S ), for x � k

and

l(x) � P(N ) /P(S ), for x � k.

Let B be the set of elements to which the observer responds “yes, correct” according to this de-
cision rule. Then B is made up of those elements x � k for which l(x) � P(N)/P(S) and those ele-
ments x � k for which l(x) � P(N )/P(S). The rest of the elements x make up B�.

Consider the following six mutually exclusive sets, which combine to give the set of all possi-
ble values of x:

C � {elements x such that x � k, l(x) � P(N ) /P(S )},

D � {elements x such that x � k, l(x) � P(N ) /P(S )},

E � {elements x such that x � k, l(x) � P(N ) /P(S )},

F � {elements x such that x � k, l(x) � P(N ) /P(S )},

G � {elements x such that x � k, l(x) � P(N ) /P(S )},

H � {elements x such that x � k, l(x) � P(N ) /P(S )}.
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Then A � G � H and B � C � H. These sets are diagrammed in Figure B2.
By the definitions of B and B�, it can be seen that

(B15)

Consider the elements of B� which satisfy x � k (i.e., those whose probabilities are summed in
the second term of Equation B15). These elements belong to either E or G. For those belonging to
E, it is true that

or

so the second term of the Equation B15 becomes

Using the set labels in Figure B2, Equation B15 can be rewritten as 
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Figure B2. Membership of x values in Sets A to H. The dashed line encloses sets belonging to A;
the dotted line encloses sets belonging to B.

APPENDIX B (Continued)



DISCRIMINATING BETWEEN CORRECT AND INCORRECT DECISIONS 875

APPENDIX B (Continued)
COROLLARY 6: Different Functions With the Same Type 2 ROC Curves

If two pairs of probability functions give the same Type 1 ROC curve, two criteria (one applied
to each pair) that generate a common point on that ROC curve will each generate the same Type 2
ROC curve when applied to their respective probability functions.

Consider two pairs of probability functions f1(x | S ), f1(x | N ) and f2(x | S ), f2(x | N ) that have the
same Type 1 ROC curve. For any criterion under the first pair of probability functions, there is a
criterion under the second pair of probability functions that gives the same point on the ROC
curve—that is, the same HR and FAR. Therefore, there exists some function, h such that

1 � F1(x | N ) � 1 � F2[h(x) | N ]

and

1 � F1(x | S ) � 1 � F2[h(x) | S ];

that is,

F1(x | N ) � F2[h(x) | N ] (B16)

and

F1(x | S ) � F2[h(x) | S ]. (B17)

Consider a criterion, k1, under the first pair of probability functions and the criterion k2 � h(k1)
under the second pair of probability functions that generates the same point on the Type 1 ROC
curve. Let ROC2, k1 be the Type 2 curve obtained using k1 as the criterion on f1(x | S ) and f1(x | N ).
Its coordinates are given by

where

(B18)

and
(B19)

The Type 2 curve based on the second pair of probability functions and using k2 as criterion for
the Type 1 decision is ROC2, k2, given by

where

Pk2
(C ) � [1 � F2(k2 | S )] � P(S ) 
 F2(k2 | N ) � P(N ) (B20)

and

Pk2
(I ) � F2(k2 | S ) � P(S ) 
 [1 � F2(k2 | N )] � P(N ). (B21)
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APPENDIX B (Continued)

Because k1 and k2 give the same point on the Type 1 curve when applied as criteria to their re-
spective pairs of probability functions, it is true that

1 � F1(k1 | S ) � 1 � F2(k2 | S ), (B22)

equating HRs, and

1 � F1(k1 | N ) � 1 � F2(k2 | N ), (B23)

equating FARs. Equations B18 to B23 together imply that, for the same pairs of prior probabilities,

Pk1
(C ) � Pk2

(C ) (B24)

and

Pk1
(I ) � Pk2

(I ). (B25)

Now it can also be seen that the point on the ROC2, k1 curve obtained when k1 is used as the cri-
terion in the Type 1 decision and then in the Type 2 decision is the same as the point on the ROC2, k2
curve obtained using k2 as the criterion for both decisions—that is,

equating HRs, and

equating FARs.
Finally, the stretches of the Type 2 ROC curve above and below this point can be shown to be

the same, as follows. The inequality x � k1 is true if and only if

1 � F1(x | N ) � 1 � F1(k1 | N );

that is,

1 � F2[h(x) | N ] � 1 � F2(k2 | N ), by Equations B16 and B17,

which gives

h(x) � k2 . (B26)

Substituting h(x) for x in the formulae for ROC2, k2 gives

which, by the equalities B16, B17, B24, and B25 and the inequality B26, are identical to the equa-
tions for the ROC2, k1 curve. This means that just as x and h(x) gave the same point on the Type 1
curve when applied to the f1 and f2 functions, respectively, x yields the same point on the ROC2, k1
curve as h(x) yields on the ROC2, k2 curve when x and h(x) are used as criteria on the functions un-
derlying these two curves, respectively.

(Manuscript received November 7, 2001; 
revision accepted for publication October 22, 2002.)
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